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ABSTRACT

This thesis is concerned with the application of the receﬁtly introduced
Intermediate-Function (IF) synthesis to the design of active filters that simulate
1LC ladder prototypes. .I-F synthesis results in filter realizations composed of
integrators connected together with resistive *feedback and feedforward paths.
Such filters are most conveniently described in terms of the state-variable for-

mulation and are referred to as State-Space filters.

The material contained herein consists of two parts. Firstly, experimental
evidence is given which verifies the sensitivity and dynamic range formulae of
IF synthesis. Secondly, a simple systematic design approach is presented for
active RC state-space filters. The resulling canonic filters simulate the opera-
tion of LC ladder prototyp.es, both éanonic and non-canonic. In the latter case,
it is shown that care must be exercised in selecting the ladder states that the
active filters simulate, otherwise performance is seriously compromised. The
sensitivity and dynamic range performanée of the resulting filter is shown to be

superior to that obtained with other ladder simulation techniques.
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1. INTRODUCTION

L

This thesis attempls to make two contributions to existing filter design
theory. Omne contribution is lo provide experimental verification of the sensi-
tivity and noise analysis presented by Martin Snelgrove [1] for state-space
active filters. In this thesis, this analysis will be verified through the use of

active RC‘st'ate-space filters which simulate LC ladders. -

The second conlribution is to provide a simple new design method for obtain-
ing an active RC filter which simulates the operation of a passive LC ladder pro-
‘totype. The method is called "_Stafe-space LC ladder simulaticn". The LC ladder
prototype .is typically a doubly—terminated LC network which has good sensi-
tivity properties in the passband. The good sensitivity properties result {from
thé fact that a doubly-terminated ladder is designed for maximum power
transfer at reflection zeros and therefore if any of the__ ladder’s components
deviate from their nominal value, the passband gain will decrease. This implics
that Lthe first-order sensitivity of the transfer function to any element in the

. ladder is zero at all reflection zeros [2].

It is presently common practice to design I;lost high-order filters based on
LC ladder prototypes. For canonic ladders, the method used most often to
simulate the ladder is the Leap-Frog approach [3]. This method works quite
well in maintairing the low sensitivit}; properties of the canonic ladder with no

apparent problems. State;space LC ladder simulations produce the same active

filler structure as the Leap-Frog approach. Problems arise, however, when one
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altempts to sitnulate a non-canonic ladder, with the result that almost all of the
design methods now in use have some difficulties associated with them. Four of
the current design methods for dealing with non-canonic ladders are discussed

L

briefly below.

The Signal Flow Graph (SFG) [4,5] method makes use of rceiprocators which
arc in effect differentiators. The reciprocators are often difficult to compen-
sate and add high frequency noise to the active filter. The SFG design method
is, nevertheless, a very systemdtic design approach and can be applied to any

LC ladder prolotype.

Another method is to actively simulate all in_ductoré in the ladder through

the usc of Generalized Immittance Cenverters (GIC) [5,6]. This method has the

problem that it is very dependent on the passive LC ladder used as a prototype.

If the Jadder is not designed properly, then the GIC simulation will most likely

e

have poor dynamic range performance.

A third method is a variation of the Leap-Frog approach, known as the
"capacilor-splitting’ method [7], which can simulatc the operation of certain

classes of LC ladders. This method appears to work well on low-pass fillers

though some network transformalions must be applied to the LC ladder proto-.
type. Furthermore, for this method to work, the ladder prototype must be in a

cerlain configuration.

A final approach is multiple-feedback active fillers [8]. This method does nol

similete an LC ladder protolype but rather tries Lo obtain a realization of the

& O\ >-OHHeF e-peen-de red-from-som se-Ferdde
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cases, the corresponding LC ladder is unrealizable with passive immittances_ S0
it is not clear that this method maintains the low sensitivity properties of

- doubly-terminated LC ladders.

State-space LC ladder simulation allows one o easily design an active filter
from a given ladder protétype. The prototype may be any doubly-terminated LC
ladder. The resulting filler will have the same low sensitivity properties as the
present best LC ladder simulation. Perhaps an even more important property
of state-space filters is that first-order sensilivity formulae can be easily
derived for any element iﬁ the active filter. As well, the output noise voltage can
be accurately predicted if we know the ihput noise voltage of the op—amp‘s to be

- used in implementation. A state-space LC ladder simulation filter has the
advantage over other state-space ﬁlters» in that its systemAmatvrix is quite
sparse and is easy to design.' (If the system matrix is sparse, fher,e are fewer

components needed in the circuit realization.) .

P

State-space LC ladder simulation is a canonic simulation of the LC ladder
prototype. N mdependent states are required to create a transfer funct1 on of
order N. These N states are formed at the output of N integrators connected
with feed-forward and feedback networks. Each of the states is a simulation of

- @ capacitor voltage or inductor current in the LC ladder. If the LC ladder is

Lon-canonic then the number of reactive clements is greater than the order of
the filter, N. Iﬁ this case, N states are required in the simulalion so some capa-
citor voltages or inductor currents are not simulated. We say that these states

have not been chosen to be simulated.
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The choice of the states from a non-canonic ladder can lead to good and bad
filters. In some cases, the transfer function is unrealizable because one
chooses two étates which are dependent. Since the choice of states is quite

nnportan{ a full chapter is devoted to helping one make this choice.

1.1 Thesis Qutline

- The theory required for this thesis is contained in chapter 2. This theory is
not restricted to the state-space Lé ladder simulation technique but is applica-
ble for state-space filters in general. Sensitivily equations are given for most
circuit components in a state-space filter, and as well, an equation is presented
which predicts the deviation in the transfer function resulting from the op-

amp's finite gain.

Chapter 3 shows experimental verification of the formulae presented in
chapter 2 obtained from [1]. It is very impressive that the sensitivity and out-

put noise results can be so accurately predicted.

The succeeding two chapters deal exclusively with LC ladder simulations in
state-space éystems. Chapter 4 z';ttempts to provide some msight as to which °
stétes should be simulated for a n'on-canomc ladder Only N states are required
in the simulation yet a non-canonic ladder has greater than N possible states. A

rule-of-thumb is presented which appears to give good results for all filters

simulated so far.
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Chapler 5 gives the design details of how one obtains the stéte-space system
from an LC ladder once one has decided on which states to simulate. Two

approaches are presented, one which is well-suited to dom‘puters and one which
can be perfofmed easily by hand calculations. -

i

The final chapter presents conclusions and outlines possible areas for

further study.




2. THEORY

kd

This chapter presenfs formulae which are used in the analysis of state-
space systems. Also presented is a general state-space active RC circuit and
formulae which show the sensitivity of the filter transfer function to variations

-in the circuit elements and op-amp gain-bandwidth.

2.1 The State-Space Description

A conventional N'th order state-space ‘system is described Ey the equations:

x(t) = Ax(t)+bu(l) | o (2-1)u

y(t) = eTx(t ) +du(t) . ' (2-2)

~where "u" is the input signal; "x" is a vector of N states, which in our case, are

the integrator outputs; and "y" is the output signal. A, b, ¢, and d are the
coefficients relating these variables. "A" is a N x N real matrix which deter-
mines the feedforward and feedback of the N integrators. "b" and "¢" are N x 1

real vectors which determine the input and output signals to the filter. “d" isa

scalar which allows a direct feedthrough from the input to the output.




Writing (2-1) in Laplace form and solving for x in Lerms of u gives Lhe Tollow-

ing equalion’ »

x = (sI-A)"bu (2-3)

Substituting (2-3) into (2-2) and dividing both sides by u gives the transfer
funclion of the filler as:

T(s) = %gz—g- = cT(sI—A)'Ibfd | (2-4)

2.2 Intermediate-Transfer Functions

For sensitivily equations we need to define two other transfer functions,

Ji(s) and g;(s).

2

Defining fi(s) to be the transfer function from system input to the outputl of

thei’th integrator then one can see from (2-3) Lhat:

1. The same symbals will be used for frequency and time domains, but time domain quantities

will be explicilly indicated through the uzse ofr(lr. ) :
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x =
u(s)

f(s) = x(s) _ (sI-A)"'b " ‘ (2-5)

The above set of functions are called the intermediate ~transfer functions.

A dual function, 9i(s), is defined as the transfe? function from the input of
 the i'th integrator, z,(¢), to the system oulput, y(¢). We find 9i{s) by reducing

the input to zero and injecting a signal¢;, at sz;. The state equalions become:

sSX = Ax+¢ (2-8)

Yy =c'x : ' (2-7)

So the set of functions, 9i(s), is found to be:

g = Y = Ternyt (2-8)

All the functions 7(s), fi(s), and g;(s) share the same denominator -- the
natural mode polynomial, e(s). One can also find a matrix representation for
both {f,(s)} and {g:(s)} and then find a simple formula relating the two

matrices.

First looking at 7 ((s)

ny(s)

Fils) = o5} (2-9)

~

writing e(s) as a product of its roots gives




’ _ ny(s)
fi(s) = (S_el)(sfeg)...(s_eN)

where e; is the i’th root of the natural mode polynomial, e(s)..

. e . . o
Now using partial fraction expansion, one can write f(s) as

%

Fiqy Fi Fin

T = ey eyt T ey

where Fy; are in general numbers (no "'s" terms).

