ECE241 - Digital Systems
University of Toronto
Lab #6 - Fall 2008

Finite State Machines and Pre-designed Cores

1 Introduction

Finite State Machines (FSMs) are digital circuits that are use to control what happens in a digital circuit (typically
by controlling enable and reset signals on registers) and when it happens (during which clock period). The purpose
of this lab is to gain experience working with finite state machines. You will begin with FSMs that represent
sequence recognizers, similar to the ones discussed in class, and then show how finite state machines can be used
as part of a communication mechanism between two circuits.

2 Preparation

Your preparation must contain the source code and the simulation results for circuits described in Part I through
Part III.

Your preparation, to be shown to your TA at the beginning of the lab, must consist of the following:

1. The Verilog source code used to implement each of the circuits described in Parts I through III. The code
should be PRINTED and placed in your lab book before you arrive in the lab.

2. The circuits of Part I, IT and Illc should be simulated. The simulation must clearly indicate the operation of
each circuit. The simulation must be PRINTED and COMMENTED before the lab begins. The comments
must explain how the simulation results show correctness of the circuit.

3. In Part I, view the circuit you have created in the RTL viewer. The RTL viewer can be launched from
the Quartus menu (Tools->Netlist viewers->RTL viewer). Count the number of flip-flops using the RTL-
viewer (you may want to make a copy of the RTL Viewer image to paste into your notebook). A sample
RTL viewer window is shown in Figure 1, with a group of flip-flops highlighted. Note that flip-flops will
often be referred to as registers in Quartus II. Also, the RTL-viewer may “bundle” flip-flops together. For
example, in Figure 1, four flip-flops have been bundled together ([3...0]). Additionally, you should observe
the number of flip-flops using the compilation report. An example compilation report is shown in Figure 2
where Quartus II refers to flip-flops as registers.

"
=

s BlO 3L

] @ Compilation Repart - Flaw Summary] & RTL Viewer

Page Title: | p2 Page: | 1 af1 j

=
ra
=

ts= Hierarchy List
--O p2
+-LF Primitives
+-== Pins
+-=d Nets

sW1..0] D

LEDRE..0]

Figure 1: Sample RTL viewer window.

@ Compilation Report - Flow Summary

@a Compilation Report Flow Summary
&R Legal Notice
5T Flow Summary
SHER Flow Settings
BB Flow Non-Default Global Settings Flow Status Successful - Tue Aug 26 10:43:08 2008
&5 Flow Elapsed Time Quartus Il Version 7.1 Build 156 04/30/2007 SJ Full Version
& Fowlog Revision Name reaction_tester
* él:l Analysis & Synthesis Topdevel Entity Name reaction_tester
Famity Cyclone Il
Device EP2C35F672C6
Timing Models Final
Met timing requirements N/A
Total logic elements 115
Total combinational functions 115
Dedicated logic registers 45
Total registers 46
Total pins M
Total virtual pins 0
Total memory bits 0
Embedded Muttiplier 3bit elements 0
Total PLLs 0

Figure 2: Circuit size and number of registers in the compilation report.

3 Inthe Lab

In the lab you will have to implement and test circuits described in the sections below. To simplify some of the
steps a starter kit has been provided on the course website, located at:

http://www.eecg.utoronto.ca/~jayar/ece241_08F/Lab6_starterkit.zip

The starter kit is a ZIP archive containing a Quartus II projects for each part of the lab. Unzip the archive into a
working directory called lab6.

3.1 Partl

The goal of this section is to implement a finite state machine that takes as input a serial input - a sequence of
ones and zeroes on one input, a different one in every clock cycle, like the example described in class. In this case
we want to recognize fwo sequences (rather than one in the example in class): either four consecutive 1s or four
consecutive 0s. To describe it another way, assume that the input data is called w and the output is z. Whenever
w = 1 or w = 0 for four consecutive clock periods the value of z should be set to 1; otherwise, z = 0. Overlapping
sequences are allowed, so that if w = 1 for five consecutive clock pulses the output z will be equal to 1 after the
fourth and fifth clock periods. Figure 3 illustrates the required relationship between w and z.

