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Basic Building Blocks
Opamps
 •  Ideal opamps usually assumed.
 •  Important non-idealities

— dc gain: sets the accuracy of charge transfer, hence, 
transfer-function accuracy.
— unity-gain freq, phase margin & slew-rate: sets the 
max clocking frequency. A general rule is that unity-gain 
freq should be 5 times (or more) higher than the clock-
freq.
— dc offset: Can create dc offset at output. Circuit 
techniques to combat this which also reduce 1/f noise.
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Basic Building Blocks
Double-Poly Capacitors

 •  Substantial parasitics with large bottom plate capacitance 
(20 percent of )

 •  Also, metal-metal capacitors are used but have even larger 
parasitic capacitances.
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Basic Building Blocks
Switches

 •  Mosfet switches are good switches.
— off-resistance near  range
— on-resistance in  to  range (depends on 
transistor sizing)

 •  However, have non-linear parasitic capacitances.
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Basic Building Blocks
Non-Overlapping Clocks

 •  Non-overlapping clocks — both clocks are never on at 
same time

 •  Needed to ensure charge is not inadvertently lost.
 •  Integer values occur at end of .

 •  End of  is 1/2 off integer value.
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Switched-Capacitor Resistor Equivalent

(1)

 •   charged to  and then  during each clk period.

(2)

 •  Find equivalent average current

(3)

where  is the clk period.

φ2φ1

C1

V1 V2
V1 V2

Req

Req
T
C1
------=∆Q C1 V1 V2–( ) every clock period=

Qx CxVx=

C1 V1 V2

∆Q1 C1 V1 V2–( )=

Iavg
C1 V1 V2–( )

T------------------------------=

T
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Switched-Capacitor Resistor Equivalent
 •  For equivalent resistor circuit

(4)

 •  Equating two, we have

(5)

 •  This equivalence is useful when looking at low-freq 
portion of a SC-circuit.

 •  For higher frequencies, discrete-time analysis is used.

Ieq
V1 V2–
Req

------------------=

Req
T
C1
------ 1

C1fs
----------= =
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Resistor Equivalence Example
 •  What is the equivalent resistance of a  capacitance 

sampled at a clock frequency of .
 •  Using (5), we have

 

 •  Note that a very large equivalent resistance of  can be 
realized.

 •  Requires only 2 transistors, a clock and a relatively small 
capacitance.

 •  In a typical CMOS process, such a large resistor would 
normally require a huge amount of silicon area.

5pF
100kHz

Req
1

5 10 12–×( ) 100 103×( )
--------------------------------------------------------- 2MΩ= =

2MΩ
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Parasitic-Sensitive Integrator

 •  Start by looking at an integrator which IS affected by 
parasitic capacitances

 •  Want to find output voltage at end of  in relation to 
input sampled at end of .

φ2φ1
C2

C1

vo n( ) vco nT( )=vi n( ) vci nT( )=

φ1
vci t( )

vcx t( )
vco t( )

vc2 nT( )

vc1 t( )

φ1
φ1
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Parasitic-Sensitive Integrator

 •  At end of 

(6)

 •  But would like to know the output at end of 

(7)

 •  leading to
(8)

C2

C1

vci nT T 2⁄–( )

C1 vco nT T 2⁄–( )vco nT T–( )

C2

vci nT T–( )

φ1 on φ2 on

φ2

C2vco nT T 2⁄–( ) C2vco nT T–( ) C1vci nT T–( )–=

φ1

C2vco nT( ) C2vco nT T 2⁄–( )=

C2vco nT( ) C2vco nT T–( ) C1vci nT T–( )–=
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Parasitic-Sensitive Integrator
 •  Modify above to write

(9)

and taking z-transform and re-arranging, leads to

(10)

 •  Note that gain-coefficient is determined by a ratio of two 
capacitance values.

