ECE?241 - Digital Systems
University of Toronto
Lab #7 - Fall 2008
Complex State Machines and Video Graphics Array (VGA) Cagpl

1 Introduction

The purpose of this laboratory is to further expand your ustdeding of finite state machines (FSMs) and to learn
how one can use a “Video Graphics Array” (VGA) Adapter to tegaictures and animation on a computer screen.
You will create FSMs to interact with a VGA Adapter “core” thaas been implemented for you to control and
generate images and animations on the screen.

2 Preparation

To prepare for this laboratory, first read the VGA Adapterwtuentation provided at:
http://ww. eecg. utoronto. ca/ ~j ayar/ ece241_08F/ vga

Be sure to read the four sections: “How do monitors work?”piiHdoes the VGA Adapter work?”, “VGA
Adapter’s Interface” and “Changing Adapter Parameters”

Also, download the lab starter kit located at:
http://ww. eecg. utoronto. ca/ ~j ayar/ ece241_08F/ Lab7_starterkit.zip

Once you have read the VGA Adapter documentation proceedrnplete parts | and Il described below. Your
preparation, to be shown to your TA at the beginning of theaibst consist of the following:

1. The code used to implement each of the circuits describpdrits | and Il. The code should BRINTED
and placed in your lab bodsefore you arrive in the lab.

2. Simulation of the FSM and the datapath for the circuit int paFirst simulate the FSM and the datapath
separately, then put them together. The simulation muatlgléndicate the operation of each circuit. The
simulation must bé?’RINTED and COMMENTED before the lab begins. The comments must explain
why the simulation is correct.

3. Answer to the following question: Suppose that you seMB& Adapter to work at a resolution of 160 by
120 pixels. Further, suppose that you want to change theicofa pixel located at coordinates (x,y), where
x corresponds to the last two digits of your student numbénacorresponds to the second last two digits
of your student number (eg. If your student number is 123856then x=89 and y=67). Which location
in the VGA Adapter memory would you have to change to alterdlowr of the specified pixel? Give the
exact memory address.



You need not include part 1l in your preparation. This paraibonus to this lab and deals with the creation of
animation using the VGA Adapter. If your project involvegating graphics using the VGA Adapter, you are
encouraged to attempt this part to better understand sothe challenges you will face in your project.

3 Inthelab

In the lab you will have to implement and test circuits ddsediin the sections below. In part |, you will familiarize
yourself with the VGA Adapter and learn how to draw imagesigshe adapter. In part Il, you will extend the
VGA Adapter and create a digital “Etch-a-Sketch” systenmaly, you are encouraged to try the bonus in part Il
and complete a full digital animation circuit.

To simplify some of the steps a starter kit has been providetti® course website. The starter kit is a ZIP archive
containing a Quartus Il projects for each part of the lab.iptize archive into a work directory callédb?.

3.1 Partla

To familiarize yourself with the VGA Adapter module you wgkerform a simple exercise to display a custom
image on the screen. To do this you will need to use the bmp@om¥erter provided in the starter kit. Itis a
program that converts a bitmap image into a stream of bitcdrabe programmed into the memory on an FPGA.

To be able to display a picture you must first draw a picturagisi graphics editing tool that can save files in a
BMP format. The Microsoft Windows “Paint” program is one buool. The image you will draw will cover the
entire screen and thus has to be created correctly. Perfierfiollowing steps to draw an image:

1. Start the Paint program, typically available from therSkdenu: that is Start->Programs->Accessories-
>Paint

2. Select the menu item Image->Attributes. In the dialog seix'width" equal to 160 and "height" equal to
120, as this is the resolution of the monitor that the adaygtes. Select "pixels" as the unit. Select "colours
as well.

3. Draw a picture of your own design; use simple colours likel RGreen and Blue.
4. Save the file, using File->Save As and save it as a 24-cbltbuap image.bmp.

5. Run the bmp2mif.exe converter program (a windows progtascribed on the VGA website and available
from the download directory on that site) to convert your Bilé€to a Memory Initialization File (MIF) we
will use next. (To do that, start up a DOS command shell on wivelusing Start->Run and type "cmd" into
the Open: box that pops up. This will create a window you cae tytommands into. Change into a folder
that contains both bmp2mif.exe and the file.omp you wish tved. Then type "bmp2mif file.omp." This
will produce two .mif files - image.mono.mif and image.calonif.)

To ensure that you understand how the MIF file is used and whepliesents, you are required to add a cyan 2x2
square with the top left corner placed at the position you usenswer question 3 in the preparation. You must
use the MIF editor to do this. The MIF editor can be launchedibply opening the .mif file in Quartus. Refer to
Figure 1 for an illustration of how the VGA framebuffer is argzed.