Clock

Figure 3: Required timing for the output z.

A state diagram for this FSM is shown in Figure 4. For this part you must to manually design an FSM circuit (i.e.
do not use Verilog case statements, but create the logic and flip-flops directly) that implements this state diagram,
including the logic expressions that feed each of the state flip-flops. To implement the FSM use nine state flip-flops
called ys, . . ., yo and the one-hot state assignment given in Table 1. Note that the one-hot state codes enable you
to derive these expressions by inspection, as described in class.

Reset

Figure 4: A state diagram for the FSM.

State Code
Name | ysyr¥YeysYaysy2y1Yo
000000001
000000010
000000100
000001000
000010000
000100000
001000000
010000000
100000000

- mamEoaw >

Table 1: One-hot codes for the FSM.

Design and implement your circuit using Verilog. Write a Verilog file that instantiates the nine flip-flops in the
circuit and which specifies the logic expressions that drive the flip-flop input ports. Use only simple assign
statements in your Verilog code to specify the next-state logic feeding the flip-flops. You are not allowed to
use behavioral types of Verilog statements, such as case statements, for this part of the lab exercise; specify the
next-state logic using just simple assign statements.

Complete this part of the lab as follows:

1. The project for this part is provided in the starter kit. Open the project named part! in the partl subdirectory
to begin your work.

2. Use the toggle switch SWj on the Altera DE2 board as an active-low synchronous reset input for the FSM
(causing the FSM to reset to state A, with only yg = 1), use SW; as the w input, and the pushbutton KEY as
the clock input which is applied manually. Use the green light LEDGy as the output z, and assign the state
flip-flop outputs to the red lights LEDRg to LEDR.

3. Include the Verilog file in your project, and assign the pins on the FPGA to connect to the switches and the
LEDs. Compile the circuit.

4. Download the circuit into the FPGA chip. Test the functionality of your design by applying the input
sequences and observing the output LEDs. Make sure that the FSM properly transitions between states as
displayed on the red LEDs, and that it produces the correct output values on LEDGy.

3.2 Partll

In this part you will implement a similar sequence recognizer as in Part I, but you will use a different style of
Verilog code, that makes it easier to create larger FSMs. You will build an extended version of the FSM in Figure
4. In this version, you are to detect the same pattern as in part I. However, you are to add one extra state called
Wait. The FSM should go to the Wait state once one of the patterns is detected and stay there until an external
signal, call wait_done is asserted. The external signal will be controlled by you using one of the switches on the
DE2 board.

In this version of the code you should not manually derive the logic expressions needed for each state flip-flop.
Instead, describe the state table for the FSM by using a Verilog case statement in an always block, and use another
always block to instantiate the state flip-flops. You can use a third always block or simple assignment statements
to specify the output z. Another difference from part I is that you should use four state flip-flops, ys, . .., yo, and
encode the states using the binary codes as shown in Table 2. (The purpose in using this different method here

is to illustrate the difference between one-hot encoding, and a coding method that uses a minimum number of
flip-flops).

State Code
Name | y3y2y1%o
0000
0001
0010
0011
0100
0101
0110
0111
1000
Wait 1001

—maEEoaw e

Table 2: Binary codes for the FSM.

A suggested skeleton of the Verilog code is given in Figure 5. While you do not have to follow the exact same
structure, you must use separate always blocks for the next state logic and the state flip-flops. Doing so
ensures that your design is well structured and easy to understand.

Implement your circuit as follows.

1. The project for this part is provided in the starter kit. Open the project named parz2 in the part2 subdirectory
to begin your work.

2. Include in the project your Verilog file that uses the style of code in Figure 5. Use the toggle switch SWy on
the Altera DE2 board as an active-low synchronous reset input for the FSM, use SW; as the w input, and the
pushbutton KEYj as the clock input which is applied manually. Use the green light LEDGj as the output z,
and assign the state flip-flop outputs to the red lights LEDR3 to LEDR. Connect the wait_done input signal
to switch SW5. Assign the pins on the FPGA to connect to the switches and the LEDs.