 •  Ratios of capacitors can be set VERY accurately on an 
integrated circuit (within 0.1 percent)

 •  Leads to very accurate transfer-functions.

vo n( ) vo n 1–( )
C1
C2
------vi n 1–( )–=

H z( )
Vo z( )
Vi z( )------------≡

C1
C2
------
 
 
  1

z 1–-----------–=
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Typical Waveforms
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Low Frequency Behavior
 •  Equation (10) can be re-written as

(11)

 •  To find freq response, recall

(12)

(13)

(14)

(15)

H z( )
C1
C2
------
 
 
  z 1 2/–

z1 2/ z 1 2/––
----------------------------–=

z ejωT ωT( )cos j ωT( )sin+= =

z1 2/ ωT
2------- 

 cos j ωT
2------- 

 sin+=

z 1 2/– ωT
2------- 

 cos j ωT
2------- 

 sin–=

H ejωT( )
C1
C2
------
 
 
 

ωT
2

------- 
 cos j ωT

2
------- 
 sin–

j2 ωT
2------- 

 sin
---------------------------------------------------–=



University of Toronto 14 of 60

© D. Johns, K. Martin, 1997

Low Frequency Behavior
 •  Above is exact but when  (i.e., at low freq)

(16)

 •  Thus, the transfer function is same as a continuous-time 
integrator having a gain constant of

(17)

which is a function of the integrator capacitor ratio and 
clock frequency only.

ωT 1«

H ejωT( )
C1
C2
------
 
 
  1

jωT---------–≅

KI
C1
C2
------ 1
T---≅
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Parasitic Capacitance Effects

 •  Accounting for parasitic capacitances, we have

(18)

 •  Thus, gain coefficient is not well controlled and partially 
non-linear (due to  being non-linear).

φ2φ1

C2

C1

vo n( )
vi n( )

φ1

Cp1

Cp2

Cp3 Cp4

H z( )
C1 Cp1+
C2

----------------------
 
 
  1

z 1–-----------–=

Cp1
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Parasitic-Insensitive Integrators

 •  By using 2 extra switches, integrator can be made 
insensitive to parasitic capacitances
— more accurate transfer-functions
— better linearity (since non-linear capacitances 
unimportant)

φ2φ1

C2

C1

vo n( ) vco nT( )=

vci t( )
φ1

φ2 φ1
vi n( ) vci nT( )=

vco t( )
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Parasitic-Insensitive Integrators

 •  Same analysis as before except that  is switched in 
polarity before discharging into .

(19)

 •  A positive integrator (rather than negative as before)

C1 vco nT T–( )

C2

vci nT T–( )
+

-

C2

vci nT T 2⁄–( )

C1 vco nT T 2⁄–( )

-

+

φ1 on φ2 on

C1
C2

H z( )
Vo z( )
Vi z( )------------≡

C1
C2
------
 
 
  1

z 1–-----------=



University of Toronto 18 of 60

© D. Johns, K. Martin, 1997

Parasitic-Insensitive Integrators

 •   has little effect since it is connected to virtual gnd

 •   has little effect since it is driven by output

 •   has little effect since it is either connected to virtual 
gnd or physical gnd.

φ2φ1

C2

C1

vo n( )
vi n( )

φ1

φ2 φ1

Cp1

Cp4Cp3

Cp2

Cp3

Cp4

Cp2
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Parasitic-Insensitive Integrators
 •   is continuously being charged to  and discharged 

to ground. 
 •   on — the fact that  is also charged to  does 

not affect  charge.

 •   on —  is discharged through the  switch attached 
to its node and does not affect the charge accumulating on 

.

 •  While the parasitic capacitances may slow down settling 
time behavior, they do not affect the discrete-time 
difference equation 

Cp1 vi n( )

φ1 Cp1 vi n 1–( )
C1

φ2 Cp1 φ2

C2
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Parasitic-Insensitive Inverting Integrator

(20)
(21)

 •  Present output depends on present input(delay-free)

(22)

 •  Delay-free integrator has negative gain while delaying 
integrator has positive gain.

φ1φ1

C2

C1

vo n( )
vi n( )

φ1

Vi z( )
Vo z( )

φ2 φ2

C2vco nT T 2⁄–( ) C2vco nT T–( )=

C2vco nT( ) C2vco nT T 2⁄–( ) C1vci nT( )–=

H z( )
Vo z( )
Vi z( )------------≡

C1
C2
------
 
 
  z

z 1–-----------–=



University of Toronto 21 of 60

© D. Johns, K. Martin, 1997

Signal-Flow-Graph Analysis

φ1φ1 C3

φ1

φ2 φ2

φ2φ1 C2

φ2 φ1

C1

CA

V1 z( )

V2 z( )

V3 z( )

Vo z( )

1
CA
------- 
  1

1 z 1––
----------------

V1 z( )

V2 z( )

V3 z( )

Vo z( )

C1 1 z 1––( )–

C2z 1–

C3–
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First-Order Filter

 •  Start with an active-RC structure and replace resistors 
with SC equivalents.

