
ECE241 - Digital Systems
University of Toronto

Lab #4 - Fall 2008
Latches, Flip-flops and Registers

1. Introduction

The purpose of this laboratory exercise is to investigate latches, flip-flops and registers. In addition, you will
be introduced to a debugging tool called thelogic analyzer. With the help of the logic analyzer you will perform
a more detailed analysis of the behaviour of the circuits designed in this exercise.

2. Preparation

To prepare for this exercise you will need to design circuitsdescribed below as well as read through a logic
analyzer tutorial. A logic analyzer tutorial is available at:

http://www.eecg.utoronto.ca/~jayar/ece241_08F/Logic_Scope_Tutorial.pdf.

Your preparation, to be shown to your TA at the beginning of the lab, must consist of the following:

1. The Verilog Hardware Description Language code used to implement each of the circuits described below.
The code should beprinted before you arrive in the lab.

2. Each circuit should be simulated. The simulation must clearly indicate the operation of each circuit. It is
insufficient to test just one or two cases - you must use enoughtest cases to convince yourself (and the TA)
that the circuit has been shown to be correct. It will requiresome thinking on your part to determine if you
have done enough simulation. The simulation must beprinted before the lab begins, with comments that
explain your testing procedure.

3. Answer the following question and be prepared to explain your answer to the TA: assume you have a 10-bit
shift register connected as a ring, as explained in part VI and shown below. The shift register initially
contains the value 1011001101, as illustrated below. What would be the value of the shift register after one
clock cycle and then after four more clock cycles?

3. In the lab

In the lab you will have to implement and test circuits described in the sections below. To simplify some of
the steps a starter kit has been provided on the website:

1



http://www.eecg.utoronto.ca/~jayar/ece241_08F/Lab4_starterkit.zip

The starter kit is a ZIP archive containing a Quartus II projects for each part of the lab. Retrieve and unzip the
archive into a working directory calledlab4.

The in-lab component of your lab grade will be based on the circuit you create inparts IV through VI below.
Please inform your TA when you have completedall parts and are ready to be graded.

Part I

All FPGAs include flip-flops that are available for implementing a user’s circuit. We will show how to make
use of these flip-flops in Part IV of this exercise. But first we will show how storage elements can be created in an
FPGA without using its dedicated flip-flops.

Figure 1 depicts a gated RS latch circuit. Two styles of Verilog code that can be used to describe this circuit
are given in Figure 2. Parta of the figure specifies the latch by instantiating logic gates, and partb uses logic
expressions to create the same circuit. If this latch is implemented in an FPGA that has 4-input lookup tables
(LUTs), then only one lookup table is needed, as shown in Figure 3a.

R

S

Clk

S_g

Qa (Q)

R_g

Qb

Figure 1. A gated RS latch circuit.

// A gated RS latch
module part1 (Clk, R, S, Q);

input Clk, R, S;
output Q;

wire R_g, S_g, Qa, Qb /* synthesis keep */ ;

and (R_g, R, Clk);
and (S_g, S, Clk);
nor (Qa, R_g, Qb);
nor (Qb, S_g, Qa);

assign Q = Qa;

endmodule

Figure 2a. Instantiating logic gates for the RS latch.

2



// A gated RS latch
module part1 (Clk, R, S, Q);

input Clk, R, S;
output Q;

wire R_g, S_g, Qa, Qb /* synthesis keep */ ;

assign R_g = R & Clk;
assign S_g = S & Clk;
assign Qa =∼(R_g| Qb);
assign Qb =∼(S_g| Qa);

assign Q = Qa;

endmodule

Figure 2b. Specifying the RS latch by using logic expressions.

Although the latch can be correctly realized in one 4-input LUT, this implementation does not allow its in-
ternal signals, such asR_g andS_g, to be observed, because they are not provided as outputs from the LUT. To
preserve these internal signals in the implemented circuit, it is necessary to include acompiler directive in the
code. In Figure 2 the directive /* synthesis keep */ is included to instruct the Quartus II compiler to use separate
logic elements for each of the signalsR_g, S_g,Qa, andQb. Compiling the code produces the circuit with four
4-LUTs depicted in Figure 3b.

R

S

Clk

S_g

Qa (Q)
R_g

Qb

(a) Using one 4-input lookup table for the RS latch.

(b) Using four 4-input lookup tables for the RS latch.

Qa (Q)
R

S
Clk

4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

Figure 3. Implementation of the RS latch from Figure 1.