Similarly
_ oo ., Fav
fz( )= ( _,,1) (s— e,,) +(S"‘e}\/")
“Fay Fyz ooy Faw
fN(s) T (s—ep) (s—ey 7 (s—ew)

so finally, one can write

f(s) = Fe(s)

where

(2-10)

(2-11)

(2-12)

(2-13)

(2-14)
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1
; s—e,
S F 1y Fz .. Fay 1
Jz Fa1 Faa  Fay s—eg
o f(s)= |- F=|- ‘ e(s) = o (2-15)
f N FiiFnz Fy| 1
§—ey

Using the same method and similar notation, one can find an N x N matrix, G

such that

g(s) = Ge(s) | (2-18)

A formula is derived in [1] which states that

| G’ = HF! | o (2-17)

where His a diagonal N x N matrix such that

T(s)=He(s). T(s)is the transfer function | (2-18)

‘This is an important formula since it aids in Lhe domputation of either F or G as
; well as giving insight as to why some choices of intermediate-transfer functions

{ are bad.




2.3 Sensitivitics

The formula to derive sensitivities using £ and g is (cf. fig. 2.1):

¥

TM 3 )

N

~ -~

Tqb

‘ Figure 2.1 Investigating one arm of a signal flow g'raph which illustrates the
transfer functions of formula (2-19). )

' dTab _

dTym = tam“tnb ‘ (2‘19)

where {,m, eg.,' is the transfer function from point "a" to point “m". The procf of

this formula is given in [1].

If we use the classical sensitivity measure

T dT T, -
Syt = g mn . | 2-20
Tonn ATmr  Tap ' - ( )
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n

T
ST::‘ = tam'tnb"']‘}n—“ (2-21)
ab

Flg 2.2 shows how A, b, ¢, and d relate to formula (2-19) giving the following for-

mulae: 1‘ b
SAT:) oif s 7:4(2') (2-22)
S = gi-—:,:.zz"s) , |  (2-23)
ST < per _ -
;(S)=-T%)- | | (2_25)

The next section will show formulae relating matrix elements and circuit com-

ponent values. These can be used to find the sensitivity formulae of matrix ele-
ments to variations in circuit components. The resulting formulae are then
combined with the above sensitivit;y formulae to give formulae which show the’

sensitivity of the transfer function to variations in circuit element values.

The final sensitivity formula derived will be for integrators. Toward that end,
we model each integrator as an ideal integrator in cascade with a block having a

transfer function 7; which contains all {he integratovr non-idealities as well as

3 (IR S—
1 OT g R =space Syste s ET: B O O

is simply —:— s0 7; is nominally one. However in the active circuit the integrator




Figure 2.2 SFG representations used to detemine matrix element sensitivity
formulae )




2-9

gain. and hence v; is scaled to denormalize the filter. Then each integrator of

the system has the transfer function:

7=, | (2-26)

- Fig 2.3 shows how relates to formula (2-19). Note that t,, is sg; because gi

is the transfer function from the input not the output of mtegrator "

Y=

/T———,.%~~—0\
~ i ™~

N g

T

\

A
S\ —*}’tg
\ ~/

/
AN
! . ~ e
T{(s)
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Figure 2.3 SFG represcntation used to dctermlne integrator sensitivity
shown in formula (2-27)

The sensilivity of the transfer function to +; is:

T(s) ,
S = figi %7 T( ) | - . (2'2?)




~ All of the formulae above relate the seusitivity of a complex funclion, the
transfer function, fo possible complex functions, eg. 7;. For analysis of filters,
it is usually the case that one would like to predict the variations in the magni-
tude of the traﬁsfer function as a result of variations iﬁ the magﬁitﬁde or phase
of parameters. The real and imaginary parts of the ?éﬁsitivity of complex func-
tions are taken to obtain formulae involving thie magnitude and phase of these
functions. These formuiae are derived with the aid of Cauchy-Riemann equa-

tions.

A modified theorem involving Cauchy-Riemann equations states that: If a

complex function g (s)

g(s) = wis)+jv(s) . | (2-28)

(w(s) and v(s) are rea;l functions) is analytic in D where D is a surface in

2(s) = 2(s) g (s) | (2-29)

(z(s) is an analytic function , z(s) and y(s) are real analytic functions) then

w(s) and v(s) have continuous first partial derivatives in D and satisfy

dq(s) _ dw(s) + _dv(s) _ du(s) _ .dw(s

az(s) ~ az(s) Joz(s)  oy(s) 7’ oz(s) (2-30)

To relate the above to the sensitivity equations first write T'(s) as
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T(s)= |T(s)|ed¢lT(=N (2-31)

where |[T(s)| and ¢[T(s)] are the magnitude and phase of T'(s) respectively,

then ' -

I[7(s)] = In| 7(s)| + j [T (s)] (2-32)

Similarly, for any complex parameter, call it u(s).

In[u(s)] = Infuls)| + jelu(s)] (2-33)

Relating In|T(s)| to w(s), ¢[T(s)] to v(s), In|u(s)]| to z(s), and ¢[u(s)] to y(s)

we find the following equations

T(s) _ 8In[T(s)] _ 8ln|T(s)] . 8p[T(s)] Y
Sue) = Binfu(s)] = olnluts)] * 7 oIn|als)] (2-34)

_ 0p[T(s)] _ .0In|T(s

= cin 2-35
oplias)] ~ 7 oplus)] (2:55)
Looking at real and imaginary parts separately, this gives
76)| _ aln|T(s) _ o !76)] | !
Re[‘?#(s) T dln|u(s)| Slu(S)l . ‘, (2-36)
= 9p[T'(s)] R : | ' (2-37)

delu(s)]
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(s n
1m|S ) =—%’J@71(%%L | (2-38)

_ 09[T(s)]
8In| (s )|

y

(2-39)

2.4 Scaling of a State-Space System

While maintaining the same transfer function, it is often useful tc scale the

set of intermediate-tra-nsfer functions, {f;}, in a slate-space system by fhe
\ralués.al, og, etc., where f; is scaled by «;. It is well known that the transfer
funétion is not changed under the similarity transformation Wh_ich_is defined as
a transformation from a systém with matrices

(A,b,c,d)

to onc with matrices

(TAT!,Tb,cT 1,2) 4 (4,b.¢.4d) (2-40)
where T is a non-singular N x N matrix.

If T is simply a diagonal matrix such as




«; O . . 0
0 @z 0 . '
T=| - 0 ay; 0 - , (2-41)
' 0 ¢+ 0
0 - . 0 ayp

Y

then o similarily transformation with this T is a method of scaling the

inlermediate-lransfer funclions in the stale-space system.

The scaled-system elemcents become

A"J = ‘&';’Aij 61 = X3 b.,: ’ (2—42)
~ Cj . E
c; = 7.‘—]— d=d - (2-—43)

~ ~ gi
Ji=af; 9i= - . (R-44)

Note that scaling « state-space systera does not affect any of its sensitivily pro-
perties.® As an example, let us use the relationship in equation (2-22) together

with (2-42) 1o comparc the sensitivity of the scaled system relative te 4y,

2. Il will be shown laler. however, thal scaling does in fact affcct the seusilivity of the circuit

transfer function relalive to the finite guin of the op-amps due to 1he fact thal Lhe closed-

loop gain of cach integralor (ie. time-constantl) 1s changed.




T(s) _ _gi- ] . (X.(A{j : =
Sz_v = o D._,'f, GJT(S) ) | (2-40)
Ay TG - o

= gifj' T(Z) = SAV' (2-4:6)

2.5 Circuit Implementation and Sensitivity

Figure 2.4 shows a direct circuit realization of an N'th order state-space
filter. The output of integrator i is the state —X;. Within arbitrary values for C;
and Ry, there is a one to one correspondence between the filter compecenent
values and the system element values, A, b, ¢7, and d. Typically, one will design
a filter with normalized specifications where the upper passband edge is at

l7ad/sec. To denormalize the state-space system, one chooses R; and C; so

that

o RiCi=1 (2-47)

where o, is the denormalized upper passband edge, (; is the integrator capaci-
tor which is chosen arbitrarily for reasonable component values and R; is the

denormalizing resistance which is used to ﬁnd‘Ri_,- with the equation:

R;
A,-j

Rij = (2-4 8)
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The value of the feed-in resistor, Ry, of integrator i is found from

Ro= 35 | o (2-49)
. i _ , :

and the value of the resistors which sum the states together to form the out-

put, R,;, is found using

Ryi = - (2-50)

and the feed-through resistor, Ry, , is found with the equation

R :
RW = ——ﬁu—— (2“51)

where the resistors R;; and Ry; are connected to either positive or negative
state, X; or X;, according to the sign of 4y and ¢; respectively. Similarly, the
resistors R;, and R, are connected to either the positive or negative input

according to the sign of b; and d respectively.

Note that if all the elements in a column of A and the corresponding column
of ¢ are negalive then the inverting op-amp of that state is not required. It
then follows that scaling by -1 can be used to minimize the number of op-amps

in the final circuit.

The reason that the second op-amp has its positive input connected to the
negative input of op-amp 1 is to obtain signal inversion withoul incurring any

extra phase lag.
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It can be seen from equation (2-48) that the the sensitivity of Ay to Ry is -1,
Also from equations (2-49), (2-50), and (2-51) the seusitivities of b, ¢, and d to

Riy, Ry, and Ry, respectively are all -1.
' ~

To find the sensitivity of y; with respect to the integrator capacitor, C;, recall

that
=1 5
thus
Ser = -1 - . _ (2-53)
Now using
Se=S.8Y (2-54)
we can write
QTE) o T(s) vy -
OR‘_], = DA;‘;, 'bRij‘ o . (2-50)
Ay ' -
= gif;'ﬂ-‘i—)—- (-1) , (2-56)

- Using this same method, the formulae for the sensitivityv of T'(s) relative to the

values of circuit elements can be found. The real part is then taken fa obtain

the following formulae for the magnitude of the sensitivities:




2-18

(s) .

f]z: | = Re|-gs’ TZ‘)] - (2-57)
lres) ) - '

S;l?v I = Re[~91‘fj"7:4(‘é)} . (2-58)
)| -d
R, Re[ o) (2-59)
l”s)l =R ‘ cq '
Ry = Re|-f;* T(S) - (2'60)

(2-61)

A formula may also be derived to find the deviation of a transfer function as
a result of changing the gain-bandwidth product of an op—érnp in an integrator.

