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Abstract

Adaptive recursive filters are often implemented using direct-form realizations. In this
l
;.

thesis, adaptive algorithms are presented for state-space systems so that the performance of vari-

ous filter structures may be investigated. Through the use of simulations, it was found that much

faster adaptation rates and much improved round-off noise performance may be obtained using

structures other than direct-form when final pole locations can be estimated. Since the resulting

algorithms are gradient-based, where the gradient signals are obtained as the output of additional

fibers, both digital and anuZog adaptive recursive filters can be realized. A new or?honomZ

Zu&fer jiZter structure is presented which has some properties making it attractive for analog

adaptive filtering. Specifically, the structure is derived from a singly-terminated LC ladder and

has the properties that it is always scaled for optimum dynamic range and its integrator outputs

are orthogonal when white noise is applied to the system input. To demonstrate the practicality

of analog adaptive recursive filters using the methods in this thesis, experimental results from a

discrete prototype are given. As well, the design details and experimental results for a monol-

ithic realization of a continuous-time programmable filter is presented, thus showing the feasibil-

ity of practical fully integrated analog adaptive filters. Finally, the effect of DC offsets present

in analog implementations is investigated and formulae derived so that the these effects can be

estimated and reduced.
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Chapter 1

Introduction

1.1. Motivation

Adaptive filters have become an important tool for system designers. Presently, adaptive

filters are used as channel equalizers in high speed modems, echo cancellers on telephone lines,

and a variety of other applications. In fact, without the use of adaptive filters, the performance

of many systems would certainly be degraded. This degradation would mainly be a result of the

time varying characteristics found in many engineering problems.

A block diagram of an adaptive filter is shown in figure 1.1. There are two inputs to this

Adaptive
Filter

Figure 1.1: An adaptive filter.
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system, u(t) and S(f), where S(f) is often referred to as a re$ere~~ signd. Qualitatively, the

adaptive filter minimizes some measure of the error signal, e(f). In this way, the output of the

adaptive filter, y(t), becomes similar to the reference signal, S(f), and hence the term r@erence

signaL Note that if the adaptive filter could adapt its output instantaneously such that the error

signal is always zero, then the filter output y(f) would be equal to S(l). However, this is not

effect that one wants to obtain with an adaptive filter. In fact, although the adaptive filter minim-

izes the error signal, in many applications the error signal will not and should not go to zero. The

goal of an ideal adaptive filter is to force the error to be at a minimum only to the extent that a

fixed linear filter could also achieve assuming the charateristics of the input signals were time-

invariant. To achieve this goal, the adaptive filter’s transfer function varies slowly in com-

parison to the signals u(f) and S(f). In this way, once the adaptive filter converges, only the part

of the signals in u(f) and S(f) which are related by a linear transfer function are subtracted to

reduce the error signal. To illustrate this point, an example is given below of an echo canceling

application where the error signal should not go to zero. Finally, it should be noted that in an

adaptive filter system, the output is usually taken as either the error signal, e (f), or the filter out-

put, y (f). Alternatively, in some applications, coefficient values describing the transfer function

of the adaptive filter are the desired output.

Let us now consider one application of an adaptive filter to understand how one applies this

technology. A block diagram showing the application of an adaptive filter to an echo cancella-

tion problem is shown in figure 1.2. In this example, a 2-4 wire hybrid is used to convert two

pairs of wires carrying the receive and talk signals (referenced to telephone set B) to a single pair

of wires having both talk and receive signals on it. With an ideal 2-4 wire hybrid, there would be

no need for an adaptive filter. However, in actual implementations, there is always some amount

of receive signal which leaks through the hybrid on to the talk signal. This leaked receive signal
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Figure 1.2: An adaptive filter used in an echo cancellation application.

is referred to as an echo signal since the speaker on telephone set A will hear their own voice

after some delay through the system. Using an adaptive filter, as shown in figure 1.2, one can

reduce the amount of echo. The echo is reduced by the adaptive filter attempting to match the

filter output, y(t), with the “taIk + echo” signal. Since the signal y (t) is a filtered version of the

receive signal (hopefully uncorrelated with the talk signal), the only way to minimize the error

signal, e(t), is to match y(t) to the echo signal. In this way, the talk signal is sent on with a

reduced amount of echo signal. Note that for this example, one could actually replace the adap-

tive fiber with a linear filter if one knew the characteristics of the 2-4 wire hybrid. However, this

approach is not practical as the characteristics of the hybrid are not trivial to determine and

change with different telephone connections. For further applications of adaptive filters, the

reader is referred to Widrow and Stearns, 19851.