Recall from the description of the VGA Adapter that it usesmoey to store the current colour of each pixel on
the screen. Usually, this memory is initialized to O at firstl aence you only see a black background. However,



(a) Pixel values representing the cor- (b) Pixel addresses, in decimal
responding color, in binary

(c) Memory layout

Figure 1: In-memory representation of the 4x4 pixel imagactEbox holds a pixel color, a 3 bit value in our case

we can change the initial state of the VGA Adapter memorysicagit to display an image. You will use the
image you created earlier with paint as that background.

Perform the following steps to change the initial image diged by the Adapter:

1. The project for this part is provided in the starter kit. édthe project namebackground in the partl
subdirectory to begin your work.

2. The BMP2MIF converter created a file called image.coioifiy.where your background image is stored.
Copy this file to your working directory and change its namaligplay.mif. Note: The choice of the
file name is not accidental. If you look carefully at the impkntation of the VGA Adapter you will see
that it has a parameter called BACKGROUND_IMAGE. This pagganis set to "display.mif' by default
and signifies that the Quartus Il software should use digpi&ile to initialize the memory for the VGA
Adapter. Note also that there can only d&ree display file which is programmed into the memory when
the FPGA is configured (when you 'download’ your design)slaicommon mistake to think that you can
create many of these files and somehow cause the FPGA to divitiigh them; this isn’t possible as the
download only happens once.

3. Assign pins to your project and compile it.

4. Program the circuit described in the preparation ontaAtexa DE2 board.

When you program the DE2 board and connect a monitor to ifghjza port, you should be able to see the image
you have drawn.

IMPORTANT: Make sure you understand how this initialization processkaothe memory (in the case of
the VGA adapter, this memory is the framebuffer) is initiall with the contents of the MIF file (which stands
for "Memory Initialization File")only when the FPGA is programmed. The MIF file is just the streamaof r
data, and is not specific to the VGA Adapter - it can be used it@lize any kind of memory. The memory
initialized this way can be changed — by modifying individpaels on the screen as discussed in the VGA
Adapter documentation. Note that as soon as you draw a psieguhe VGA Adapter, the contents of this
memory will be altered. Thus, if you used a background image@have shown above, the background image
will be permanently altered. Resetting the VGA Adapter WiDT restore the "background image."

3.2 Partlb

In this part you are asked to design a very simple circuitgitiie VGA adapter. The circuit has to perform the
following functions:

1. Acceptthe X and Y coordinate inputs and the color inputftbe switches on the DE2 board.



2. Set the given color of the pixel at the given coordinatesm push-button is pressed.

DE2 Board

Reset button

Switches 0-7 g ResetN

Switches 8-14 7

VGA
Adapter

Pins on the 0 VGA 0
Video DACs ' cable h Monitor

Switches 15-17 3

WriteEn

Enable button
KEYIMI[ >

Figure 2: Full schematic of the circuit.

The schematic of the circuit is given in Figure 2. You showeldse the project file frofRart la and design a circuit
that connects up the switches on the DE2 board as given ingitneefi

After completing this circuit you will be able to manuallyn@tediously) draw any picture on the screen. You
will do this by choosing a (binary) value for the X and Y loaatiof each pixel to change, choose a value for the
colour, and then pushing the "enable” button to cause thafsppixel to change.

Observe that any image which you loadedPart 1a is over-written as you change the colors of the pixels. This
is because the VGA adapter has only one block of memory te servalue of each pixel (this block is called a

framebuffer in the graphics world. This buffer was initialized with ydarage, but as you change the colors of the
pixels, the old values are overwritten and lost.

3.3 Partll

In this part you will learn how to draw pixels on the screereaftour circuit begins running. To demonstrate
this, you will design a simple “Etch-a-Sketch” drawing syst(see: http://en.wikipedia.org/wiki/Etch_A_Sketch
if you don't know what that is).

This Etch-a-Sketch is a circuit that moves a cursor arouadtheen, either up, down, left, or right, and draws a
new pixel with every move the cursor makes. The system haguisndescribed below. The output is facilitated
by the VGA Adapter and appears on the screen. The inputs are:

1. Resetn - an active low input to reset the system. Reseldslbbause the cursor to go to position (0,0) the
top-left corner of the screen.

2. CLOCK_50 - the clock input to drive the finite state machofithe system as well as the VGA adapter.



3. Four switches labelled left, right, up, down - to indictite direction to move the cursor in. Each time an
input, for example leftis set to 1, the drawing system showertbe cursor left by exactly 1 pixel. (It should
wait until the Left signal returns to 0 before moving the @iragain).

The high-level design of the circuit for the etch-a-sketgétam is given in Figure 3. It contains 3 major blocks:

1. The VGA adapter responsible for the drawing of pixels andtreen, which you have been learning about
it parts | and Il.

2. The ’datapath’ that controls the position of the cursaogving the VGA adapter with the (X,Y) (i.e.
column and row) location where a pixel should be drawn

3. Afinite state machine that receives the input from a usdrdimects the datapath to change the position of
the cursor accordingly, by adding and/or subtracting frben(i,Y) position of the cursor.