Analysis of a Miller integrator gives the following formula

o . -1 , (2-62)
.
eqi

1 1
. SCiReqi 1+(Z)(1+——-—~————S(‘R
1!

where C; is the integrator capacitance, Rqy; is the parallel equivalent of all feed-

"in resistances of integrator i and 4 is the finite op-amp gain of integrator i.




From the above equation we see that

1

1, 1
C{Req{ll*F(A )(1+ SC{R(,Q.,-_ )J

=

which leads to

1

and since y; N
' CiRegi

dyi -1
i_ _ACiReqi
d()

SC.;_R eqi

k]

It then follows that

(2-63)

(2-64)

(2-65)
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S

— N i fo nn
=-fgi T(s) [1 + SCi B (2-8B)
Now assuming dominant pole compensation of the Op-amps, we have
1 S _g=-S_ -
A(A)ww; O—Wt (2-89)

where wo; is the op-amp unity-gain frequency in radians. The formula which
gives the deviation of the transfer function resulting from a change in w; of the

op-amp in integrator "i" is found from combining (2-88), (2-69), and taking the

real part, _
dTT((E\?)l = ~1igs T(Ss) [1 * sc,-}eeqi d A%] (2-70)
din|T(s)| + jde[T(s)] = —fig: - ;z(s) [1 + sci;eqi] (2-71)
din|T(s)| = Re[—fi?i wt;?s) 1+ SC'ej-?eqi” | - (2-72).

1

1+ SCiF ” (2-73)
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2.6 Dynamic Range

The dynamic range of a filter is determined by two limits. One limit occurs
when.the'input signal level is large and the op-amps clip their oﬁtput.signals.

- The other limit occurs when the input signal ievei is small and the inherent
noise iu the op-amps becomes comparable to the signal level. After choosing

the configuration of the filter, one then optimizes the dynamic range by ensur-

ing that all op-amps will clip at approximately the same level of input signal.
This optimization is done by scaling the intermediate-lransfer functions, {f:(s)].
To perform this scaling, one must first decide on a mathematical measure or

norm for measuring the signal level at X;(s).

-

L. scaling adjusts Lhe filter so that if the input is a frequency swep* siﬁusoid,
then the output of each of the integrators will reach the same maximum value.

An L. uorm is defiued as::
Ifille = MAX | fi(Jw)| (w1<w<wy) (2-74)

where w; and wp define the frequency band of inlerest.

Lo scaling adjusts-the filter so-that if the input is white noise then the output—
of each of the inlcgrators will have the saine RMS value. An L, norm is defined

as:
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e = N/ Jireioltde | (2-75)

No matter which norm is chosen, L, écaling is acgomplished by choosing all

factors, a4, such that for the scaled filter ¢
Ifillp = - L foraiti | | (2-76)

where M is the maximum allowable output voltage of each op-amp and ¥, is the
maximum input voltage measured using an L, norm. When using a norm other

than L., one should refer to [1] to see how one can determine M.

Once scaling has been perforrned on a filter then its dynamic range can be
simply measured by the améunt of its output noise. The output noise of the
filter resuits from the inherent noise of the op-amps and is measured with the
filter inbut grounded. This output noise changes from structure to structure

and is determined by the set of functions, {g;(s)}.

If one assumes that the integrators have independent while input noise of

equal power then the noise gain, V,(w), of the filter is

No(w) = ﬁllgiomnz o )

One can look at the total noise contributions of the individual integrators

“using the formula




Ni = lgsllz

= [1g:(jw)|%dw
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(2-78)

(2-79)

Then the total output noise, Ny, resulting from all the integrators together

is simply

N
Jvtot = ZJV,;

i=1

(2-80)

assuming each integralor has independent white input noise with a spectral

density of 1 V2 (rad sec).

An N x N matrix, K, which assists in finding the Lz norms of {f;} is defined in

[9] as
Kg=fufl;= Jrfi(jw)fj(j“)dﬁ
so that
2
Ky = [“f-i”a]

(2-82)

Another N x N matrix, W, which helps to find the Lz norms of {g;} is also

deﬁned as
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Wy =009y = [gGo)g(Go)doe . : (2-83)
[A] .

so that

Wy = [Hgi'iz]a ) ' (2-84)

To compute the matrices K and W, a hermitian N x N matrix Q is defined as

[1]

Qz‘j = _—211- . (2“85)
e,;+ej )

where ¢; is the i"th natural mode as defined in section 2.2.

~The K and W malrices are then

K = FQFT | (2-86)

W= GQG” | (2-87)

2.7 Conclusions

This chapler presented tools needed in the design and analysis of state-

space fillers. The next chapter will show that filter anal}"sis using formulae




formulae are general and are valid for any state-space structure.

Using the material of this chapter as a basis, one can analyze a particular
state-spacé filter so that its performance may bercompared againstv that - of
other realizations of the particular filter. A qliestion which still requires
answering is how to find a "good" state-space realization without using an

exhaustive search. In the following chapters, an attempt is made to provide an

answer.




3. EXPERIMENTAL VERIFICATION

State space filter realizations have been inixrestigated here at the University
of Toronto for a few years, yet practically all the comparisons between different
state-space filters have been through computer simulations. In this chapter,
we present experimental verification for the sensitivity and dynamic range rela-
tionships of state-space systems. Also shown are a number of sensitivity com-
parisons between existing methods of ladder simulation and a state-space

design.

3.1 Description of Filter Examples

An eighth order bandpass filter was designed and constructed and experi-
mental results compared to theoretical predictions. The filter's passband

extends from 1 kHz to 1.4 kHz with .4 dB ripple. The stopband's required

~attenuation is 50 dB below 700 Hz and above 1700 Hz. The filter was {frequency
normalized so that the upper passband edge (1400 Hz) was at 1 rad s. Unless
otherwise stated all results will -be frequency normalized. The transfer function
polynemials satisfying the above constraints are shown in Table 1 below. A pas-
sive LC ladder realization which is also frequency normalized is shown in Figure

3.1.

A nnumber ol state-spacc fiiters with different dynarmiic range and sensitivity

properties can simulale the workings of the above LC ladder. Experimental
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Polynomial natural mode loss p-ole reflection zero
Leading Coefi. 1210.19 5.31423 3896.19
-0.068135+j0.916348 0 +j0.809524
Roots -0.068805+j0.788556 0 +j0.989195
-0.023287+j0.710193 +j1.25008 +£j0.796951
-0.026288+)1.004480 +j0.39973 +j0.723908

TABLE 1. Transfer Function

measurements were made on a state-space filter which was derived from a

"good ladder simulation" from the doctoral thesis of Martin Snelgrove [1]. This

"good" filter simulatzd all the capacitor voltages and inductor currents of the

above ladder except for Vi, and Vp,. The reasoning for this choice of elements

simulated will become more apparent after reading chapter 4 of this thesis.

The filter was scaled for optimum dynamic range using an Lz norm as explained

in chapter 2 of this thesis. The scaling was done so that all ll7:]l=1 and the filter

was designed for a unity passband gain.
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Lg -
. c. (2.035)
(5.5069)(0.2594) £ (0_3(."3"4'2),
2 H (0.3?1545) H o v
c, | |
(11.148)—— 1
J cy L '
Lq T c, (2.7%3) T % Lg Z (1};188)
(0.5614) (3.181) (0.4813)
Figure 3.1 Eighth order bandpass LC ladder
-0.1816  © 0.8288 0 0  0.1801 0 0 -0.2814
0. 0. -0.0695 -0.0465 0 0.8633 -0.0164 0 (¢}
0.8445 O 0 ) 0 o 0 0 o
= | -0.0815 -0.1875 O 0 0.9235 0  0.0313 0.1458 | b= 0
0 0 0 -0.9085 0 0 0 0 o
-0.3023 -0.8235 0 0 0.1893 0  -0.0074 -0.0345 0
-0.0189 -0.0542 0 0  -0.2588 0  -0.1816 -0.8454 0
0 0 0 0 0 0  0.8426 0 0
¢!={0 0 D 0O 0O O 0.7848 o] d=0

To get minimum op-amp count, fg and sy were scaled by -1 so that columns

1, 2, and 4 ha‘vev only negative elements.




The filter built uses type LF356H op-amps which have a gain-bandwidth pro-
duct of 3 MHz. All the component values were chosen to within .1 ipercent of
their nominal value. Figure 3.2 shows the predicted and rrieasured transfer

function response of the filter. A -

Also designed and built was a third order elliptic low-pass state-space filter.
The passband edge is at 1 kHz but as before all results will be normalized so
that the upper passband edge is at 1 rad /s. 'I;hus, the normalized filter has a
passband from O rad /s to 1 rad /s with a ripple of 1 dB. Its stopband is from
1.4 rad /s to » with a minimum attenuation of 22 dB. A transfer function which
satisﬁ‘és the above speéiﬁcations has a loss pole at « and a pair of loss poles at

| +71.5536. The transfer function has a pair of poles at —0.17607+;0.99853 and one
pole at —0.61342. An LC ladder implementing this transfer functio-n is shown in

figure 3.3.

