ECE241 - Digital Systems
University of Toronto

Lab #4 - Fall 2008
Latches, Flip-flops and Registers

1. Introduction

The purpose of this laboratory exercise is to investigatehs, flip-flops and registers. In addition, you will
be introduced to a debugging tool called thgic analyzer. With the help of the logic analyzer you will perform
a more detailed analysis of the behaviour of the circuitsgmhes! in this exercise.

2. Preparation

To prepare for this exercise you will need to design circdiégscribed below as well as read through a logic
analyzer tutorial. A logic analyzer tutorial is available a

http://ww. eecg. ut oront o. ca/ ~j ayar/ ece241_08F/ Logi c_Scope_Tut ori al . pdf .

Your preparation, to be shown to your TA at the beginning efldb, must consist of the following:

1. The Verilog Hardware Description Language code used péement each of the circuits described below.
The code should bprinted before you arrive in the lab.

2. Each circuit should be simulated. The simulation mustrtyeindicate the operation of each circuit. It is
insufficient to test just one or two cases - you must use entagiltases to convince yourself (and the TA)
that the circuit has been shown to be correct. It will reqamme thinking on your part to determine if you
have done enough simulation. The simulation musptiated before the lab begins, with comments that
explain your testing procedure.

3. Answer the following question and be prepared to explauryanswer to the TA: assume you have a 10-bit
shift register connected as a ring, as explained in part \ strown below. The shift register initially
contains the value 1011001101, as illustrated below. Whatduoe the value of the shift register after one
clock cycle and then after four more clock cycles?

Initial value 1 0 1 1 0 0 1 1 0 1

s oo oo oo oo abds o oo oo oo o
> > > e e >
SO R e s it il B e et s |

3. Inthelab

In the lab you will have to implement and test circuits ddsedi in the sections below. To simplify some of
the steps a starter kit has been provided on the website:



http://ww. eecg. ut oront o. ca/ ~j ayar/ ece241_08F/ Lab4_starterkit.zip

The starter kit is a ZIP archive containing a Quartus |l petgdor each part of the lab. Retrieve and unzip the
archive into a working directory callddb4.

The in-lab component of your lab grade will be based on thmudiyou create iparts1V through VI below.
Please inform your TA when you have complettidparts and are ready to be graded.

Part |

All FPGAs include flip-flops that are available for implemiegt a user’s circuit. We will show how to make
use of these flip-flops in Part IV of this exercise. But first wi#t $how how storage elements can be created in an
FPGA without using its dedicated flip-flops.

Figure 1 depicts a gated RS latch circuit. Two styles of \dgritode that can be used to describe this circuit
are given in Figure 2. Part of the figure specifies the latch by instantiating logic gatel parth uses logic
expressions to create the same circuit. If this latch is @manted in an FPGA that has 4-input lookup tables
(LUTSs), then only one lookup table is needed, as shown inr€iGu.

R R g
Qa(Q)
Clk
—— Qb
S S g

Figure 1. A gated RS latch circuit.

/I A gated RS latch

module partl (Clk, R, S, Q);
input CIk, R, S;
output Q;

wireR_g, S_g, Qa, Qb /* synthesis keep */ ;
and (R_g, R, CIk);

and (S_g, S, CIk);

nor (Qa, R_g, Qb);

nor (Qb, S_g, Qa);

assign Q = Qa;

endmodule

Figure 2. Instantiating logic gates for the RS latch.



/I A gated RS latch

module partl (Clk, R, S, Q);
input Clk, R, S;
output Q;

wireR_g, S_g, Qa, Qb /* synthesis keep */ ;

assign R_g =R & CIk;
assign S_g=S & CIk;
assign Qa =~(R_g| Qb);
assign Qb =~(S_g| Qa);

assign Q = Qa;

endmodule

Figure 2. Specifying the RS latch by using logic expressions.

Although the latch can be correctly realized in one 4-inpUfTl_this implementation does not allow its in-
ternal signals, such a@_g andS_g, to be observed, because they are not provided as outpuoigtieLUT. To
preserve these internal signals in the implemented cjritu necessary to include @mpiler directive in the
code. In Figure 2 the directive /* synthesis keep */ is inéddo instruct the Quartus Il compiler to use separate

logic elements for each of the signdls g, S_g, Qa, and@b. Compiling the code produces the circuit with four
4-LUTs depicted in Figure3

Clk Qa(Q

4-LUT
S

[ — |

(a) Using one 4-input lookup table for the RS latch.

R

R 4-LUT = Qa (Q)
4-LUT
Clk —s
S_g
4-LUT
S 4LUT
’7 ’

(b) Using four 4-input lookup tables for the RS latch.