 •  Analyze using discrete-time analysis.

Vin s( ) Vout s( )
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First-Order Filter

φ1

φ1φ1 C2

φ2 φ2

CA

Vi z( ) Vo z( )

φ2 φ2

φ1φ1 C3

C1

1
CA
------- 
  1

1 z 1––
----------------Vi z( ) Vo z( )

C1 1 z 1––( )–

C2–

C3–
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First-Order Filter
(23)

(24)

CA 1 z 1––( )Vo z( ) C3Vo z( )– C2Vi z( )– C1 1 z 1––( )Vi z( )–=

H z( )
Vo z( )
Vi z( )------------≡

C1
CA
-------
 
 
 

1 z 1––( )
C2
CA
-------
 
 
 

+

1 z 1––
C3
CA
-------+

------------------------------------------------------–

C1 C2+
CA

-------------------
 
 
 

z
C1
CA
-------–

1
C3
CA
-------+

 
 
 

z 1–

-----------------------------------------–=

=
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First-Order Filter
 •  The pole of (24) is found by equating the denominator to 

zero 

(25)

 •  For positive capacitance values, this pole is restricted to 
the real axis between 0 and 1 
— circuit is always stable.

 •  The zero of (24) is found to be given by

(26)

 •  Also restricted to real axis between 0 and 1.

zp
CA

CA C3+--------------------=

zz
C1

C1 C2+-------------------=
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First-Order Filter
The dc gain is found by setting  which results in 

(27)

 •  Note that in a fully-differential implementation, effective 
negative capacitances for ,  and  can be achieved 
by simply interchanging the input wires. 

 •  In this way, a zero at  could be realized by setting
(28)

z 1=

H 1( )
C2–
C3

---------=

C1 C2 C3

z 1–=
C1 0.5C2–=
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First-Order Example
 •  Find the capacitance values needed for a first-order SC-

circuit such that its 3dB point is at  when a clock 
frequency of  is used. 

 •  It is also desired that the filter have zero gain at  
(i.e. ) and the dc gain be unity. 

 •  Assume .

Solution
 •  Making use of the bilinear transform  

the zero at  is mapped to .
 •  The frequency warping maps the -3dB frequency of  

(or ) to

10kHz
100kHz

50kHz
z 1–=

CA 10pF=

p z 1–( ) z 1+( )⁄=
1– Ω ∞=

10kHz
0.2π rad/sample



University of Toronto 28 of 60

© D. Johns, K. Martin, 1997

First-Order Example
(29)

 •  in the continuous-time domain leading to the continuous-
time pole, , required being

(30)

 •  This pole is mapped back to  given by

(31)

 •  Therefore,  is given by

(32)

Ω 0.2π
2----------- 

 tan 0.3249= =

pp
pp 0.3249–=

zp

zp
1 pp+
1 pp–--------------- 0.5095= =

H z( )

H z( ) k z 1+( )
z 0.5095–------------------------=
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First-Order Example
 •  where  is determined by setting the dc gain to one (i.e. 

) resulting

(33)

 •  or equivalently,

(34)

 •  Equating these coefficients with those of (24) (and 
assuming ) results in

(35)
(36)
(37)

k
H 1( ) 1=

H z( ) 0.24525 z 1+( )
z 0.5095–------------------------------------=

H z( ) 0.4814z 0.4814+
1.9627z 1–------------------------------------------=

CA 10pF=

C1 4.814pF=
C2 9.628– pF=
C3 9.628pF=
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Switch Sharing

 •  Share switches that are always connected to the same 
potentials.