A state-space filter was designed to simulate the ladder of figure 3.3 where

'the chosen states are Ve iy and Ve, The filter was then scaled for dynamic

range using L. scaling. The resulting state-space system is

—-0.4828 -0.4505 —0.0961 0.7100
A= 1.1410 0 =0.8390 b= 0
-0.1777 0.6127 -0.4828 0.2613
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L
(0.6850)
Ry O\
(1) |
C ~ 7
/\/ (0.6548) o Vo )
|
, H A
: e >~ R,
V; <> c, —— fop—— { 0
: (1.6302) (11.6302)

p— -

Figure 3.3 Third Order lowpass LC ladder

3.2 Resistor Sensitivity

Resistor sensitivity was measured by changing a resistor by 5 percent then
comparing the perturbed transfer function with the predicted transfer func-
tion. The sensitivity of resistor Ry; is directly proportional to 4 so usually the

- largest 4;; in magnitude corresponds to the resistor with the greatest sensi-
tivity. Since 445 is the largest element in the A matrix of the eighth order filter,
R,s was changed to observe il's sensitivity. ‘The predicted and measured resis-

tor sensitivity results are shown in figure 3.4.

Resistor R, of the eighth order filter, was also varied to compare its

predicted and measured sensitivitie he results are shown in figure 3.5,
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For the third order low-pass filter, resistor R, was varied to compare

predicted and measured sensitivities. The results are shown in figure 3.8.

As seen from the comparisons of predicted and gxperimental results, resis-

tor sensitivities are very accurately predicted. «

3.3 Integrator Sensitivily

Evaluating the integrator semnsitivity formula usiné; the comgputer, it was
predicted that the eighth-order filter was most sensitive relative to the gain of
integrator number 4. To compare predicted and measured integrator-gain sen-
sitivity, the op-amp of integraior 4 was substituted with a type 741 op-amp hav-
ing a measured unity-gain frequency of 800 kHz. Recalling eguation (2-73), note
that it is derived assuming an ideal integrator is substituted with a real integra-
tof using an op-amp of gain-bandwidth product ¢;. In this measurement we are
actually substituting an op-amp of unity-gain frequency of 3 Mliz with another
op-amp of unity-gain frequency of 600 kHz. To a first order eflect, this can be
accounted for by subtracting the deviation in the transfer function correspond-
ing to a 3 MHz op-amp from the deviation corresponding to a 800 kHz op-amp.
This, in turn, is equivalent to changing an ideal integralor to one using an op-

amp with a gain-bandwidth product of

[+ 1 |
|600 kl{z 3 Milz

= 750 kHz _ (8-1)

So equation (2-35) is used with w, equal to (2n)750rud /s which is then
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normalized using 1400 Hz.

The predicted and measured results are shown in figure 3.7. These results

show thal the effects of the finite op-amp gain can be accuralely predicted.

3.4 Dynamic Range

Typically, filters of a given structure are easily scaled for optimum dynamic
" range. The output of each op-amp is adjusted so that all op-amps will saturate
at approximately the same level_ of input signal. What then determines the
dynarmnic range of an active RC filter is the output noise of the filler (which

changes from structure to structure) resulting from inherent op-amp noise.

The output ﬁoise voltage of a state-space filter can be predicted using equa-
~ tion (2-77) and the input noise voltage of the op-amps used. Figure 3.8 shows
‘the predicted noise gain, in dB, of the eighth order filter described above. The
right-hand scale,. of the same figure, Showé the output noise ‘voltagé]evel in dB
using the reference 1 volt RMS to be 0 dB. Tﬁis scale was obtained. assuming
that the op-amps input noise are white with 12 nV /VHz density, which is‘ the
noise specification for the type LF356 used in the experiment. The scale is also

adjusted to account for the spectrum analyzer having a resolution bandwidth of

3 Hz.

Figure 3.9(a) shows the actual output noise voltage measured for the eighth

order filter with the input grounded. The resolution bandwidth of the spectrum

\

analyzer was 3 Hz. An expanded view of the passband noise is shown in figure
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3.9(b).

The predicted and measured output noise voltage of this filter agree remark- -

ably well for noise results! ' -

3.5 Semsitivity Comparisons

In order to convey to the reader a feeling on how good the semnsitivity of
state-space filters is. comparisons between state-space filters and two existing

methods of ladder simulations will be shown.

3.5.1 Capacitor Splitting

- The third order low-pass LC ladder of figure 3.3 was used to design two active
RC filter simulations. One is the third order state-space filter (L. scaled circuit

shown in figure 3.10) described above. The other design is described below.

A commonly used method to simulate this ladder is to take capacitor C; and
split it as shown in figure 3.11(a), which maintains the transfer function of the
filter unchanged. One then uses Norton's thedrem to obtain the equivalent cir-
cuit shown in figure 3.11(b). A node equation is written at both V; and V3 and a

loop equation is written for the loop containing the two capacitors and the

“inductor vielding
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Figure 3.9 Measured output noise voltage for the eighth order filter
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Figure 3.10 Circuit impicmcntation of the third order state-space filter
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_J\\/i V, JL; Vs | o Vo
Vij) =—=C gS;\/Cj | \/I:E; "2 T 53 < R,
IRV Q% = -
2 |
M 4@ ::c,+c; Q’D sav,  Dsay, ::Cz'Pég <R
- = = (b)? ==

Figure 3.11 Circuit manipulations for the capacitor-splitting technique of
ladder simulation ' '
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1

S(Cr+Ca)Vy = 7 (Vi=Vi)+li+sCaVs (3-2)
s .

S(Cg"l"Ca)Va = :};,_1'(V3)_IL2+SCZV1 ‘ - (3—3)
1

SszLz = V3'— V1 . (3"4>

Note that if we consider Vy, Vs, and 7;, to be states then the right hand side

of the above equations are inputs to the integrators which form the states. The
inputs sC.V4 and ;Czl’l are capacitor inputs to the integrators forming ¥, and
Vs. The resulting filter is a non-canonic realization of the transfer function and
is known to have good sensitivity properties. The filter was sce;led using L. scal-

ing and its circuit implementation is shown in figure 3.12.

Figure 3.13 shows the experimenf,ally measured maximum sensitivity results
relative to integrator input elements versus frequency of the two filters. It is
seen that the stale-space filter performs slightly better at higher frequencies.
Though the sensitivity results of these two filters are approximately the same,
it is important to note that the capacitor splitting technique presently haﬁ no
method of predicting these results. Also, the capacitor splitting technique is
limited in use. The technique can be used on LC ladders to eliminate the prob-
lem of capacitive ticsets and a modified version of the technique can also deal
with the problem of inductive cutsels, yet presently, the technique has no

method of dealing with capacitor cutsets or inductive tiesets in ladders.
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Figure 3.12  Circuit implementation for the third order filter, obtained using
the capacitor-splitting technique
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3.5.2 Signal Flow Graph (SFG) Filters

A twelfth order LC ladder is shown in figure 3.14: This filter was actively
simulated using signal fiow graph (SFG) techzlings' by Ken Martin [5]. The
resulting active filter required 25 op-amps and: the most sensitive element had

a measured sensitivily figure of 4.1 at the most critical frequency.

Using the computer program dot [10], to design a state-space filter from the
ladder of figure 3.14, sensitivity figures for the resistors can be predicted as
shown above. All inductor currents and capacitor voltages were chosen as

states except for V¢, Ve, V¢, and Ve, The resulting state-space system is

-0.1000 -0.8275 -0.0B03 O 00353 O 00116 O 0 0 0 0
0.9284 0 0 0 0 0 Q 0 0 0 Q0 0
0.8339 . 0 0 -1.1676 0 0 0 0 0 0 0 0
-0. 06?..3 -0. 5845 0:74 g9 » 0 0.0630 0 0‘. 0234 0 0 0 0] 4] |
0 0 0 -04%89 0 10191 0 03346 0O 0 0 0

A= |-0.0219 -0.2055 0.2634 O -0.7462 O -0.2493 O 00862 0 o -0.0171
0 0 o o 0O 02880 0 -0.8309 O -02398 O 0

0 -0.0868 0.1112 0 -0.31562 0 0.8450 ‘ 0 -0.2910 0 b} 0.0599
0 0 0 0 0 0 0 02928 O -0.9028 -0.2670 O

0 -0.0191 00244 O -0.0691 O 0.1854. 0 08669 0 o  -0.1783

0 o 0 0 -0.0101 0 o.oévz 0 01270 o0 0  0.9306

0 0 0 0 0 0 0 0 0 0  -0.9380 -0.1002
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bT=[o.2030 0 0 0.1279 0 0.0450 0 0.01850 0 0 0 O

cT=[0 o.ooooooovoo—o.sasi, d=0
The predicted maximum sensitivity figure for any of the integrator input
resistors is 5.7 at its most sensitive frequency. This indicates that the sensitivi-
ties of the two filter implementations are appréximately the same considering
that this is a first order prediction and the SFG sensitivity figure is a measured
value. As well, a cascade design was tested in [5] and gave a sensitivily figure of

70 for the most critical ‘element.

The number of op-amps required to build this twelfth order state-space filter
is 20. We obtain this number by observing that 4 columnns in the system
deécription have only negative entries. As well, all the b and ¢ elements are of
the same sign. Si.nce only one op-amp will be needed for each column consist-
‘ing of only negative numbers then the tolal number of op-amps is simply
4 + (2X8)=20. No op-amps are required for the input and output 's’ﬁages since
all the elements in b and c are of the same sign. Thus this impiemczn{.ation pro-

vides a saving of 5 op-amps as compared to the SFG design.