Figure 3. Implementation of the RS latch from Figure 1.

Perform the following steps to complete this part of the eiser.



. The project for this part is provided in the starter kit.e@phe project namegghrtl in thepartl subdirectory.

. Generate a Verilog file with the code in either parbr b of Figure 2 (both versions of the code should

produce the same circuit) and include it in the project.

. Compile the code. You may wish to use the Quartus Il RTL detool to examine the gate-level circuit

produced from the code, and the Technology Map Viewer toefetify that the latch is implemented as
shown in Figure 8. These tools are found under the menu ToelNetlist Viewers.

. Create a Vector Waveform File (.vwf) which specifies thamuits and outputs of the circuit. Draw waveforms

for the R and.S inputs and use the Quartus Il Simulator to produce the gooreding waveforms foR g,
S g, Qa, andQb. Verify that the latch works as expected using both funai@md timing simulation.

. Download the circuit onto the DE2 board and test its funmality. Use the logic analyzer to capture changes

of the logic signalsR_g, S g, Qa, andQb as you toggle input& andsS.

Part |1

Figure 4 shows the circuit for a gated D latch.

’ ’— = }— Qa(Q)
Clk L B
o Dl

Figure 4. Circuit for a gated D latch.

Perform the following steps:

1.

The project for this part is provided in the starter kit.e@phe project namegghrt2 in the part2 subdirectory
to begin your work.

. Generate a Verilog file using the style of code in Figuréa? the gated D latch. Include in your Verilog

code the /* synthesis keep */ directive to ensure that sépéogic elements in the FPGA chip are used to
implement the signal®, S_g, R_g, Qa, andQb.

. Select as the target chip the Cyclone Il EP2C35F672C6 ampite the code. You may wish to use the

Quartus Technology Map Viewer tool to examine the impleraémircuit, by using the command Toals
Netlist Viewer> Technology Map Viewer.

. Verify that the latch works properly for all input conditis by using functional simulation. Also, examine

the timing characteristics of the circuit by using timingsiation.

. Create a new Quartus Il project which will be used for impdatation of the gated D latch on the DE2

board. This project should consist of a top-level modulé thatains the appropriate input and output ports
(pins) for the DE2 board. Instantiate your latch in this tepel module. Use switc®W\, to drive theD
input of the latch, and us&V, as theClk input. Connect the Q output tdEDR,.



6.
7.

Recompile your project and simulate the compiled circuit

Test the functionality of the circuit by downloading ittorthe DE2 board. Toggle the andClk switches
and observe the output Q.

Part 111

Figure 5 shows the circuit for a master-slave D flip-flop.

Master Slave

D b Q D QF——Q

—Do—cycé ’(Clk Al—— 0o

Clock

Figure 5. Circuit for a master-slave D flip-flop.

Perform the following steps:

1.

The project for this part is provided in the starter kit.e@phe project namegghrt3 in the part3 subdirectory
to begin your work.

. Generate a Verilog file that instantiates two copies of yated D latch module from Part 1l to implement

the master-slave flip-flop.

. Include in your project the appropriate input and outmrtgfor the Altera DE2 board. Use swit&iy; to

drive the D input of the flip-flop, and us&V, as theClock input. Connect the Q output tEDR,.

. Compile your project.

. You may wish to use the Quartus Technology Map Viewer taréma the D flip-flop circuit, using the

command Tools> Netlist Viewer> Technology Map Viewer.

. Use simulation to verify the correct operation of youcauit.

. Download the circuit onto the DE2 board and test its funrality by toggling theD and Clock switches

and observing the output Q.



Part IV

Figure 6 shows a circuit with three different storage eletstea gated D latch, a positive-edge triggered D flip-
flop, and a negative-edge triggered D flip-flop.

Clock ck Qf— Q,

> QF— Q
—D QJ— Q.
> 6_60

(a) Circuit

Clock

[ A I B G

(b) Timing diagram

Figure 6. Circuit and waveforms for Part IV.

Implement and simulate the circuit in Figure 6 by using theu@us Il software as follows:

1. The project for this part is provided in the starter kit.é@the project nameghrt4 in thepart4 subdirectory
to begin your work.