From the above example, we see that an adaptive filter can be thought of as a linear filter

which changes its transfer function over time in order to minimize some error criterion. Using
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the fact that a transfer function can be described in the frequency domain by poles and zeros, one

can classify adaptive filters into two types; Infinite-Impulse-Response (IIR) and Finite-bnpulse-

Response (FIR) adaptive filters. Adaptive FIR flters change only the zeros of the transfer func-

tion while adaptive IIR filters change both the poles and zeros of the transfer function’.

Presently, most adaptive filter implementations consist of the FIR type due to the speed of con-

vergence in finding a minimum and a guaranteed convergence to the minimum error. However,

to achieve a satisfactory performance with an adaptive FIR filter, a high order filter is often

required. In many applications, this order can often be significantly reduced by using an adaptive

IIR filter where both the poles and zeros of the filter’s transfer function are adjusted. However,

there are problems associated with adaptive IIR filters such as converging to a local minimum

and ensuring that the filter remains stable. Nevertheless, because of the reduction in filter order,

there is considerable interest in understanding and developing practical adaptive IIR filters. In

fact, although the theory behind adaptive IIR filters is not yet well established, there are some

applications where adaptive IIR filters are now being applied priksson and Allie, 19881

As well as classifying adaptive filters into IIR or FIR types, one can also classify adaptive

filters into two main implementation technologies; analog and digital. Digital implementations

are the most common method of adaptive filter realization where digital signal processing blocks

are used to realize the necessary programmable filters. This technology is especially suited for

programmable filters since filter coefficients realized with random-access-memory (RAM) are

easily changed. However, the use of digital signal processing blocks limits the types of applica-

tions to those that can be efficiently realized with digital technology. Specifically, it is well

known that analog filters can process much higher frequencies than digital filters. As well, in

’ Note that the transfer function of the filter in an adaptive FIR filter may be of the IIR type but only the zeros
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applications where no digitization is necessary except for filtering, analog implementations

require much less silicon area than the equivalent digital systems. Thus, there are applications

where analog adaptive filters are used to meet system specifications.

In table 1.1, a summary of the present theoretical base and implementation usage for the

different adaptive filter types is presented. This table indicates that the digital adaptive IIR filter

techniques are just starting to mature and that analog adaptive IIR filters are only very recently

being investigated. In fact, the analog adaptive IIR filtering results so far arc given only for

reasearch implementations IMikhael and Yassa, 19821. Thus, the main motivation of this thesis

is to find a practical implementation technique for creating anaIog adaptive IIR filters.

1.2. State-of-the-art review

Historically, one of the first digital adaptive IIR filter algorithms in the signal processing

literature was presented in a 1975 publication mite, 19751. This algorithm used a gradient

Technology

Digital

Analog

Adaptive filter type

RR IIR

Well established theory Growing theory base
and most common and some

implementation method implementations

Well established theory Very little theory
and mostly high and only few research

speed implementations implementations

Table 1.1: The theory base and usage of different adaptive filter types.
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based approach applied to a direct-form filter in order to update the filter coefficients so that an

error minimum could be located. However, one of the main disadvantages of this algorithm is

that many computations are required to compute the necessary gradients. In 1976, a new algo-

rithm was presented lFeintuch, 19761 that significantly reduced the computations required to

adapt an IIR direct-form filter. Although this algorithm has been criticized [Johnson and Lari-

more, 19771 lWidrow and McCool, 19771 and examples found where it does not converge ILari-

more et al., 19801, it has recently been used in an industrial application because of its simplicity

msson and Allie, 19881

A different approach to adapting IIR direct-form filters was presented in [Larimore et al.,

19801 where hyperstability theory is applied. This hyperstability approach can guarantee con-

vergence to a global minimum if a certain strictly positive real condition is met. Unfortunately,

ensuring that this condition is met is not a trivial matter.

The one common point between all the algorithms discussed so far is that they have been

derived assuming a direct-fom digital filter. Since this type of filter is known to be very poor in

analog implementations, it would be desirable to find algorithms which do not rely on this struc-

ture. In the digital literature, algorithms exist for adapting the lattice IIR structure [Parikh et al.,

19801 [Ayala, 19821, however, these algorithms require significant calculations to compute gra-

dients and it is not clear how one would convert these algorithms to an analog equivalent. As

well as the lattice structure, an algorithm was presented for adapting digital biquad IIR filters

[Martin and Sun, 19871. While the work was performed independently, the algorithm in this pub-

lication is quite similar to this author’s approach in that sensitivity filters are used to obtain the

necessary gradients to adapt structures other than direct-form. However, whereas this author’s

approach applies to state-space structures, the algorithm in [Martin and Sun, 19871 is intended
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for biquad structures.