3. Before compiling your code it is necessary to explicitly tell the Synthesis tool in Quartus II that you wish to
have the finite state machine implemented using the state assignment specified in your Verilog code. If you
do not explicitly give this setting to Quartus II, the Synthesis tool will automatically use a state assignment
of its own choosing, and it will ignore the state codes specified in your Verilog code. To make this setting,
choose Assignments > Settings in Quartus II, click on the Analysis and Synthesis item on the left side
of the window, and then click on More Settings. As indicated in Figure 6, change the parameter State
Machine Processing to the setting User-Encoded.

module part2 (...);

... define input and output ports

... define signals
reg [3:0] y_Q, Y_D;

always @(w, y_Q)
begin: state_table
case (y_Q)

/I 'y_Q represents current state, Y_D represents next state
parameter A = 4’50000, B = 4’b0001, C =4’b0010, D =4’b0011, E = 4’0100,
F=4’b0101, G=4b0110, H=4’b0111, I = 4’1000, Wait = 4’b1001;

A:if (lw) Y_D=B;
else Y_D=F;
... remainder of state table

default: Y_D =

endcase
end // state_table

4’ bXXXX;

always @ (posedge Clock)

begin: state_FFs

end // state_FFS

... assignments for output z and the LEDs

endmodule

Figure 5: Skeleton Verilog code for the FSM.

More Analysis & Synthesis Settings

N

Specify the settings for the logic options in your praoject. Assignments made to an individual node or
entity in the Assignment Editor will override the option settings in this dialog box.

Option
Mame:
Setting:

Degcription:

State Machine Processing

Reset
[Rz |

Reset Al

Specifies the processing style used to compile a state machine. You
can uge your own 'Uzer-Encoded’ style, or select ‘One-Hot', Minimal
Bits', or ‘Autc’ (Compiler-selected) encoding.

Ewisting option settings:

M ame:

PowerPlay Power Optimization
Power-Up Don't Care

Remove Duplicate Reqgisters
Remove Redundant Logic Cell:
Restructure Multiplexers

Sale State Machine

State Machine Processing

Mumber of Removed Registers Repor...
Optimization Technique - Cyclone 114,

Fietiming h eta-Stability Fegister Sequ...
Show Parameter Settings Tables in 5.

Suppress Reqister Optirization Felat. .

Setting:

100

Balanced
Mormal compilation
On

On

O

Auto

2

[ali]

On
User-Encoded

Ot
hd

]

Cancel |

3

Figure 6: Specifying the state assignment method in Quartus II.

4. To examine the circuit produced by Quartus II open the RTL Viewer tool as described above. Double-click
on the box shown in the circuit that represents the finite state machine, and determine whether the state
diagram that it shows properly corresponds to the one in Figure 4 (plus your extra Wait state). To see the
state codes used for your FSM, open the Compilation Report, select the Analysis and Synthesis section
of the report, and click on State Machines. You must also record the size of your circuit and the number
of flip-flops (also called registers) used. The size is given as the number of Logic Elements (LEs) in the
Compilation Report, and number of flip-flops is given as the total number of dedicated registers. You can
refer back to Figure 2 for a sample compilation report.

5. Simulate the behavior of your circuit.

6. Once you are confident that the circuit works properly as a result of your simulation, download the circuit
into the FPGA chip. Test the functionality of your design by applying the input sequences and observing the
output LEDs. Make sure that the FSM properly transitions between states as displayed on the red LEDs, and
that it produces the correct output values on LEDG. Be sure to test for proper operation of the wait_done
signal.

7. Now change the state encoding to back to one-hot. To do this, you just need to change the constants
associated with the state names, and the size of the state register (i.e. encode state A as 000000001, state B
as 000000010, and so on). Compile the circuit again and record the circuit size and the number of flip-flops
used (remember, Quartus II will report flip-flops as registers in the compilation report). Show the new circuit
to the TA and explain what you observe.

3.3 PartIIl

In this part you will work with two pre-designed circuits, or “cores” as they are called. The first core connects the
FPGA to a computer keyboard; the second core takes a binary number as input and turns it into a musical tone,
which you’ll be able to hear by connecting a speaker to the DE2 board.