2. Write a Verilog file that instantiates the three storagenelets. For this part you should no longer include
the /* synthesis keep */ directive in your Verilog code, besayou will not be describing the exact structure
of flip-flops like you did in Part Ill. Instead, you should usstgle of Verilog code that will allow the Verilog
compiler (in the Quartus Il software) to automaticaihgtantiate flip-flops that are provided as part of the
FPGA logic elements. Such Verilog code is often calbetiavioral code, because it specifies a desired
circuit behavior rather than an exact circuit structure.afisexample, Figure 7 gives a behavioral style of



Verilog code that specifies the gated D latch in Figure 4. Tdiish can be implemented in one 4-input
lookup table. Use a similar style of code to specify the flgpfl in Figure 6.

3. Compile your project.

4. You may wish to use the Quartus Technology Map Viewer targéma the compiled circuit, by using the
command Tools> Netlist Viewer> Technology Map Viewer.

5. Create a Vector Waveform File (.vwf) which specifies thauits and outputs of the circuit. Draw the inputs
D andClock as indicated in Figure 6. Use functional simulation to abthie three output signals. Observe
the different behavior of the three storage elements.

module D_latch (D, Clk, Q);
input D, CIk;
output reg Q;

always @ (D, CIKk)
if (Clk)
Q=D;
endmodule

Figure 7. A behavioral style of Verilog code that specifiemted D latch.

Part V

In this part you will need to work in base 16, also known as dexamal, or hex for short. There sixteen digits
in hexadecimal, the usual 0-9 and then the letters A throudhi§ fairly easy to translate from base 2 to base
16 because each hexademical digit corresponds to exacttg tbinary. A sixteen bit number translates into
exactly 4 hexadecimal digits.

The goal for the circuit in this part is to display the hex&aded value of a 16-bit number, on the four 7-segment
displays,H EX7 — 4, and a different hexadecimal value of a 16-bit numBeon the four 7-segment displays,
HEX3 — 0. The values ofA and B are to be input to the circuit through switch&8/,5_,, one value at a time.
This is to be done by first setting the switches to the valud aihd then setting the switches to the valuebgf
therefore, the value ol must be stored in the circuit. You will need a 16-bit regigtenich should be clocked by
KEY,) to store the value aft once it has been set usisdV5_g.

Perform the following steps:

1. The project for this part is provided in the starter kit.é@pphe project nameghrt5 in thepart5 subdirectory
to begin your work.

2. Write a Verilog file that provides the necessary functiinalUse KEY, as an active-low asynchronous
reset, and usgEY; as a clock input.

3. Include the Verilog file in your project and compile thecciit.

4. Assign the pins on the FPGA to connect to the switches asegient displays, as you have done in
previous parts of this exercise.

5. Recompile the circuit and download it into the FPGA chip.

6. Test the functionality of your design by toggling the suiés and observing the output displays.

Part VI

In this part we will create a waveform generator (a device theates a rapidly changing digital signal with a



shape over time that can be specified) by using a 10-bit sgister. We will start by building a flip-flop with
asynchronous set and reset inputs and then creating a circuit with 10 ftipsficonnected in a ring, like that pic-
tured in the final question of the preparation. The wavefoiithbhe observed by connecting an output of one of
the flip-flops to an output pin on the DE2 board. You will thee tise logic analyzez to view this signal - because
the signal is changing at a high frequency, you need a ingtntitike the logic analyzer to view it.

Perform the following steps:

1.

The project for this part is provided in the starter kit.e@the project nameghrt6 in thepart6 subdirectory
to begin your work.

. Using Verilog code create a positive-edge triggeredfltip-with asynchronous set and reset inputs. When

the set input is asserted the flip-flop should immediatelymesa logic value 1, while when the reset signal
is asserted the flip-flop should change its output to a logigev@. Add the created Verilog file to your
project.

. Create avaveform generator circuit with inputsreset andclock and an output;. The waveform generator

will consist of a 10-bit shift register built using 10 poséiedge triggered flip-flops connected in series,
forming a ring. That is, each flip-flop output Q must drive apuhD of another flip-flop. Theeset input

of the waveform generator should connect to either the seteoreset input of each flip-flop. Connect the
reset input in such a manner that when reset the 10-bit shift regisiil contain both 0 and 1 entries. (i.e.,
each flip-flop is set either to 0 or 1, so that the register valldnsome value other than 0. This is needed if
we want to have a waveform, not just a constant value).

. Assign pins to the design, ensuring that the clock inpdtiigen by the 50 MHz clock on the DE2 board.

Also, the output Q should be driven to a pin on the JPO or JParesipn header on the DE2 board.

. Compile and download the circuit into the DE2 board. Useltdgic analyzer to display the resulting

waveform. You may wish to add other outputs (and connect ttoepins on the expansion header) to your
circuit and display them on the logic analyzer in order tddretxplain the behaviour of your circuit.