With respect to analog adaptive filtering techniques, implementations presently exist for

high frequency applications [Qureshi, 19851 rreichler et al., 19871. As well, papers have

recently been published concerning new analog realizations of adaptive filters Lev-Ari et al.,

19871. However, the usual approach has been to use analog delay lines and adapt only the zeros

of the transfer function. With the use of analog delay lines, much of the work in the digital FIR

literature can be readily applied; however, integration of a complete adaptive system becomes

quite difficult. As well, adapting only the zeros in an analog system can lead to high order sys-

tems, as discussed above. While in digital systems, orders as high as 200 can be realized, these

high orders are often too large for an analog implementation.

With respect to analog IIR filters, this author has seen only one publication which presents

a possible technique for implementation [Mikhael and Yassa, 19821. In this publication, both

the poles and zeros are adapted using a sequential-linear-search algorithm that can be described

as simply changing a filter coefficient and then measuring the change in the output error RMS

voltage. If the error voltage decreases, the coefficient is left at that changed position while if the

error increases then the coefficient is changed in the opposite direction. Although this is a sim-

ple technique, there is a serious drawback in that small changes in error RMS voltages must be

observed while the absolute value of the error voltages might be large. Thus, the algorithm

requires an extremely accurate RMS measurement of the error signal which is difficult to obtain.

1.3. Outline of thesis

In chapter 2, necessary background material is presented. Notation and terms are defined

as well as presenting some adaptive filter theory. Also in this chapter, a brief introduction to

ctate-cm-we them-v is uiven
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Chapter 3 describes a filter structure having some useful properties for fixed or adaptive

filtering. This new structure was first obtained in ISnelgrove, 19821 by performing a Gram-

Schmidt orthogonalization procedure on companion-form filters. Although no proof was given,

it was conjectured that the structure would always have orthonormal states. In chapter 3 of this

thesis, it is shown that this conjecture is true and design equations and sensitivity results are

given showing the ease of design and the usefulness of this new structure.

State-space adaptive IIR filter algorithms are presented in chapter 4. It is shown in this

chapter that general state-space structures can be adapted using extra filters to obtain gradient

signals. It is also shown that one can adapt a single column or row of a state-space filter and

therefore reduce the number of extra gradient filters to one. These single row or column adap-

tive filters are shown to have superior convergence properties as compared to direct-form filters

in oversampled applications where one can estimate the final pole locations. At the end of

chapter 4 is an appendix giving a design procedure to obtain a “quasi-orthonormal” digital filter

for oversampled applications.

Chapter 5 presents experimental results for a discrete prototype which demonstrates that the

algorithms in chapter 4 can successfully be converted to the analog domain. As well, the design

details for a monolithic programmable continuous-time filter are given along with experimental

results for a fabricated device.

It was found during experimentation with the discrete prototype that DC offsets are a seri-

ous concern with analog adaptive filters. In chapter 6, formulae are developed giving the

coefficient error and excess mean squared error due to DC offsets. Also in this chapter are some

experimental results, obtained on the discrete prototype, verifying the usefulness of these formu-

lae.
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Finally, conclusions and future work are presented in chapter 7.



Chapter 2

Background Theory

This chapter will present the necessary background material for a proper understanding of

the remaining chapters. The notation used throughout this thesis will be described in the first

section with the following section presenting some signal processing definitions concerning the

terms expectation, correlation and norm. The important aspects of adaptive filter theory relating

closely to this thesis work are presented in section 2.3. Finally, section 2.4 will present a review

of state-space theory where, again, only the material closely related to this thesis work will be

described.

2.1. Notation usage

In order that the reader can more readily follow the material presented in this thesis, under-

standing the notation usage is important. This notation has representations for continuous and

discrete time functions and their transforms as well as vectors and matrices.

The notation usage is the following: Continuous-time functions are represented by lower-

case letters and are functions of a variable (eg. x(r)). The Laplace transform of a function is

written using uppercase letters and is also a function of a variable (eg. X(S)). With a similar

lowercase and uppercase convention, discrete-time functions and their Z-transform are

represented (eg. x(n) and X(z)). Although continuous and discrete time functions and their

transforms use the same notation, no confusion should arise since only one domain is assumed at

any time throughout this thesis. A set of functions is often written as a vector which is

represented using a bold typeface (eg. x(l)). Vectors and matrices are also represented using a
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As well, vectors are represented using lowercase letters while uppercase

letters are used for matrices (eg. A). Table 2.1 below summarizes the above rules using exam-

ples.

X(f) --- continuous-time function
x(rl) --- discrete-time function
X(s) --- Laplace transform of x (?)
X(z) --- Z-transform of x (n)
x(r) --- vector of continuous-time functions
X(s) --- vector of frequency functions
C --- vet tor
A --- matrix
Xi(f) --- the i’th element of vector x(l)
ci --- the i’th element of vector c
Aij --- the element in the i’th row and j’th column of A

Table 2.1: Examples of notation usage.