Perform the following steps to complete this part of the exercise:

3



1. The project for this part is provided in the starter kit. Open the project namedpart1 in thepart1 subdirectory.

2. Generate a Verilog file with the code in either parta or b of Figure 2 (both versions of the code should
produce the same circuit) and include it in the project.

3. Compile the code. You may wish to use the Quartus II RTL Viewer tool to examine the gate-level circuit
produced from the code, and the Technology Map Viewer tool toverify that the latch is implemented as
shown in Figure 3b. These tools are found under the menu Tools> Netlist Viewers.

4. Create a Vector Waveform File (.vwf) which specifies the inputs and outputs of the circuit. Draw waveforms
for theR andS inputs and use the Quartus II Simulator to produce the corresponding waveforms forR_g,
S_g, Qa, andQb. Verify that the latch works as expected using both functional and timing simulation.

5. Download the circuit onto the DE2 board and test its functionality. Use the logic analyzer to capture changes
of the logic signalsR_g, S_g, Qa, andQb as you toggle inputsR andS.

Part II

Figure 4 shows the circuit for a gated D latch.

S

R

Clk

D S_g

R_g

Qa (Q)

Qb

Figure 4. Circuit for a gated D latch.

Perform the following steps:

1. The project for this part is provided in the starter kit. Open the project namedpart2 in thepart2 subdirectory
to begin your work.

2. Generate a Verilog file using the style of code in Figure 2b for the gated D latch. Include in your Verilog
code the /* synthesis keep */ directive to ensure that separate logic elements in the FPGA chip are used to
implement the signalsR,S_g,R_g,Qa, andQb.

3. Select as the target chip the Cyclone II EP2C35F672C6 and compile the code. You may wish to use the
Quartus Technology Map Viewer tool to examine the implemented circuit, by using the command Tools>

Netlist Viewer> Technology Map Viewer.

4. Verify that the latch works properly for all input conditions by using functional simulation. Also, examine
the timing characteristics of the circuit by using timing simulation.

5. Create a new Quartus II project which will be used for implementation of the gated D latch on the DE2
board. This project should consist of a top-level module that contains the appropriate input and output ports
(pins) for the DE2 board. Instantiate your latch in this top-level module. Use switchSW0 to drive theD
input of the latch, and useSW1 as theClk input. Connect the Q output toLEDR0.

4



6. Recompile your project and simulate the compiled circuit.

7. Test the functionality of the circuit by downloading it onto the DE2 board. Toggle theD andClk switches
and observe the output Q.

Part III

Figure 5 shows the circuit for a master-slave D flip-flop.

D Q

Q

Master Slave

D

Clock

Q

Q

D Q

Q

Qm Qs

ClkClk

Figure 5. Circuit for a master-slave D flip-flop.

Perform the following steps:

1. The project for this part is provided in the starter kit. Open the project namedpart3 in thepart3 subdirectory
to begin your work.

2. Generate a Verilog file that instantiates two copies of your gated D latch module from Part II to implement
the master-slave flip-flop.

3. Include in your project the appropriate input and output ports for the Altera DE2 board. Use switchSW0 to
drive the D input of the flip-flop, and useSW1 as theClock input. Connect the Q output toLEDR0.

4. Compile your project.

5. You may wish to use the Quartus Technology Map Viewer to examine the D flip-flop circuit, using the
command Tools> Netlist Viewer> Technology Map Viewer.

6. Use simulation to verify the correct operation of your circuit.

7. Download the circuit onto the DE2 board and test its functionality by toggling theD andClock switches
and observing the output Q.

5



Part IV

Figure 6 shows a circuit with three different storage elements: a gated D latch, a positive-edge triggered D flip-
flop, and a negative-edge triggered D flip-flop.

D

Clock

Q
a

Q
b

D Q

Q

(b) Timing diagram

D Q

Q

D Q

Q

D

Clock Qa

Qb

Qc

Q
c

Q
b

Q
a

(a) Circuit

Clk

Q
c

Figure 6. Circuit and waveforms for Part IV.

Implement and simulate the circuit in Figure 6 by using the Quartus II software as follows:

1. The project for this part is provided in the starter kit. Open the project namedpart4 in thepart4 subdirectory
to begin your work.

2. Write a Verilog file that instantiates the three storage elements. For this part you should no longer include
the /* synthesis keep */ directive in your Verilog code, because you will not be describing the exact structure
of flip-flops like you did in Part III. Instead, you should use astyle of Verilog code that will allow the Verilog
compiler (in the Quartus II software) to automaticallyinstantiate flip-flops that are provided as part of the
FPGA logic elements. Such Verilog code is often calledbehavioral code, because it specifies a desired
circuit behavior rather than an exact circuit structure. Asan example, Figure 7 gives a behavioral style of

6



Verilog code that specifies the gated D latch in Figure 4. Thislatch can be implemented in one 4-input
lookup table. Use a similar style of code to specify the flip-flops in Figure 6.

