
Chapter 3

Examples of Solved Problems for
Chapter 3, 5, 6, 7, and 8

This document presents some typical problems that the student may encounter, and shows how such
problems can be solved. Note that the numbering of examples below is taken from the 2nd edition
of the book Fundamentals of Digital Logic with VHDL Design. Since not all of these examples
are relevant to ECE241, the numbering of examples, and some figure numbers, are not always
sequential in this document.

Example 3.9

Problem: We introduced standard cell technology in section 3.7. In this technology, circuits are
built by interconnecting building-block cells that implement simple functions, like basic logic gates.
A commonly used type of standard cell are the and-or-invert (AOI) cells, which can be efficiently
built as CMOS complex gates. Consider the AOI cell shown in Figure 3.70. This cell implements
the function f = x1x2 + x3x4 + x5. Derive the CMOS complex gate that implements this cell.

Figure 3.70. The AOI cell for Example 3.9.

Solution: Applying Demorgan’s theorem in two steps gives

f = x1x2 · x3x4 · x5

= (x1 + x2) · (x3 + x4) · x5

1



Since all input variables are complemented in this expression, we can directly derive the pull-up
network as having parallel-connected PMOS transistors controlled by x1 and x2, in series with
parallel-connected transistors controlled by x3 and x4, in series with a transistor controlled by x5.
This circuit, along with the corresponding pull-down network, is shown in Figure 3.71.

Figure 3.71. Circuit for Example 3.9.

Example 3.10

Problem: For the CMOS complex gate in Figure 3.71, determine the sizes of transistors that
should be used such that the speed performance of this gate is similar to that of an inverter.
Solution: Recall from section 3.8.5 that a transistor with length L and width W has a drive
strength proportional to the ratio W/L. Also recall that when transistors are connected in par-
allel their widths are effectively added, leading to an increase in drive strength. Similarly, when
transistors are connected in series, their lengths are added, leading to a decrease in drive strength.
Let us assume that all NMOS and PMOS transistors have the same length, Ln = Lp = L. For
the pull-down network in Figure 3.71, the worst-case path involves just a single NMOS transistor.
Thus, we can make the length, Ln, of each NMOS transistor the same size as in the inverter. For the
pull-up network, the worst-case path involves three transistors in series. Since, as we said in section
3.8.1, PMOS transistors have about half the drive strength of NMOS transistors, we should make
the effective size of the three PMOS transistors in series about twice that of an NMOS transistor.

2



Therefore,
Lp = Ln × 3 × 2 = 6Ln

Example 5.7

Problem: Convert the decimal number 14959 into a hexadecimal number.
Solution: An integer is converted into the hexadecimal representation by successive divisions by
16, such that in each step the remainder is a hex digit. To see why this is true, consider a four-digit
number H = h3h2h1h0. Its value is

V = h3 × 163 + h2 × 162 + h1 × 16 + h0

If we divide this by 16, we obtain

V

16
= h3 × 162 + h2 × 16 + h1 +

h0

16

Thus, the remainder gives h0. Figure 5.40 shows the steps needed to perform the conversion
(14959)10 = (3A6F)2.

Figure 5.40. Conversion from decimal to hexadecimal.

Example 5.10

Problem: In computer computations it is often necessary to compare numbers. Two four-bit
signed numbers, X = x3x2x1x0 and Y = y3y2y1y0, can be compared by using the subtractor circuit
in Figure 5.43, which performs the operation X − Y . The three outputs denote the following:

• Z = 1 if the result is 0; otherwise Z = 0

• N = 1 if the result is negative; otherwise N = 0

• V = 1 if arithmetic overflow occurs; otherwise V = 0

Show how Z, N , and V can be used to determine the cases X = Y , X < Y , X ≤ Y , X > Y , and
X ≥ Y .
Solution: Consider first the case X < Y , where the following possibilities may arise:

• If X and Y have the same sign there will be no overflow, hence V = 0. Then for both positive
and negative X and Y the difference will be negative (N = 1).

3



• If X is negative and Y is positive, the difference will be negative (N = 1) if there is no
overflow (V = 0); but the result will be positive (N = 0) if there is overflow (V = 1).

Therefore, if X < Y then N ⊕ V = 1.
The case X = Y is detected by Z = 1. Then, X ≤ Y is detected by Z + (N ⊕ V ) = 1. The last

two cases are just simple inverses: X > Y if Z + (N ⊕ V ) = 1 and X ≥ Y if N ⊕ V = 1.

Figure 5.43. A comparator circuit.