You will design a finite state machine to coordinate data transmission between two circuits so that keys from the
keyboard can be used to play tones on the speaker. In working with these circuits you’ll learn how to build systems
in a modular fashion, by interconnecting prebuilt subcircuits.

Figure 7 illustrates a high-level view of the final circuit you will build. It includes a keyboard which is connected to
the PS/2 data port (the purple plug) on the DE2 board. The wires from the PS/2 port are connected to the Cyclone
II FPGA, and it communicates with the keyboard using a core called the PS/2 Controller; this core is given to you
as part of the lab startup kit. You will ultimately build (in Part Illc) the Handshaking Interface circuit indicated in
Figure 7 that connects the PS/2 Controller to the Synthesizer core, which is then connected to an amplifier (on the
DE2 board) and then (by you) to an external speaker. The Synthesizer core is also provided to you as part of the
lab startup kit.

PS/2 Synthesizer
Controller
PS/2 Data > . » Data read
Handshaking v Audio
4 T < Data request FODEC)
PS/2 tx_start » Sound code E
4
A Speaker
Keyboard A Y
Cloc Cyclone Il
FPGA

Figure 7: High level diagram of the system

You will design this circuit in three steps, by making the parts of the system work separately, and then together.
(This, by the way, is the kind of discipline you’ll need to learn to build successful projects, including the one in
this course).

3.3.1 Part IIla: Receiving Key Codes from the Keyboard and the Keyboard Interface

The keyboard uses a standard protocol known as PS/2. This protocol is fairly complex, so to prevent the need
for you to understand its details, we have provided a greatly simplified interface in the core shown in Figure 7
called the PS/2 Controller. The PS/2 Controller has two outputs, Data and tx_start. Whenever a valid key on
the keyboard is pressed, a corresponding 4-bit key code will be provided on the Data wires; this data is valid
(i.e. ready to be taken) on a positive clock edge when the #x_start signal is high. You can only use the keyboard
keys ’1°, ’2°,’3°,’4’,’5”,’6’, and ’7’ with this simplified PS/2 Controller, and they provide the four-bit codes
0000, ...,0111. The teaching assistant can show you how to connect the computer keyboard into the PS/2 plug
(purple plug) on the DE2 board.

In this part you will not yet design the full circuit shown in Figure 7. Instead, you will design a simple circuit
that can receive a single four-bit data value from the PS/2 Controller core and display this data on lights on the
DE2 board. Each time you press a key on the keyboard you should see the corresponding data on the lights that
you’ve used on the DE2 board. You are also required to observe the data transfer from the keyboard using the
logic analyzer you first used in Lab 4.

Go to the part3 folder in the starter kit and the sub-folder part3a. This folder contains a project that has the pre-
designed PS/2 Controller core and a skeleton Verilog file named part3a.v. In this code you will see a Verilog
module that instantiates the PS/2 Controller in this line:

PS2_Controller PS2(.clk (CLOCK_50), .reset (~KEY[0]), .PS2_CLK(PS2_CLK),
.PS2_DAT (PS2_DAT), .ps2data(ps2data), .tx_start(ts));

The wires ps2data and ts are the output signals from the PS/2 Controller in Figure 7. Do not change the other
signals connected to this core; you will not need to know what they do except that the main clock used is the 50
MHz signal CLOCK_50.

You should modify this circuit to

1. Capture the data from the controller into a 4-bit register. The output of the register should be displayed on
four LED lights on the DE2 board.

2. Connect the ps2data and tx_start lines to the GPIO connector on the DE2 board so that you can look at these
using the the logic analyzer. Refer to:
http://www.eecg.utoronto.ca/~jayar/ece241_08F/Logic_Scope_Tutorial.pdf

for the logic scope documentation and to Figure 8 for the expected waveform. The waveform shows a single
key code transmission, including the PS/2 data bus and the expected key code value. Verify that the value
that the logic analyzers sees is the same as the value you have on the the lights connected to your register.

Demonstrate the functioning circuit (including the logic scope readout) to the TA.

Clock
PS2_tx_start

PS2_data XXXX 0111 XXXX

Figure 8: Timing waveform for one cycle, with a data value 0111.