φ1φ1 C2

φ2 φ2

CA

)
Vo z( )

φ2

φ1C3

C1
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Fully-Differential Filters
 •  Most modern SC filters are fully-differential
 •  Difference between two voltages represents signal (also 

balanced around a common-mode voltage).
 •  Common-mode noise is rejected.
 •  Even order distortion terms cancel

nonlinear
element

nonlinear
element

v1

v– 1

+

-

vp1 k1v1 k2v1
2 k3v1

3 k4v1
4 …+ + + +=

vn1 k1v1– k2v1
2 k3v1

3– k4v1
4 …+ + +=

vdiff 2k1v1 2k3v1
3 2k5v1

5 …+ + +=
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Fully-Differential Filters

φ1φ1
C2

φ2 φ2 CA

Vi z( ) Vo z( )

φ2

φ1
C3

C1

φ1φ1 C2

φ2 φ2
CA φ2

φ1
C3

C1

+

-
-
+
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Fully-Differential Filters
 •  Negative continuous-time input 

— equivalent to a negative C1

φ1φ1
C2

φ2 φ2 CA

Vi z( ) Vo z( )

φ2

φ1
C3

C1

φ1φ1 C2

φ2 φ2
CA φ2

φ1
C3

C1

+

-
-
+
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Fully-Differential Filters
 •  Note that fully-differential version is essentially two 

copies of single-ended version, however ... area penalty 
not twice.

 •  Only one opamp needed (though common-mode circuit 
also needed)

 •  Input and output signal swings have been doubled so that 
same dynamic range can be achieved with half capacitor 
sizes (from  analysis)

 •  Switches can be reduced in size since small caps used.
 •  However, there is more wiring in fully-differ version but 

better noise and distortion performance.

kT C⁄



University of Toronto 35 of 60

© D. Johns, K. Martin, 1997

Low-Q Biquad Filter

(38)Ha s( )
Vout s( )
Vin s( )-----------------≡

k2s
2 k1s ko+ +

s2
ωo
Q------ 

  s ωo
2+ +

---------------------------------------–=

Vin s( )
Vout s( )

1 ωo⁄

1– ωo⁄

CA 1= CB 1=
Q ωo⁄

1 k1⁄

k2

ωo ko⁄
Vc1 s( )
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Low-Q Biquad Filter

φ1

C1

Vi z( ) Vo z( )

φ1

φ2φ2

φ1

φ1

φ2φ2

φ1

φ1

φ2φ2

φ1

φ1

φ2φ2

φ1 φ2

φ1φ2

φ1

C2
K1C1

K2C2

K3C2

K4C1

K5C2

K6C2

V1 z( )
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Low-Q Biquad Filter

(39)

1
1 z 1––
---------------- 1

1 z 1––
----------------

K5z 1–

K4–

K6–

K– 2

K3– 1 z 1––( )

K1–Vi z( ) Vo z( )

V1 z( )

H z( )
Vo z( )
Vi z( )------------≡

K2 K3+( )z2 K1K5 K2– 2K3–( )z K3+ +

1 K6+( )z2 K4K5 K6– 2–( )z 1+ +
---------------------------------------------------------------------------------------------------–=
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Low-Q Biquad Filter Design

(40)

 •  we can equate the individual coefficients of “z” in (39) 
and (40), resulting in:

(41)
(42)
(43)
(44)
(45)

 •  A degree of freedom is available here in setting internal 
 output

H z( )
a2z

2 a1z a0+ +

b2z
2 b1z 1+ +

-------------------------------------–=

K3 a0=
K2 a2 a0–=

K1K5 a0 a1 a2+ +=
K6 b2 1–=

K4K5 b1 b2 1+ +=

V1 z( )
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Low-Q Biquad Filter Design
 •  Can do proper dynamic range scaling
 •  Or let the time-constants of 2 integrators be equal by

(46)

Low-Q Biquad Capacitance Ratio
 •  Comparing resistor circuit to SC circuit, we have

(47)

(48)

 •  However, the sampling-rate, , is typically much larger 
that the approximated pole-frequency, , 

(49)

K4 K5 b1 b2 1+ += =

K4 K5 ωoT≈ ≈

K6
ωoT
Q----------≈

1 T⁄
ωo

ωoT 1«
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Low-Q Biquad Capacitance Ratio
 •  Thus, the largest capacitors determining pole positions are 

the integrating capacitors,  and . 

 •  If , the smallest capacitors are  and  
resulting in an approximate capacitance spread of 

. 