Example 6.25

Problem: Implement the function f(w1, w2, w3) =
∑

m(0, 1, 3, 4, 6, 7) by using a 3-to-8 binary
decoder and an OR gate.
Solution: The decoder generates a separate output for each minterm of the required function.
These outputs are then combined in the OR gate, giving the circuit in Figure 6.50.

Figure 6.50. Circuit for Example 6.25.

Example 6.26

Problem: Derive a circuit that implements an 8-to-3 binary encoder.

4



Solution: The truth table for the encoder is shown in Figure 6.51. Only those rows for which a
single input variable is equal to 1 are shown; the other rows can be treated as don’t care cases.
From the truth table it is seen that the desired circuit is defined by the equations

y2 = w4 + w5 + w6 + w7

y1 = w2 + w3 + w6 + w7

y0 = w1 + w3 + w5 + w7

Figure 6.51. Truth table for a 3-to-8 binary encoder.

Example 6.27

Problem: Implement the function

f(w1, w2, w3, w4) = w1w2w4w5 + w1w2 + w1w3 + w1w4 + w3w4w5

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the uncomple-
mented inputs w1, w2, w3, and w4 are available.
Solution: Since variables w1 and w4 appear in more product terms in the expression for f than
the other three variables, let us perform Shannon’s expansion with respect to these two variables.
The expansion gives

f = w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4

= w1w4(w2w5) + w1w4(w3w5) + w1w4(w2 + w3) + w1w2(1)

We can use a NOR gate to implement w2w5 = w2 + w5. We also need an AND gate and an OR
gate. The complete circuit is presented in Figure 6.52.

5



Figure 6.52. Circuit for Example 6.27.

Example 6.28

Problem: In Chapter 4 we pointed out that the rows and columns of a Karnaugh map are labeled
using Gray code. This is a code in which consecutive valuations differ in one variable only. Figure
6.53 depicts the conversion between three-bit binary and Gray codes. Design a circuit that can
convert a binary code into a Gray according the figure.

Figure 6.53. Binary to Gray code conversion.

Solution: From the figure it follows that

g2 = b2

g1 = b1b2 + b1b2

= b1 ⊕ b2

g0 = b0b1 + b0b1

6



= b0 ⊕ b1

Example 6.29

Problem: In section 6.1.2 we showed that any logic function can be decomposed using Shannon’s
expansion theorem. For a four-variable function, f(w1, . . . , w4), the expansion with respect to w1

is
f(w1, . . . , w4) = w1fw1 + w1fw1

A circuit that implements this expression is given in Figure 6.54a.
(a) If the decomposition yields fw1 = 0, then the multiplexer in the figure can be replaced by a
single logic gate. Show this circuit.
(b) Repeat part a for the case where fw1 = 1.
Solution: The desired circuits are shown in parts (b) and (c) of Figure 6.54.

Figure 6.54. Circuits for Example 6.29.

Example 6.30

Problem: In several commercial FPGAs the logic blocks are 4-LUTs. What is the minimum

7



number of 4-LUTs needed to construct a 4-to-1 multiplexer with select inputs s1 and s0 and data
inputs w3, w2, w1, and w0?
Solution: A straightforward attempt is to use directly the expression that defines the 4-to-1
multiplexer

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

Let g = s1s0w0 + s1s0w1 and h = s1s0w2 + s1s0w3, so that f = g + h. This decomposition leads to
the circuit in Figure 6.55a, which requires three LUTs.

Figure 6.55. Circuits for Example 6.30.

When designing logic circuits, one can sometimes come up with a clever idea which leads to a
superior implementation. Figure 6.55b shows how it is possible to implement the multiplexer with
just two LUTs, based on the following observation. The truth table in Figure 6.2b indicates that
when s1 = 0 the output must be either w0 or w1, as determined by the value of s0. This can
be generated by the first LUT. The second LUT must make the choice between w2 and w3 when
s1 = 1. But, the choice can be made only by knowing the value of s0. Since it is impossible to
have five inputs in the LUT, more information has to be passed from the first to the second LUT.
Observe that when s1 = 1 the output f will be equal to either w2 or w3, in which case it is not

8



necessary to know the values of w0 and w1. Hence, in this case we can pass on the value of s0

through the first LUT, rather than w0 or w1. This can be done by making the function of this LUT

k = s1s0w0 + s1s0w1 + s1s0

Then, the second LUT performs the function

f = s1k + s1kw3 + s1kw4

Example 6.31

Problem: In digital systems it is often necessary to have circuits that can shift the bits of a vector
by one or more bit positions to the left or right. Design a circuit that can shift a four-bit vector
W = w3w2w1w0 one bit position to the right when a control signal Shift is equal to 1. Let the
outputs of the circuit be a four-bit vector Y = y3y2y1y0 and a signal k, such that if Shift = 1 then
y3 = 0, y2 = w3, y1 = w2, y0 = w1, and k = w0. If Shift = 0 then Y = W and k = 0.
Solution: The required circuit can be implemented with five 2-to-1 multiplexers as shown in Figure
6.56. The Shift signal is used as the select input to each multiplexer.