3.3.2 Part II15:Using the Synthesizer Module to Make a Sound

In this part you will connect a few switches to the Synthesizer core and have it generate tones manually. You will
manually perform the handshaking protocol that the Synthesizer core requires.

As indicated in Figure 7, the Synthesizer core provides a data request signal, and accepts a data ready signal and
a 4-bit sound code. The Synthesizer will play a different note depending on the sound code provided. The sound
codes accepted are 0000 to O111.

You must communicate with the Synthesizer using the following handshaking protocol: there exist two synchro-
nization signals, called data request and data ready, as illustrated in Figure 7. The Synthesizer will raise the data
request line to a logic 1 (which you should connect to an LED on the DE2 board) once it is ready for a key code to
“play”. Once the data request line rises, you can set the data to be sent to the Synthesizer on the 4-bit sound code
lines (which should be connected to switches on the DE2 board). To signal the Synthesizer that this data is ready,
you must raise the data ready signal (which you should also connect to a switch) to a logic 1. You must ensure that
the data (the sound code) remains constant as long as the data request line is high. Once the Synthesizer has taken
the sound code data, it will lower the data request line to logic 0 and wait until the data ready line is lowered.
Following this, the cycle repeats where the data request line will be raised once new data can be accepted.

To build a circuit that can implement this using switches, go to the folder in the starter kit named part3b. It
contains a project that includes the Synthesizer core. In the main code file part3b.v you will see an instantiation of
the Synthesizer that looks like this:

synthesizer s (CLOCK_50, !'KEY[O], AUD_BCLK, AUD_DACLRCK,
AUD_DACDAT, AUD_XCK, I2C_SDAT, I2C_SCLK,
sound_code, data_rqg, data_rd);

The wires sound_code, data_rq, data_rd are the signals given in Figure 7 as sound code, data request and data
ready, respectively. Modify the code to connect these to the appropriate switches, and then compile and test the
Synthesizer.

To test the Synthesizer, you must connect the audio output jack of the DE2 board to the speakers at your worksta-
tion. A teaching assistant can show you how to do this.

3.3.3 Part IIlc: Building the Interface between the Keyboard and the Synthesizer

Your final task is to create the whole circuit in Figure 7 by designing a finite state machine that connects between
the PS/2 Controller and the Synthesizer. The handshaking is necessary, by the way, because the two modules
operate at different and unknown frequencies where the sound takes multiple seconds to play, but the user might
press keys either slower or faster than this. You are to design the interface that will handle this situation properly.
The sound should be played based on the first key code entered after the previous sound finished playing. For
example, if you press a new key while a note is playing, that key should be ignored.

The inputs to your state machine should be the synchronizing signals coming from the two cores (from the PS/2
Controller, the #x_start signal, and from the Synthesizer the data request signal). The outputs should be the data
ready signal for the Synthesizer and the control of the register you needed in Part Illa. The various data lines will
have to be connected to that register in the appropriate way.

For your reference, we show one cycle of communication in Figure 9. When the handshaking interface FSM sees
the data request signal asserted to 1 by the Synthesizer, it is ready to capture data from the keyboard. In the clock
period when #x_start becomes 1, this data is captured. Here, we assume that the key 7 has been pressed, providing
a data value of 0111. Some number of cycles later (depending on your design), the FSM asserts data ready to 1
and waits for the Synthesizer to deassert data request to complete the handshaking protocol.

Clock
PS2_tx_start

PS2_data XXXX 0111 XXXX
Data_request
Data_ready
Code XXXX 0111 XXXX

Figure 9: Timing waveform for one cycle, sending data value 0111 from the PS/2 interface to your Synthesizer.

The top-level Veriog file is provided in the folder part3/part3c of the starter kit. The file part3c.v is the top-level
module that instantiates the keyboard PS/2 Controller, the Synthesizer, and the module you’ll need to design called
handshake_p3. You are to write your FSM code in the file called handshake_p3.v. The module interface is already
in this file. You should reuse parts of your design from Parts IIla and b as appropriate. You should not need to
make changes in the top-level file part3c.v.

10