 •  If , then from (48) the smallest capacitor would be 
 resulting in an approximate capacitance spread of 

 — can be quite large for 

C1 C2

Q 1< K4C1 K5C2

1 ωoT( )⁄

Q 1>
K6C2
Q ωoT( )⁄ Q 1»
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High-Q Biquad Filter
 •  Use a high-Q biquad filter circuit when 
 •  Q-damping done with a cap around both integrators
 •  Active-RC prototype filter

Q 1»

1 ωo⁄

1– ωo⁄

C1 1= C2 1=

1 Q⁄

k1 ωo⁄

k2

ωo ko⁄

Vout s( )
Vin s( )
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High-Q Biquad Filter

 •  Q-damping now performed by 

φ1

C1

Vi z( ) Vo z( )

φ1

φ2φ2

φ1

φ1

φ2φ2

φ1 φ2

φ1φ2

φ1

C2
K1C1

K3C2

K4C1

K5C2

K6C1

V1 z( )

K2C1

K6C1
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High-Q Biquad Filter
 •  Input : major path for lowpass

 •  Input : major path for band-pass filters

 •  Input : major path for high-pass filters

 •  General transfer-function is:

(50)

 •  If matched to the following general form

(51)

K1C1

K2C1

K3C2

H z( )
Vo z( )
Vi z( )------------≡

K3z
2 K1K5 K2K5 2K3–+( )z K3 K2K5–( )+ +

z2 K4K5 K5K6 2–+( )z 1 K5K6–( )+ +
-----------------------------------------------------------------------------------------------------------------–=

H z( )
a2z

2 a1z a0+ +

z2 b1z b0+ +
-------------------------------------–=
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High-Q Biquad Filter
(52)
(53)
(54)
(55)
(56)

 •  And, as in lowpass case, can set

(57)

 •  As before,  and  approx  but 

K1K5 a0 a1 a2+ +=

K2K5 a2 a0–=

K3 a2=

K4K5 1 b0 b1+ +=

K5K6 1 b0–=

K4 K5 1 b0 b1+ += =

K4 K5 ωoT 1« K6 1 Q⁄≅
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Charge Injection
 •  To reduce charge injection (thereby improving distortion) 

, turn off certain switches first.

 •  Advance  and  so that only their charge injection 
affect circuit (result is a dc offset)

φ1

φ1aφ1 C2

φ2 φ2a

CA

Vi z( ) Vo z( )

φ2

φ1C3

C1

Q1

Q2

Q4

Q3

Q5

Q6

φ1a φ2a
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Charge Injection
 •  Note:  connected to ground while  connected to 

virtual ground, therefore ...
— can use single n-channel transistors
— charge injection NOT signal dependent

(58)

 •  Charge related to  and  and  related to substrate-
source voltage. 

 •  Source of  and  remains at 0 volts — amount of 
charge injected by  is not signal dependent and 
can be considered as a dc offset. 

φ2a φ1a

QCH W– LCoxVeff W– LCox VGS Vt–( )= =

VGS Vt Vt

Q3 Q4
Q3 Q4,
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Charge Injection Example
 •  Estimate dc offset due to channel-charge injection when 

 and . 

 •  Assume switches  have , , 

, , and power supplies 
are .

 •  Channel-charge of  (when on) is

(59)

 •  dc feedback keeps virtual opamp input at zero volts.

C1 0= C2 CA 10C3 10pF= = =

Q3 Q4, Vtn 0.8V= W 30µm=

L 0.8µm= Cox 1.9 10 3–×= pF µm2⁄
2.5V±

Q3 Q4,

QCH3 QCH4 30( )– 0.8( ) 0.0019( ) 2.5 0.8–( )= =

77.5– 10 3–× pC=



University of Toronto 48 of 60

© D. Johns, K. Martin, 1997

Charge Injection Example
 •  Charge transfer into  given by

(60)

 •  We estimate half channel-charges of ,  are injected to 
the virtual ground leading to

(61)

which leads to

(62)

 •  dc offset affected by the capacitor sizes, switch sizes and 
power supply voltage. 