Figure 6.56. A shifter circuit.

Example 6.32

Problem: The shifter circuit in Example 6.31 shifts the bits of an input vector by one bit position
to the right. It fills the vacated bit on the left side with 0. A more versatile shifter circuit may be
able to shift by more bit positions at a time. If the bits that are shifted out are placed into the
vacated positions on the left, then the circuit effectively rotates the bits of the input vector by a
specified number of bit positions. Such a circuit is often called a barrel shifter. Design a four-bit
barrel shifter that rotates the bits by 0, 1, 2, or 3 bit positions as determined by the valuation of
two control signals s1 and s0.
Solution: The required action is given in Figure 6.57a. The barrel shifter can be implemented
with four 4-to-1 multiplexers as shown in Figure 6.57b. The control signals s1 and s0 are used as
the select inputs to the multiplexers.

9



Figure 6.57. A barrel shifter circuit.

Example 7.13

Problem: Consider the circuit in Figure 7.80a. Assume that the input C is driven by a square
wave signal with a 50% duty cycle. Draw a timing diagram that shows the waveforms at points A
and B. Assume that the propagation delay through each gate is ∆ seconds.
Solution: The timing diagram is shown in Figure 7.80b.

10



Figure 7.80. Circuit for Example 7.13.

Example 7.14

Problem: Determine the functional behavior of the circuit in Figure 7.81. Assume that input w
is driven by a square wave signal.
Solution: When both flip-flops are cleared, their outputs are Q0 = Q1 = 0. After the Clear input
goes high, each pulse on the w input will cause a change in the flip-flops as indicated in Figure
7.82. Note that the figure shows the state of the signals after the changes caused by the rising edge
of a pulse have taken place.

In consecutive time intervals the values of Q1Q0 are 00, 01, 10, 00, 01, and so on. Therefore, the
circuit generates the counting sequence: 0, 1, 2, 0, 1, and so on. Hence, the circuit is a modulo-3
counter.

Figure 7.81. Circuit for Example 7.14.

11



Figure 7.82. Summary of the behavior of the circuit in Figure 7.81.

Example 7.15

Problem: Figure 7.74 (in the text book) shows a circuit that generates four timing control signals
T0, T1, T2, and T3. Design a circuit that generates six such signals, T0 to T5.
Solution: The scheme of Figure 7.75 (in the text book) can be extended by using a modulo-
6 counter, given in Figure 7.26 (in the text book), and a decoder that produces the six timing
signals. A simpler alternative is possible by using a Johnson counter. Using three D-type flip-flops
in a structure depicted in Figure 7.30 (in the text book), we can generate six patterns of bits
Q0Q1Q2 as shown in Figure 7.83. Then, using only six more two-input AND gates, as shown in
the figure, we can obtain the desired signals. Note that the patterns Q0Q1Q2 equal to 010 and 101
cannot occur in the Johnson counter, so these cases are treated as don’t care conditions.

Figure 7.83. Timing signals for Example 7.15.

Example 7.16

Problem: Design a circuit that can be used to control a vending machine. The circuit has five
inputs: Q (quarter), D (dime), N (nickel), Coin, and Resetn. When a coin is deposited in the
machine, a coin-sensing mechanism generates a pulse on the appropriate input (Q, D, or N). To
signify the occurrence of the event, the mechanism also generates a pulse on the line Coin. The
circuit is reset by using the Resetn signal (active low). When at least 30 cents has been deposited,
the circuit activates its output, Z. No change is given if the amount exceeds 30 cents.

12



Design the required circuit by using the following components: a six-bit adder, a six-bit register,
and any number of AND, OR, and NOT gates.
Solution: Figure 7.84 gives a possible circuit. The value of each coin is represented by a corre-
sponding five-bit number. It is added to the current total, which is held in register S. The required
output is

Z = s5 + s4s3s2s1

The register is clocked by the negative edge of the Coin signal. This allows for a propagation delay
through the adder, and ensures that a correct sum will be placed into the register.

In Chapter 9 we will show how this type of control circuit can be designed using a more
structured approach.

Figure 7.84. Circuit for Example 7.16.