As well, the SFG method requires reciprocators which are typically difficult

to compensate and add high frequency noise to the final filter.
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3.6 Conclusions

“All of the above experimental results show that the seusil,ivity and dynarnic

range of state-space filters are accurately and eas{ly predicted using the for-
mulae of chapter 2. This'combined with the low sensitivity values of state-space
filters give this filter design method a distinct advanltage over any existing

method of LC ladder simulation.

In the remainder of this thesis, we will be concerned with presenting a direct

and simple method to design state-space filters which simulate arbitrary LC

ladders.




4. Choosing Ladder States to Simulate

R

One can simulate an N'th-order LC ladder ‘by having the outputs of N
integrators connecled in a state-space configuration emulate the capacitor vol-
tages and inductor currents of the ladder.. In a ca'nonic N'th order LC ladder,
the total number of inductors and capacitors equals the order, N. So for a
canonic state-space system to simulate an N'th order cancnic ladder, the N
1 the capacitor vol’;ages and inductor currents of the
ladder. In simpler terms, the transfer function from the input volté\ge to a
capacitor voltage or inductor curreﬁt of the LC ladder is the same as the
transfer function from the.input voltage of the active filter to the integrator
outpul which emulates that ;:lement's voitage or current. If an element’s vol-
tage or current t‘ransfer function is the same in the LC ladder as an integratér
output transfer furction in the state-space filter, then we say that the

element's voltage or current was chosen as a state for the state-space filter. '

For a canonic simulation of a non-canonic N'th order LC ladder, only N states
are chosen though there are more than N inductors and capacitofs. It is impor-

tant which N states are chosen as the resulting filter can have poor sensitivity

and vdynamicvrange properties or, perhaps‘, not even be realizable. Inth
chapter, we will give some insight as to which states should be chosen fora

given LC ladder, and present a simple rule-of-thumb to simplify the choice.
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4.1 Method of Sensitivity Comparison

It was shown in [1] that the optimum (though not necessarily obtainable)
ﬁlter. with respect to integrator semnsitivity, for a particular N'th order transfer
function, T(s), will have its integrator sensitivity as

oplimum S;,(S) = s__d7(s)

, for all- i

T NT(s) ds (4-1)
This optimuin filter is called a Frequrenc-:y Scaled Lower Bound (FSLB) filter.

Then as a method of plotting the integrator sensitivity of a filter, we can gain
more insight if we plotl a function which is proportional to the sensitivity magni-

tude, ISZ,Z(S)

, normalized _to" the optimum value above. We call this function the

relalive sensitivity and write it as

S‘y\-(m) - l fi(jc”)gi(jw) (4_2)

' -
(o)

Then if an FSLB filter existed, it would have S,Jca):—}v for ail 1,0. The relgfcigg

sensitivity measure in (4-2) then allows one to see how close a design is to being

optimum.

The rabdve measure would still require N plots for integrator sensitivity (one

for each integrator). We then define another quantity to be the maximum

Py




relative sensitivity of all integrators,

S (@) AT (0) | . (4-3)
This will be the measure that we will plot to compare the sensitivity of one

filler with another.

4.2 Cutsetls and Tiesetls

In a non-canonic N'th-order ladder_one mﬁst choose N independent capaci-
tor voltages and inductor currents. The‘ N states simulated must all be
independent otherwise we cogld eliminafe one integrator by creating it's outplit
as the sum of others. This would produce a system containing only N-1 integra-
tors, which we knc;w cannot implement a systém of order N. It therefore follows
that all the capacitive or inductive elements in a tieset or cutset (Fig. 4.1) can-
not be simulated as their element voltage or current functions are notall

independent.

In a tieset, as in figure 4.1(a),

Vcl-l- Vca"Vca =0

so clearly the capacitor voltages Ve,. Ve, and Vg, are not indepen‘d’éﬁt a

cutset as in the example of figure 4.1(b),
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a0

Figure 4.1 Cutset and tieset examples

Io e togtc, = 0 (4-5)

Integrating equation (4-5) results in

CyVe +CsVe +CeVe,+CaVe, = constant (4-8)

which again leads to the capacitor voltages not being independent. Inductive

tiesets and cutsets behave in similar manner.

The above constraint of tiesets and cutsets must be satisfied or the canonic
realization of the filter is not possible. The eighth order LC ladder described in

chapter 3 is shown in figure 3.1. In this circuit there is a cutset described by
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CoVe, +CaVe +C4Ve +U6Ve, = constand (4-7)

and a ticset deseribed by
Ve +Ve #Ve Ve, = 0 ' (4-8)

Note that, in this case, two capacitor voltages must not be chosen as states
although V¢, breaks both the cutset and the tiesét. There are two independent
equatlions relating capacitor voltage dependencies. Therefore the two equa’;ion.‘s
can be combined to climinale Ve, which would leave an equation not involving

Ve, This equation is

CoVe, +C3Ve —CyVe +(Ce—Cy) Ve —CyVe, = constant ' _ 4-9) -
2 ° g . 8 T . ‘

‘This equalion also shows a dependency which has not been broken though V¢,
will not be simulated. This imp]ic:-s thatl for each' cutset or tieset, one elem;,e.l}t
must not be simulated even though an element may break more than one

cutset or tieset.

4.3 Voltage or Current Cancellalions

Once all culsels and tiesets have been identified then one element in each is
not chosen as a slate. There are usually still choices as to which elements in

cach culset ahd tiesct should not be uséd. .in the simulation. Althouﬁgh {ihe

{ransfer funclion is obtained with any choice of N independent slates, some

choices of states causc worse sensitivity than others. As an example, consider
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the third order low-pass elliplic filter in figure 3.3.

It is shown in figurc 4.2, using compuler simulalions, that the -s_c—:nsi.tlivirty of
the resulting aclive statc—spacé filters arc good if Ve ‘Vca, ]L‘a or Ve, I/CS,;]L; are
chosen as states. The sensilivity becomes poér ifx the stopband (ﬁgure;‘i..’a), if
Ve, Ve, and I, are chosen as stales. The reason for poor sensitivity in fhc last
choice is that the output, V,, is formed as the sum of Ve, and Ve, At the loss

pole 7(}——1-,——* Vo goes to zero which means that V¢, and V¢, must cancel to form
22

zero. Such a method for forming a zero is known to have poor sensitivity. Poor °
sensilivily is also observed in higher order ladder filters, where the circuit of -

figure 3.3 is contained in the ladder and Ve, is not chosen as a state. As an

example, consider the ladder of figure 3.14. The sensitivity plot for a rather <
poor realization of this filter is shown in figure | 4.3. This realization was
obtained by choosing not to simulate 1}54. Nétc that although V¢, was not chosen
as a‘ slate, it is still required in the internal workings of the rest of the ladder.
The sensitivity plot for a good realization of this same filter is shown in figure

«

4.4 where the states were chosen according to a rule-of-thumb explained in a *

later section of this chapter. This leads to the conclusion that element voltages

or currents, which go to zero at a loss pole and are formed by a summation of

other vollages or currents, should be chosen as states.
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4.4 Closely Correlated States

It was shown that all states of an N'th order state-space system must be
ind‘ependen‘t to create an N'th order transfer function. The question theﬁ arises
as to what if some of the states are "nearly" de‘penrdent: how would one expéct
the system to perform? In general, the "near" dependent state-space s;rétem
has poor sensitivity and dynamic range propei_'ties. To show that this is the

case, we must first define what is meant by "near" dependence.

We define the correlation between two functions f; and fjas

STiGe)fiGwde
COR,, A ==
d = [ fallallf 512

(4-10)

If C'ORij is 0, then the two functions are orthogonal (in a vector sense), while if
' CORy; is 1, then the two functions are linearly dependent. "Near" dependence of

two functions is then equivalent to their correlation being close to one.

Now if we recall the relationship between F and G in equaticn (2-17), namely

G” = HF! (2-18)

we see that if F is an ill-conditioned matrix then G will contain large e'ntrie‘s
which in turn means that {g;(s)} will grow. If the set {g;(s)} is large Lthen the

" resulting state-space system will have poor sensitivity and output noise values

as can be seen from the equations of chapter 2.
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Since "near" dependent f;’s imply that F is ill-conditioned then closely
correlated functions chosen as states will produce a system with poor sensi-
tivity and dynamic range-resvults. Therefore; in a la%der, one should not choose
pairs of functions which are closely correlated as states. Two cases of capaci,tg;

voltage functions which one should avoid choosing together are illustrated in

fig. 4.5. It can easily be shown that for fig 4.5(a):

ch = (1+82L ICI)VCI

(a) (b)

Figure 4.5 Circuits illustrating closely correlaled states

Now, we would like to find the approximate _corr-el'ation between a typice

function and V¢, If one makes the reasonable assumption that the los

:j?l /711_,-? is not in the passband of the filler and that the function V¢, has_
T VU .

its spectrum on only one side of the loss pole (usually the passband side’)if3"t?;;hen )
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one can either say

Case 1: passband < -75}-7
: 141

ES

Ve, ® Ve, wr<w<og . (4-12)

or

Case 2: passband > 1
Vil

ch"t .S‘ZL]ClVCl w1 <w<wg (4—13)

where w;, wp define the frequency band which contains the majority of the area

under the spectral density curve. This allows us to write

S1ve lGoydwr2f Ve, | fo)de (4-14)
J J

since |Ve,| is near zero outside these bounds.