ResetN ‘ l
e
|
Add_Sub_X I }
EnableX } |
| } 8 ResetN
| .
.. |
Finite | Y
left  —— } }
right —— ‘ } Pins on the
wo State | | VGA R
down  ——| | } Adapter
. \ ‘
Machine | 3
} }ﬁ@ Color
| |
| |
Add_Sub_Y |~ } WriteEn
EnableY [———————— |
e | Datapath !
plot‘dot [
CLOCK_50 ‘ %

Figure 3: Design Overview - State Machine, Datapath and VGlagter. Although not shown, ResetN signal
should be connected to all the registers in the circuit (iditlg FSM state register).

You may use the circuit frorRart Ib as a base for your design.

3.4 Partlll (Bonus)

Now that we covered drawing pixels on the screen we can pddacegreate a simple animation. We will create a
circuit that takes a small image (16x16 pixels) and movewillad the screen. To accomplish this, your circuit will
have to make it seem as though the image is seemlessly mawaungdithe screen. You will implement the circuit
in two steps. First, you will design a module that is able tavd(or erase) the image at a given location. Then
you will design another module that moves the image arouaddtheen by quickly redrawing it at the different
locations.



3.4.1 Drawingtheimage

To implement this part, you will have to create a circuit ttakies as input the (screen_X,screen_Y) coordinate of
where the top left corner of the image is to be drawn or erased.

The circuit will then either draw the image from the memor?l_ RAM_DQ module) or erase the image starting
at postion (screen_X,screen_Y). Images are drawn or epaseldy pixel. To draw an image, read a single entry
from memory and pass that value to the “Color” line on the VGiaater. During this process, you must set
the X,Y values on the VGA adapter to the appropriate valugasikg an image is a similar process, however,
instead of passing the values from the “Image RAM” to “CoJgdu will set “Color” to black (constant 000). To
accomplish these steps, you will need to create a state neatiiat performs the following:

1. Set Counter_X and Counter_Y to 0.

2. While Counter_X is less than 16, either load a pixel vahoenf memory containing image.mif, or set the
pixel value to black (if erasing). Then draw that pixel atdtion (screen_X+Counter_X,screen_Y+Counter_Y)
on the screen. Increment Counter_X.

3. If Counter_Y is less than 15, then increment Counter_YsatdCounter_Xto 0. Go to step 2.

4. Stop when Counter_Y reaches 16.

The suggested circuit diagram is shown in figure 4. The “Blam “Plot” inputs may be used in several different
ways. One way is to have “Blank” input select whether the ienglgould be drawn or erased (i.e., if the “Blank”
is high when “Plot” is asserted, the image is erased). Amotfay is to have two separate inputs, one to start
drawing (“Plot”), and another to start erasing (“Blank™oware free to choose whichever method you want.

Implement the circuit by completing the following steps:

1. The project for this partis provided in the starter kit.eDphe project nameghrt3in thepart3 subdirectory
to begin your work.

2. Create a 16x16 bitmap image that is to move around thersdkégke sure to set the image width and height
to 16 pixels.

3. Use the bmp2mif.exe converter to convert the image intel&nfile. Call it image.mif.

4. In your design instantiate a memory using an LPM_RAM_D@ ase image.mif as its memory initializa-
tion file.

5. Create a circuit to draw an image at a specified locatiomes¢reen as discussed above.

6. Compile the circuit and download it onto the DE2 board. Wieur circuits starts you should be able to
see the image you have drawn somewhere on the screen.



ResetN
O

VGA
Adapter

WriteEn

Figure 4: Suggested circuit layout for drawing the image

3.4.2 Animation

The circuit from step 1 can be used to draw an image at anyitocéX,Y). To move the image, you will have to
first erase it from the location it is currently at and thenwditsagain at an alternate location.

There is a simple way to do that when the screen backgrounddk.lFirst, we draw an image at location (X,Y).
Then to move the image we simply draw a black box on top of thegien(using the erase function of the circuit
from step 1) and redraw the image somewhere else. A suggasted is shown in figure 5, and you may use it
as a starting point.



X counter

Enable Up/Down
A 4

N—
N—
Y counter
P
Enable Up/Down| FSM
A 4
S ) N W
I
Delay counter
4/\_/\_»

Enable

Blank Plot

A

Figure 5: Suggested circuit layout for creating an aninmatio

To complete the circuit, perform the following:

1. Create a circuit to change the location of the top left eonf where the image is to be drawn, once every
60" of a second. You may use circuit shown in figure 5 as a reference

2. Put the circuits together to see if your image moves ardh@dcreen. Compile the circuit and program it
onto the FPGA to see if it works.

3. If the circuit works, think of a way to get the image to boermd the sides of the screen as it moves about.
Implement the enhancement and show the circuit to your Tegdssistant.