3. Compile your project.

4. You may wish to use the Quartus Technology Map Viewer to examine the compiled circuit, by using the
command Tools> Netlist Viewer> Technology Map Viewer.

5. Create a Vector Waveform File (.vwf) which specifies the inputs and outputs of the circuit. Draw the inputs
D andClock as indicated in Figure 6. Use functional simulation to obtain the three output signals. Observe
the different behavior of the three storage elements.

module D_latch (D, Clk, Q);
input D, Clk;
output reg Q;

always @ (D, Clk)
if (Clk)

Q = D;
endmodule

Figure 7. A behavioral style of Verilog code that specifies a gated D latch.

Part V

In this part you will need to work in base 16, also known as hexadecimal, or hex for short. There sixteen digits
in hexadecimal, the usual 0-9 and then the letters A through F. It is fairly easy to translate from base 2 to base
16 because each hexademical digit corresponds to exactly 4 bits in binary. A sixteen bit number translates into
exactly 4 hexadecimal digits.
The goal for the circuit in this part is to display the hexadecimal value of a 16-bit number,A, on the four 7-segment
displays,HEX7 − 4, and a different hexadecimal value of a 16-bit numberB on the four 7-segment displays,
HEX3 − 0. The values ofA andB are to be input to the circuit through switchesSW15−0, one value at a time.
This is to be done by first setting the switches to the value ofA and then setting the switches to the value ofB;
therefore, the value ofA must be stored in the circuit. You will need a 16-bit register(which should be clocked by
KEY1) to store the value ofA once it has been set usingSW15−0.

Perform the following steps:

1. The project for this part is provided in the starter kit. Open the project namedpart5 in thepart5 subdirectory
to begin your work.

2. Write a Verilog file that provides the necessary functionality. Use KEY0 as an active-low asynchronous
reset, and useKEY1 as a clock input.

3. Include the Verilog file in your project and compile the circuit.

4. Assign the pins on the FPGA to connect to the switches and 7-segment displays, as you have done in
previous parts of this exercise.

5. Recompile the circuit and download it into the FPGA chip.

6. Test the functionality of your design by toggling the switches and observing the output displays.

Part VI

In this part we will create a waveform generator (a device that creates a rapidly changing digital signal with a

7



shape over time that can be specified) by using a 10-bit shift register. We will start by building a flip-flop with
asynchronous set and reset inputs and then creating a circuit with 10 flip-flops connected in a ring, like that pic-
tured in the final question of the preparation. The waveform will be observed by connecting an output of one of
the flip-flops to an output pin on the DE2 board. You will then use the logic analyzez to view this signal - because
the signal is changing at a high frequency, you need a instrument like the logic analyzer to view it.

Perform the following steps:

1. The project for this part is provided in the starter kit. Open the project namedpart6 in thepart6 subdirectory
to begin your work.

2. Using Verilog code create a positive-edge triggered flip-flop with asynchronous set and reset inputs. When
the set input is asserted the flip-flop should immediately assume a logic value 1, while when the reset signal
is asserted the flip-flop should change its output to a logic value 0. Add the created Verilog file to your
project.

3. Create awaveform generator circuit with inputsreset andclock and an outputq. The waveform generator
will consist of a 10-bit shift register built using 10 positive-edge triggered flip-flops connected in series,
forming a ring. That is, each flip-flop output Q must drive an input D of another flip-flop. Thereset input
of the waveform generator should connect to either the set orthe reset input of each flip-flop. Connect the
reset input in such a manner that when reset the 10-bit shift register will contain both 0 and 1 entries. (i.e.,
each flip-flop is set either to 0 or 1, so that the register will have some value other than 0. This is needed if
we want to have a waveform, not just a constant value).

4. Assign pins to the design, ensuring that the clock input isdriven by the 50 MHz clock on the DE2 board.
Also, the output Q should be driven to a pin on the JP0 or JP1 expansion header on the DE2 board.

5. Compile and download the circuit into the DE2 board. Use the logic analyzer to display the resulting
waveform. You may wish to add other outputs (and connect themto pins on the expansion header) to your
circuit and display them on the logic analyzer in order to better explain the behaviour of your circuit.

8