Example 8.11

Problem: Design an FSM that has an input w and an output z. The machine is a sequence
detector that produces z = 1 when the previous two values of w were 00 or 11; otherwise z = 0.
Solution: Section 8.1 presents the design of a sequence detector that detects the occurrence of
consecutive 1s. Using the same approach, the desired FSM can be specified using the state diagram

13



in Figure 8.91. State C denotes the occurrence of two or more 0s, and state E denotes two or more
1s. The corresponding state table is shown in Figure 8.92.

Figure 8.91. State diagram for Example 8.11.

We can try to reduce the number of states by using the partitioning minimization procedure in
section 8.6, which gives the following partitions

P1 = (ABCDE)
P2 = (ABD)(CE)
P3 = (A)(B)(C)(D)(E)

Since all five states are needed, we have to use three flip-flops.

Figure 8.92. State table for the FSM in Figure 8.91.

A straightforward state assignment leads to the state-assigned table in Figure 8.93. The codes
y3y2y1 = 101, 110, 111 can be treated as don’t-care conditions. Then the next-state expressions are

Y1 = wy1y3 + wy2y3 + wy1y2 + wy1y2

Y2 = y1y2 + y1y2 + wy2y3

Y3 = wy3 + wy1y2

14



The output expression is
z = y3 + y1y2

Figure 8.93. State-assigned table for the FSM in Figure 8.92.

These expressions seem to be unnecessarily complex, suggesting that we may attempt to find a
better state assignment. Observe that state A is reached only when the machine is reset by means
of the Reset input. So, it may be advantageous to assign the four codes in which y3 = 1 to the
states B, C, D, and E. The result is the state-assigned table in Figure 8.94. From it, the next-state
and output expressions are

Y1 = wy2 + wy3y2

Y2 = w

Y3 = 1
z = y1

This is a much better solution.

Figure 8.94. An improved state assignment for the FSM in Figure 8.92.

Example 8.12

Problem: Implement the sequence detector of Example 8.11 by using two FSMs. One FSM detects
the occurrence of consecutive 1s, while the other detects consecutive 0s.

15



Solution: A good realization of the FSM that detects consecutive 1s is given in Figures 8.16 and
8.17. The next-state and output expressions are

Y1 = w

Y2 = wy1

zones = y2

A similar FSM that detects consecutive 0s is defined in Figure 8.95. Its expressions are

Y3 = w

Y4 = wy3

zzeros = y4

The output of the combined circuit is

z = zones + zzeros

Figure 8.95. FSM that detects a sequence of two zeros.

Example 8.13

Problem: Derive a Mealy-type FSM that can act as a sequence detector described in Example
8.11.
Solution: A state diagram for the desired FSM is depicted in Figure 8.96. The corresponding state
table is presented in Figure 8.97. Two flip-flops are needed to implement this FSM. A state-assigned

16



table is given in Figure 8.98, which leads to the next-state and output expressions

Y1 = 1
Y2 = w

z = wy1y2 + wy2

Figure 8.96. State diagram for Example 8.13.

Figure 8.97. State table for the FSM in Figure 8.96.

Figure 8.98. State-assigned table for the FSM in Figure 8.97.

Example 8.17

Problem: In computer systems it is often desirable to transmit data serially, namely, one bit at a
time, to save on the cost of interconnecting cables. This means that parallel data at one end must

17



be transmitted serially, and at the other end the received serial data has to be turned back into
parallel form. Suppose that we wish to transmit ASCII characters in this manner. As explained in
section 5.8, the standard ASCII code uses seven bits to define each character. Usually, a character
occupies one byte, in which case the eighth bit can either be set to 0 or it can be used to indicate
the parity of the other bits to ensure a more reliable transmission.

Parallel-to-serial conversion can be done by means of a shift register. Assume that a circuit
accepts parallel data, B = b7, b6, . . . , b0, representing ASCII characters. Assume also that bit b7 is
set to 0. The circuit is supposed to generate a parity bit, p, and send it instead of b7 as a part of
the serial transfer. Figure 8.102 gives a possible circuit. An FSM is used to generate the parity
bit, which is included in the output stream by using a multiplexer. A three-bit counter is used
to determine when the p bit is transmitted, which happens when the count reaches 7. Design the
desired FSM.

Figure 8.102. Parallel-to-serial converter.

Solution: As the bits are shifted out of the shift register, the FSM examines the bits and keeps
track of whether there has been an even or odd number of 1s. It sets p to 1 if there is odd parity.
Hence, the FSM must have two states. Figure 8.103 presents the state table, the state-assigned
table, and the resulting circuit. The next state expression is

Y = wy + wy

The output p is just equal to y.

18



Figure 8.103. FSM for parity generation.

19