C3

QC3
C– 3vout=

Q3 Q4

1
2--- QCH3 QCH4+( ) QC3

=

vout
77.5 10 3–× pC

1pF------------------------------------- 78 mV= =
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SC Gain Circuits — Parallel RC

C1

R2

KC1

R2 K⁄

vin vout t( ) Kvin t( )–=

φ2

φ1

φ2

φ1

φ2

φ1

C1

C2

KC2

KC1vin n( ) vout n( ) Kvin n( )–=
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SC Gain Circuits — Resettable Gain
φ2

φ1

C1
vin n( ) vout n( )

C1
C2
------
 
 
 

vin n( )–=

φ2

φ2

φ1

C2

vout

time

Voff

φ2 φ1 φ2 φ1 …
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SC Gain Circuits
Parallel RC Gain Circuit
 •  circuit amplifies 1/f noise as well as opamp offset voltage
Resettable Gain Circuit 
 •  performs offset cancellation
 •  also highpass filters 1/f noise of opamp
 •  However, requires a high slew-rate from opamp

C1

C2

Voff

Voff

Voff

+ -

+- Voff+
-

C2

VC2+-
VC1-+

Voff
C1

vin n( )
+
-

vout n( )

C1
C2
------
 
 
 

vin n( )–=
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SC Gain Circuits — Capacitive-Reset
 •  Eliminate slew problem and still cancel offset by coupling 

opamp’s output to invertering input

 •   is optional de-glitching capacitor

φ1C1
vin n( ) vout n( )

C1
C2
------
 
 
 

– vin n( )=

φ2

φ1

φ2

C2

φ1

φ2

φ1( )

φ2( )

C3

C4

C4
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SC Gain Circuits — Capacitive-Reset

C2

C3

+

-

+

-

C1

C2

C3

C1

vout n 1–( ) Voff+

vout n( )

Voff

Voff+-

Voff+ -

Voff

+-vout n 1–( )

vin n( )
C1
C2
------ 
 – vin n( )=

during reset

during valid output
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SC Gain Circuits — Differential Cap-Reset

 •  Accepts differential inputs and partially cancels switch 
clock-feedthrough

φ2

C1vin
+

vout
C1
C2
------
 
 
 

vin
+ vin

-–( )=

φ1φ1

φ2

C2

φ2a

φ1a C3

φ1

φ2

C2

C3

C1
φ2

φ1 φ2a

φ1a

vin
-
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Correlated Double-Sampling (CDS)
 •  Preceeding SC gain amp is an example of CDS
 •  Minimizes errors due to opamp offset and 1/f noise
 •  When CDS used, opamps should have low thermal noise 

(often use n-channel input transistors)
 •  Often use CDS in only a few stages

— input stage for oversampling converter
— some stages in a filter (where low-freq gain high)

 •  Basic approach:
— Calibration phase: store input offset voltage
— Operation phase: error subtracted from signal
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Better High-Freq CDS Amplifier

 •   —  used but include errors

 •   —  used but here no offset errors

C1

φ1

vin

φ2

φ2

φ1 φ1

φ2

φ1

φ2

φ1

φ2

φ1

C′1

C2

vout

C′2

φ2 C1' C2',

φ1 C1 C2,
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CDS Integrator

 •   — sample opamp offset on 

 •   —  placed in series with opamp to reduce error

 •  Offset errors reduced by opamp gain
 •  Can also apply this technique to gain amps

vin

φ2 φ1

φ1 φ2( )

φ2 φ1( )

φ1

φ1

C2

vout
C′2

C1

φ1 C2'

φ2 C2'
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SC Amplitude Modulator
 •  Square wave modulate by  (i.e. )

 •  Makes use of cap-reset gain circuit.
 •   is the modulating signal

1± Vout Vin±=

φA

φB

φB

φA

φ1

φ2

φca

φ1C1

φ2

C2

φ2

C3
φ1

vin vout

φA φ2 φca⋅( ) φ1 φca⋅( )+=
φB φ1 φca⋅( ) φ2 φca⋅( )+=

φca



University of Toronto 59 of 60

© D. Johns, K. Martin, 1997

SC Full-Wave Rectifier

 •  Use square wave modulator and comparator to make 
 •  For proper operation, comparator output should changes 

synchronously with the sampling instances.

Square Wave
Modulator

voutvin

φca
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SC Peak Detector

 •  Left circuit can be fast but less accurate
 •  Right circuit is more accurate due to feedback but slower 

due to need for compensation (circuit might also slew so 
opamp’s output should be clamped)

φ

vin
vout

vin

CH
CH

vout

VDD

comp

opamp

Q1

Q2