From (4-10), we can write

S Ve (jo)Ve,Gu)dw

Ve JlailVe,lle
i 2

corr =

(4-15)

And so for case 1, since V¢, = V¢, for all o belween wy, wp then
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fﬁg,_(jw)Vc,(jw)dw ,
Vel lle - | (4-16)

‘CWIN

oo

We know from before that if two functions are closely correlated (as Ve, and Ve,

are in this case) then they should not both be chosen as states. Also in case 2,

since V¢, = s2L,C1V, for all  between wy, w, then

L4Cy f Ve (GoX-a®)Ve,(jw)dw

corrg N 4-17)
= T el Ao Ve e (-17)
and if we also say that w does not change much over w;<w<w, then
L,Cyl[Ve Jie®
coTTo N I (4'18)

- =1
Ve lleLaCyl[Ve,llz

Again we have that the correlation between Ve, and Ve, is close to one so they

should not both be chosen as states.

In figure 4.5(b) the relation between the capacitor voltages is

1452L4C ,
___3_?_] ey (4-19)

32L3C|4

Ve, =

Here agéin, either the s? terms will cancel and the two functions will be close
to being dependent or the functions will be related by an s term. Of course, if

we draw the dual of the circuits in ﬁgure.4.5, there will be two similar situations

where two pairs of inductor currents will be nearly dependent. And as
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explained before, we should not choose pairs of functions which are closely

correlated Lo be states. As an example of the application of this rule, consider

the eighth order filter of figure 3.1. If one chooses as states both Ve, and Vc ,

3

then the resulting filter has both poor senS)tlwty and output noise figures. Fig-

ure 4.6 shows the sensitivity plot while figure 4.7 shows the output noise plol of

this simulation which chooses "near"” dependent states. Also shown on the same

plots are curves of sensitivity and output noise from a good simulation of this

Same ladder.

4.5 Breaking a cutset and tieset twice

out these two states the cutset and tieset are both broken twice. This ca

more difficulties for the simulation as it must in effect solve a simultaneous

of equations to obtain Ve, or Ve, (rather than doing so through a simple sum

tion). Figure 4.8 shows the sensiﬁvity plot for the realization in whichég

Ve, are both not chosen as states.

On the same plot are two sensiﬁvitfr curv

for good simulations of this same filter. One good simulation is where I?E4 a;

Ve, are not chosen as states while the other is the simulation where ¥, and Voo

are not chosen as states.
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(Voltages in brackcts arc NOT chosen as states
in the sitnulation whereas all remaining capacitor
NOISE GRIN voltages and inductor currents are chosen)
St A : :

2 (46) . : .
7 |
go
< (ch_ ’VC 4)

50

Ao

30

20

{0

-0

‘Figure 4.7 Output noise for two realizations of eighth order filter (fig. 3.1)
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4.6 A Rule of Thumb

All of the rules above may be satisfied by only breaking the cutsets and
tiesets of a ladder using elements in a resonant tank which forms a loss pole. In

B the above eighth order LC ladder Ve, and Ve, are the element voltages which
should not be simnulated. There might be a choice as to which element in the
tanks to choose as in fig. 4.9 below. Using complﬁer simulations, as shown in
figure 4.10, it was found that the sensitivity results are the same for both
choices. One can ‘either choose Ve, and I, or I and V¢, bul only one element

voltage or current in each tank is not simulated as a state, and both tiesets

must be broken.

L3 4
(15.85) (2.445)
S N g | ) VS, — L —
{'\S (') 5 0 \/
I
| |
(0-563) (0.037)
s = Ly < Ry

AJ‘I

= Ct g’ L2 | (5.777) | (0-238) (1)

Fipgure 4.9 oSixth order LU ladder
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4.7 Conclusions

Ladders typically present good choices for state‘s- of a state-space system
that realizé a given N'th order transfer fﬁzxétionﬁk With the simula{;ion oi; a
canonic LC ladder, the sensitivity figures of the: integrator-gain of cach integra-
tor in a state-spa.ce simulation is directly related to the sensitivity figures of
the passive elements in the LC ladder. Because of this, a state-space active

simulation of a canonic ladder will have the same good sensitivity properties as

the LC ladder.

In the case of a non-canonic LC ladder, one must be carefu) to choose a set of
states from the ladder that doés not adversely affect the sensitivity of the Sys-
tem. If the choice is done properly the resulting simulation will also have the
low sensitivity properties of the LC ladder. We have attempted to provide some
insight as to why choosing certain sets of States from a non-canonic ladder can
créate a system with poor sensitivity performance. Together with this insight,
some rules have been given so that one may avoid choosing a bad set of states.
Finally, a rule-of-thumb was presented which, when followéd, helps one to

choose a good set of states which then can be used to synthesize a state-space

filter as will be shown in the next chapter.




5. Design Procedure

This chapter will present the design details of how one obtains a scaled
state-space system from an N'th order doubly terminated LC ladder. An active
RC circuit can then be easily obtained from the scaled system as shown in

chapter 2.

An interesting feature of this design method is that most state-space sys-
tems can be easily fcund by algebraic manipulations as will be demonstrated by
some examples. For larger systems, a procedure well suited to computers is

presented.

5.1 Obtaining State Equations from a Ladder

The first step afler obtaining an N’'th order LC ladder to simulate is to
choose N capacitor Vt;ltages and inductor currents which wiil be states in the
state-space system. This choice should be made according to the rules of
chapter 4. Note that for a canonic ladder, there is only one choiée which is to

use all inductor currents and capacitor voltages as states.

The state equations are then obtained by writing equations about each ele-
ment whose voltage or current is to be simulated. For each capacitor whose

voltage has been chosen as a stale to be simulated, we write a node equation

ekpressing the current through the capacitor in lerms of the other slate




variables. Similarly, for each inductor whose current has been chosen as a
state, we write a loop equation expressing the voltage across the inductor in

terms of the other state variables. All equations should only contain element

4

voltages or currents which are states. This is possible through the use of the
cutset and tieset dependencies. All "s" terms are then gathered on the left side
of each equation leaving only the input and chosen states (not multiplied by "s")
on the right hand side of the equation. Tl1e$e equations can be put in the follow-
ing form

Msx = Nx+RV; ‘ (5-1)

where x is, as before, an N x 1 vector of states; V; is the input voltage; M and N
are.N x N real matrices; and Ris an N x 1 real matrix. We wish to solve for the

- derivative of the states so that the above equation is in the form:

sx = Ax+bu | : (5-2)

This can be done by multiplying both sides of (5-1) by M™! to obtain

sx = M~ !Nx+ M~ IRV, (5-3)

A Ax+bu - . (5-4)

so we see that




A= MIN (5-5)

b= M"'R » | (5-6)

For most LC ladder simulations, one will find that M is close to being a diago-
nal matrix. If this is the case, then keeping the left and right hand sides of (5-
1) separated, one can solve for the derivatives of the stzfiés using simple alge-
braic manipulations. This method will become more obvious once demon-

strate'd.

To obtain the ¢ vector and d scalar of the state-space system, we first look at

the four possible termination configurations of an LC doubly terminated ladder

L)

shown in figure 5.1. The N'th inductor current or capacitor v‘oltage should be
chosen as a state since withoul it a final summation is required to obtain the

'desired transfer function of the circuit.

In figure 5.1(a), Ve, is the output of the N'th integrator so

Vo = VCN (5—?)

from ivhich ¢’ and d can be seen to be
c'=[00 -+ 1] d=0 ' (5-8)

In figure 5.1(b), I, is the oulput of the N'th integrator so
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() (d)

Figure 5.1 Doubly terminatcd ladder termination configurations

H

Vo=InRr . (5-9).

from which ¢T and d are seen to be
c"=[00 - R,] d=0 (5-10)

As the next two cases are more complicated, it is advantagous for the.
designer to try to find an LC ladder which has terminations as in 5.1 (a) or (b).

If this is not possible, then we continue with (c¢) and {d).

In figure 5.1(c), /1, is the output while sLylp, is the input of the N'th integra-

tor, so

~ e . e - - .. - N . s 4 s mm—. Y e i ——— e S e o



Vn = SLN[LN ’ (5—1 1)

T

and therefore ¢ is proportional to the N'th row of A while d is proportional to

“the N'th element of b, ie.

\'1
Iy

-

of = [indns Ludne -+ LuAwy| d = Lyby (5-12)

In figure 5.1(d), Ve, is the output and and sCyV¢, is the input of the N'th

integrator, so

Vo = SCNAVCNRL A (5-13)

T

and therefore ¢’ is proportional to the N'th row of A while d is proportional to

the N'th element of b, ie.

CT = [CNRLA,\'I CNRLANZ e CNRLANN d = CNRLbN (5—14—)
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have the same gain as the LC ladder transfer functlion, 7"— This gain can be
. i :

scaled to the required filter gain before scaling the rest of the filter for

optimum dynamic range. If the required filter gain relative to the LC ladder
gain is k¥ Lhen one scales the gain of % by multiplying ¢” and d by &#. This will

be seen in the examples that follow.
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5.2 Design Examples

5.2.1 Fifth Order Canonic Example |

-*

Consider the fifth order Chebyshev low-pass filter shown in figure 5.2 below

and assume that we wish to design an active simulation of this filter with a DC

gain of unity.

Ls
Rs (1) (/,LO?BI,) (1.091) Y
— — G o ©
) + 1 | 4
VL<) -:: C, .:—C:; poa— CS' Z RL(I)
- (2.139) (3.001) T (2.139)
. .

Figure 5.2 Fifth order canonic ladder

Since this is a canonic ladder, all the inductor currents and capacitor vol-

tages are chosen as states.

Writing the node equations for Cy, Cs, and Cs, s explained above, gives




Vi=Ve,
S‘C1V(;x = R———-—ILB (5—15)
)
SCaV(:S: sz—fL4 . - (5—18)
Ve, .
sCoVey = I~ R (5-17)
Writing the loop equations for Ly and L, gives
SLEILE = VCI_VCS' - ) (5-18)
shgp, = Vca'--V(;5 ' N , (5~19)

Arrangirig these equations in order (for illustrative purposes only) and substi-

tuting in the element values, we obtain

2.135sV, = ~Vo,~11,+ Vi | (5-20)
1.091sIy,, = Ve,~ Ve, - C o (5-21)

3.001sVe, = I ,~11, (5-22)




1.091s/y = Ve~ Ve, ' (5-23)

2.1358V05 = IL4“‘V05

So, in the form of (5-1), these equations may be written as

sVe., |
2135 0 0 © o0 1
o 1091 0 o o ||
0 ©0 3001 0O O sVe, | = - (5-25)
0 0 0 1.091 O
I,
0o 0 ©0 0 2135
Ve,
ve. |
-1-10 0 o]l | [1
1 6-10 0 ||/ 0
0 1 0-10 ||V, |+]|0|W
00 1 0-1]/, 0
Ly
00 0 1 -1 0
Ve, |
Then M™!is
0468 0 0 O O
0 0917 0 0 O
M1i=| o0 0 0333 0 0 (5-28)
0 0 0 0917 0
0 0 0 O 0468

If we use (5-5) and (5-8), then the state-space matrices are




(o4}
i
O

-0.468 -0.468 0 0 0 0.488
, 0.917 0 -0.917 © 0 0 ’
A= 0 033 0 -0333 0 b=| 0 (5-27)
0 0. 0.917 0 -0.917 0
0 0 0 0:468 -0.468 0
From figure 5.1 and the ladder, we see that
Vo = VL‘5 . (5—28)
"so c and d are simply
cT=[00001] d=0 (5-29)

)

Also, it can be easily shown that the DC gain of the ladder is .5 so we should

scale ¢’ by our desired DC gain (1) divided by the DC gain of the ladder (.5).

Then ¢ becomes

cT=[00002] d=0 - (5-30)
Obtaining A and b as shown above may be called a matrix method of sclution.

An algebraic method to obtain these rnatrices for this example would

proceed as follows. We isolate the derivatives of the stales of equations (5-20)-

(5-24) so the equations appear as




sV, = —0.463V¢,—0.4681,,+0.468V; | (5-31)

sl = 0.917V¢,—0.917V¢, (5-32)
sV¢, = 0.333/;,~0.333/,, . (5-33)
sly, = 0.917V¢, ~0.917V¢, (5-34)
sVe, = 0.4681L4—c;.468vcs | (5-35)

From these equations, A and b can be directly written and are, of course, the

same as those obtained using the matrix method.

5.2.2 Third Order Non-Canonic Example

As an example of a non-canonic ladder, consider the third order low-pass

ladder filter in fig. 3.3 shown again in figure 5.3. It is normalized so that its
upper passband‘edge is at 1 rad/sec and its stopband begins at 1.4 rad/sec.
The passband has a ripple of 1 dB and the stopband minimum attenuation is 22
- dB. From these speéiﬁcations this ladder can be designed using a filter design
program or filter tables. We will design a state-space system where the DC gain

is 1.
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Lo
(0.6850)
R 70N
(1) | _-
: Ce o Y
J\{ (0.6048) | . o
O _
y : L .
() — Ca —— (1)
A C (1.(?3102) (1.6302) ‘ {
e A —- —

Figure 5.3 Third order lowpass ladder (same as in figure 3.3)

Only three states will be simulated since it is a third order filter. These

states are chosen to be Ve, 11, and Ve, The capacitor voltage in the resona_nt

tank is nolt simulated. The state equations are found by first writing 3 indepen-
dent equations involving the capacitor voltages and inductor currents chosen as

states. These equations are:

1

S'C{Vc1 = R
S

(Vi=Ve,)+sCo(Ve,~Ve )11, _ . (5-38)

SLEILa = Vcl" VCS (5-3?)
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SCSVC‘S = ’;—2}‘({/33)*}'502(1’0’-1}08)4']1,2 (5*38)

Next, all s terms are gathered on the left side of egch equation to give:

£

. 1
sV, (C1+C2)=sVe (Co) = 77— (Vi=Ve) =11, (5-39)
sl (Lz) = Ve,~Ve, (5-40)
- =1
“SVCI(C2)+S]’C3(CZ+CS) = -R—I-(VCG)"'ILz (5-—41)

Proceeding with the algebraic method to obtain A and b, we solve for sV, ,

sly, , and sV¢, treatirg the right hand side cf each equation as a constant. This

gives :

1
SVCI = V,'_ ['R—‘
s

. CotCa ” v [-1
1

Ce+a ”
(C1+C2)(Ca+Cq)—C? | Rs

(c 1"'62)(02‘*’03)“022

+1, ~Ca ] [—1

+V
(CH+C)(CotCa)-CE| 3Ry

' Ce H (5-42)

(C+C)(Ca+C3)~C2? |
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-1
Sle = VC’[Z!:]“VCE[LZ ] . (5—43)

Cs
(C1+C2)(CotCg)—Cg®

1
SVCa = V,; [—Rj—
s

Cy ]
(C1+Co)(CotCa)-CR2

|
ol |

L Y

C -
! = |+ Ve [ 1
(C1+C){(Ca+C3)-C2° 3[" L

(5-44)

C+C
+IL2 ! 2 ”

(C1+C)(Cat+Ca)-C2*

The above arc the state-space equations for the LC ladder of figure 5. when
Ve, is not simulated. Note that the above equations are fairly large for a general
third order low pass filter ladder. With a higher order, it is advantageous to
simulate a specific ladder (ie. known element values) and put in the element
values when first wrizing the equations. Subsrtituting in equations (3-42), (5-43),

and (5-44) the values for R,, R;, C1, Cs, C3, and L, gives the following equations.

sVe, = 0.4828V;-0.4828V¢ - 0.3521/,,~0.1306 1, (5-45)

sy, = 1.460V;,—1.460V¢, . (5-48)

sV¢, = 0.1306V;~0.1306V¢ +0.3521/;, ~0.4828V¢, , (5-47)
rom-theabove—eqgu: 77'7 <the stat 7:_7 Tace-TNaS TeesA—and b oo he—c3 - I‘ii.‘

ten as
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-0.4828 -0.3521 -0.1306 0.4828 ,
A= 1.480 0 —1.460 b= 0 (5-48)

-0.1306 0.3521 -0.4828 0.1306

Then using the same approach as in the canonic example to find ¢ and & we find
0

T={0| d=0¢ | (5-49)
2

If we wish to use the matrix method to find the state-space matrices, then
from equations (5-45)-(5-47), we substitute in the element values and write M, N,

and R. These are

2.235 0 -0.6048 f-1-10 1
M= 0O 0.6850 . O N=|1 0-1|R=]|0 (5-50)
-0.60458 O 2.235 D 1 -1 0

Then cne can easily find M~! to be

0.4828 0 0.1306 A
M= 0 1.460 O (5-51)
0.1306 0 0.4828 '

Using equations (5-5) and (5-8) one finds the same A and b matrices as when

using Lhe algebraic method.




5.2.3 Eighth Order Bandpass Filter Example

As a third example, recall the eighth order LC ladder of figure 3.1 which is

s

repcaled in figure 5.4.

Ls
2.035)
a. L, c ( ,
(1) (5.5069)(0.2594) £ b (o.a‘crfz'rz)
N || . Cs J‘ H v
T 11 (0.3145) | i °

g
Ca : l i

> (11.148) —— {L :
' . c, L
N - A R < o3

—_— e

Figure 5.4 Eighth crder bandpass ladder (same as in figure 3.1} -

We wish to design a state-space system from this ladder where the gain at

reflection zeros is one. Choosing to not simulate V¢, and V¢, eight independent
Cy Cs !

equalions may be written involving the eight chosen states. All of these equa-
tions are straightforward except for the loop equation involving /;,. For this
third equation, a loop equation is writlen around the third and fourth arm of

the LC ladder. This equation is

SLSIL3+VC3-I’C4 =0 ‘ . (5-52) .

but Vp, was not chosen as a state so il must'be eliminated frorn this equation. .




The voltage V¢, was rot chosen as a state so as to break up the culset involving
Ve Ve, Ve, and of course, Vi, We can then use this cutsel's information to find

a representation for Ve, which involves only voltages chosen as states. The

P

cutset's dependency is represcnted by

—]c2+1'(;3+]:(;4+fcs =0 . (5_53)

which is equivalent to

~sCaVg,+sCaV +sC Ve, +5CeVe, = O (5-54)

dividing through by "s', we obtain an equation which equals a constant. We lose

no information if we force this constant to be zero since the filter we are sirnu-

lating has at least one loss pole at DC. The equation which relates the voltages

involvcd in the cutset is fhen

Ce Cy Ce

s = ‘C‘;VC = Ve, ~7 Ve, (5-55)

;
Ve 2 (g Ca

Now, substituting the above equation into (5-54), the third state equation is

found.

The eight equatiors are

sLyly +ReIy Ve, +Ve, = Vi o ~ (5-56)
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sCoVe, 1, =0 ' (5-57)

sLafLa-F—g%ch- 1+§—:— VC;%VCB: 0 | | - (5-58)

SCaVe Hy Tz I+ sCo(Ve~Vo-Ve) =0 (5-59)

sLgly ~Ve Ve Ve, =0 (5-60)

sCeVe,~sCqVe,~I1g— ;C’ =0 : (5-61)
l

sCBVCe—ILS—scé(VC4—VCB— Ve, )=0 (5-62)

sLglp ~Vc,=0- (5-63)

Note that the third equation was obtained using the informalion from the

cutset of V¢, Ve, Ve, aud V¢, as shown above.

After substituting in the values of the capacitors, inductors and resistors in
the above equations and putting all the derivatives of the states on the left side,
the equations become: (In this example, five of the eighl equations are alrcady

in the correct form)




sy, = —-0.1816/; ~0.1816V,~0.1816V; +0.1816V, (5-64)
sV, = 3.855[;,, | | _; (5-85)
sl = —0.0414VCJ2.2895VC4+0.0534VCS (5-66)
sl = 0.4914V;,~0.4914V; —0.4914V,, A (5-67)
5(3.4955)V¢,—s (0.3145) Ve ~s(0.83145) Ve, = 1), =11~ 11, (5-68)
—5(0.314»5)I’c4+s {0.6487) Ve +s (0.3145)1{07 =1, (5-69)
5(0.3342)V¢,~s (2.763)V¢, = [1,+0.5297 Ve, | (5-70)
sl = 20777V, ‘ (5-71)

Using the equations involving sVg,, sV, and ch_; to solve for sVg,, sV¢,, and sV¢,

4!

gives

sV¢, = 0.2998/;,~0.29981;,,—0.1463/ ~0.0089V¢,~0.01651,, (5-72)
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sVe, = 0.13741;, ~0.1374], +1.3893/, +0.0838Vc,+0.15821, (5-73)

“

sVe, = 0.0166/,,~0.0166/, +0.1680/,,~0.1816Vc,~0.3428/,,, (5-74)

The state space matrices are then written as

0.1816 -0.1816 0  -0.1816 O 0 0 0 0.1816
3.855 0 0 0 0 0 0 0 0
0  -0.0414 0  2.2895 0 00534 O 0 0
A= | 02898 0  -02098 0  -0.1463 0 -0.0085 -0.0165 | b= 0
0 0 0 04914 0  -0.4914 -0.4914 O 0
0.1374 0  -01374 0 13893 O  0.0838 0.1582 0
00166 O  -0.6166 O 01680 0  -0.1816 -0.3428 0
0 0 0 "0 0 0 20777 0O 0

To find e, we note that Ve, is the same as V, so first

¢"=[00000010] =0 | ' (5-75)

We can find the gain of the ladder transfer function at a reflection zero using
fact that an LC ladder is designed to deliver maximum power transfer to the
load at reflection zeros. The maximum power that can be delivered to the cir-

cuit on the load side of R is

P = A - (5-76)

The power at the load is
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| Vo |?
R

Proad = (5’7?)

Equating the two, and substituting in the values of R; and R;, we have the follow-

£

ing

[Vil?2 Vo |?

4;25 = B‘,’l (5-78)
so at the reflection zero

v, |

lIV: I’ = 0.6870 - , (5-79)

Then, il we want to design our simulation so it has a gain of one at the reflection

1
0.687

“ zeros, we multiply c by to get

c"={0 000O0O0 14555 0| d=0 (5-80)

5.3 Scaling

The output signals of the integrators should be scaled to optimize the
dynamic range of the filter. The output of an integrator can be adjusted by
scaling all of its inputl resistors. Then so as to maintain the transfer function of

the filter unchanged, any resistor that the adjusted integrator is connected to,

- must-be inversely scaled. Iguivalent X in the state space 5¥51‘Pm can be

adjusted by multiplying the i'th row of A and b by a scaling factor and dividing



h
1
v}

" the i'th column of A and ¢ by the same factor, as shown in chapler 2.

'I‘wo.commonly used methods of scaling involve an L. norm and_an L, norm.
The filter is then scaled for_vdynamic rahge by finding the appropriate norm of
each integralor output, f,—(s), or equivalently tz]e n;;m of each capacilor vol-
tage and inductor current simulated. The state space system is scaled by divid-

ing the i'th row of A and b by state i's norm and multiplying the i’th row of ¢’

and the i'th column of A by the same norm. This scaling procedure results in
[|fill, = 1 which means that we can apply as large a signal at the input (as meas-

ured by the p-norm) as the integrator outputs can accommodate.

The L., norms of VCl- le, and Vfa of the filter of figure 5.3 are 0.68, 0.87, and

0.5 respectively. The L. scaled state space system of the above exainple is:

. -0.4828 -0.4505 —0.0961 0.7100
A=| 1.1410 0 -0.8390 b= 0 (5-81) "
-0.1777 0.6127 -0.4828 0.2613
0
=10 d=0
1

This filter circuit is shown in figure 3.10 and was obtained using the equations in

chapler 2.

The Ly norms of the same functions above are 1.01, 1.518, and 0.708 respec-

tively. The L; scaled state space system of this example is




-0.4828 -0.5292 —-0.0918 0.4791
A=]09713 0 -0.6826 b=| 0 (5-82)
-0.1859 0.7530 -0.48628 0.1845
0 -
¢l = 0 d=0
1.4163

54 Conclusions

Once the states have been chosen according to the guidelines in chapter 4
then we can use the procedures introduced in this chapter to obtain a state-
space system. From this system, a circuit can be easily realized by following

the procedure outlined in chapter 2.

Note that for a canonic ladder, we produce the same realizatiocn as that
which would be obtained through the use of the leap-frog (or SFG) method. This
realization for canonic ladders have been used extensively to simulate LC

ladders and is known to have very good sensitivity properties.

The state-space simulation of non-canonic ladders use the original ladder as’
their basis and require no reciprocators as in the case of a SFG simulation.
Also, no restriction is placed on the LC ladder prototype though if it is not a

doubly-terminated LC ladder, then the rule-of-thumb of chapter 4 may not

apply.
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Introduced in this chapler were two methods to obtain the state-space
matrices of a system which simulates an LC ladder. The matrix method is well-
suited to CAD filler de51gn as it can be easily programmed An algebrdlc

method was also prov1ded for the case where a de51gner requires few filters and

Py

does not have the use of a computer.




6. CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

Wc have shown that, through the use of state-space filter synthesis, canonic
realizations of LC ladders which maintain the low sensitivity properties of the
ladder are possible. The state-space filter emulates N element voltage or
current functions of the LC ladder, where N is the order of the desired transfer
function. II the ladder prototype is canonic, then the resulting filter is the
saine as that obtained with the Léap—Ffog or the SFG approach. If the ladder is
non-canonic, then the choice of the N states is important as the filler can
become unrealizable or have poor sensitivity and dynamic range properties.
Some insight and a simple rule-of-thumb were presented to assist one in mak-
ing this choice. The design methods of chapter four and five result in filters

which compare favorably with other filter designs which simulate ladders.

Perhaps the most important feature of state-space filters is thal their per-

formance c:':m be casily and accurately predicted. We saw in chap_ter 3 that the
sensitivity predictions agreed quite closely with results oblained experimen-
tally, including the effecl of finite op-amp gain: As well, experimentally meas-
ured output noise voltage of a filter was shown to agree closely with theoretical
prediction. Tllése experimental resulls are the first to be reported for state-

space filters.
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6.2 TFulure Resecarch

One area of considerable interest in industry today is the developmentl of
coxnputcr—aided design tools. There ié presently a demand for software pack-
ages which assist an engincer in designing filter's. There is an existing software
package, Filtor2, which can be used to design a passive ladder prototype. It
w;ould then be quite useful to write a user—friencily program based on the
method proposed in this thesis to obtain a scaled state-space system from the
ladder, given the choice of states Lo be simulated. This program might go a step

further and also produce a frequency scaled active RC circuit.

It‘ would also be beneficial to apply the state-space design technique of this
thesis to switched-capacitor (SC) filters. First though, one must find similar
building blocks for positive and negative strays-insensitive SC integrators. Also,
a practical requirement of present switched-capacitor filters is that the op-amp
. count be equal to or slightly larger than the order of the desired transfer func-
tion, N. A‘It is not clear that one would be able to keep the op-amp count that low
r_in a stale-space filter. The author believes that a technique similar to
capacitor-splitting might solve the op-amp count problem. Specifically, the
method would be to use the initial equations written to describe the ladder to ‘
oblain a circuit realization. In the eighth order ladder example of chapter 5,
these equations are (5-57)-(5-63). This approach would result in feed-in capaci-
tors to integralors resulting in less feedback and feed-forward circuitry in the
final circuit. A disadvantage of this approach is that many of the formulac of

chapter 2 no longer apply since the filler would not be in state-space form.
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High-frequency fillers may be implemiented in integrated circuils by using
simple in{égrators; with little or no feedback. The integrators would have very

good Irequency responses but would not be as precisc as integrators with a lot

N

of feedback, op-amp integralors. Since state-space filters are relatively insen-

sitive to integrator-gains, they are id eally suited to this type of application.

Another interesting area to pursue is thal of designing active high-pass
wckwards to design high-pass fillers using blocks which are
low-pass in nature, namely integrators. Perhaps a more sensible approach is to
realize active high-pass filters with differentiators. One can apply most of the
theory in chapter 2 to s;cate—space filters which use diflerentiators as building
blocks. As well, the method in chapter 5 need only be slightly modified to work

with a sy:"stern which contains differentiators rather than integrators.
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