2.2. Expectations, correlations and norms

Throughout this thesis, concepts such as expectation, correlation and

important. As well, signals may be of one of two types: finite energy or

norms of signals are

finite power. In this

thesis, finite energy signals result from system impulse responses and are therefore deterministic

signals. However, power signals, in this thesis, result from a noise source being applied to a sys-

tem and are therefore non-detexministic signals. Specifically, power signals are node signals of a

system when a noise source is applied. We now proceed to give some meaning to the concepts

of expectation, correlation and norm. Note that all time signals are assumed to be real valued.
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2.2.1. Finite power signals

In this section, all signals are assumed to be finite power signals. The aforementioned con-

cepts will be defined for the ergodic case where time averages may be substituted for ensemble

averages. It should be pointed out that many signals involved in an adaptive filter will not be

ergodic even with ergodic inputs since we are dealing with a time-varying system. However, in

practice, if the system is varying slowly then the short term average of a signal in a time-varying

system at time ll will approximate the long term average of the equivalent signal in a time-

invariant system whose system coefficients match the time-varying system coefficients at time

fr. So, although the definitions to be presented are not strictly correct for the time-varying case,

they still give some physical meaning to the concepts of expectation, correlation and norms.

We write the expectation of the signal x as E [x. 1. In the discrete-time case, the expectation

is defined as

E [x] E lim
N_ki$x(~)

whereas for the continuous-time case

T

E [x ] G lim 1 J x (f)dl
T-F 2T _T

(2.2)

The inner product or correlation between two signals x and y is written as E [XJJ 1. For the

discrete-time case, this correlation is defined as

and in the continuous-time domain

T

E [xy] I lim -!- Jx(r)y(l)dl
T-w 2T _‘r

When E [xy ] = 0, the two signals are said to be orthogonal or uncorrelated.

(2.4)
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Another useful definition is the norm of a signal. The norm of the signal x is written as bip

where the subscript P denotes that the norm is defined for a power signal. This definition should

not be confused with the general p’th norm of a signal. This power norm is defined as

(2.5)

and is simply the root mean squared @MS) value of the signal. The norm squared is also

referred to as the mean squared value. Note that this norm assumes the power signal is not a

finite-energy signal.

2.2.2. Finite energy signals

In this thesis, we also require the concept of correlation between transfer functions or,

equivalently, finite energy signals. These definitions are only required in the continuous-time

domain and therefore will only be defined in that domain.

First, we shall define the norm used for finite energy signals and fkom that norm, define the

concept of correlation between two transfer functions. We define these energy norms in such a

way as to be useful in predicting power norms.

Consider the system shown in figure 2.1 where the input is a white noise signal with a spec-

V2
tral density of l-

rad/s -
Choosing to define the norm, iF(s)l~, of the transfer function F (s) as the

output RMS voltage resulting from this white noise input signal, one can use the Wiener-

Khinchine theorem [Ziemer and Tranter, 19761 to show that’

This norm definition leads naturally to the following correlation definition. The correlation

’ This integral is finite for the practical case of stable, strictly proper rational F (S).
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V2
- 0

= 2lr-
Hz

=27r j [IqJ)~2u!!

Figure 2.1: System used to define energy sTgna.l norm.

between two transfer functions, F 1 (s) and p2(s), written as <Fl (s),F2(s)>  is defined as

which by Parseval’s relation, equals the inner product in the time domain given by

(2.7)

where fr(l) and fz(l) are the impulse responses of the two transfer functions. As before, if

<f r (f),fz(f)> ecluals zero, we say the two transfer functions are orthogonal.

Finally, we would like to determine what the correlation between two transfer functions

implies. Towards this goal, consider the system shown in figure 2.2 where a noise signal, u(f),

is used as the input to two systems with impulse responses f 1 (r) and fz(t). The correlation

between the two output power signals, x l (t) and x2(r), is found from

T

E[X~X~I E lim -L Jxl(f)xz(t)dt
T-w 2T _T

cw

(2.10)

where @ denotes convolution.
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Figure 2.2: System used to show that white noise into orthogonal
transfer functions creates orthogonal output signals.

Using some manipulations between expectation and correlations [Ziemer and Tranter,

19761, the following equation can be derived.

(2.11)
0

where &(r) is the autocorrelation of the input signal, u(t). In the case where the input signal

has an autocorrelation function equal to an impulse (white noise), the above correlation reduces

to

(2.12)

Thus, orthogonal finite power signals can be obtained from a white noise input signal and

orthogonal transfer functions.

2.3. Some adaptive filter theory

This section will present some background theory concerning adaptive filters. Only the

basic theory that pertains to the material in this thesis will be presented. For a more thorough

description on adaptive filter theory, the reader is referred to IWidrow and Stearns, 19851 and
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[Treichler et al, 19871.

A block diagram of a discrete-time adaptive filter is shown in figure 2.3. The filter is pro-

grammed by adjusting its filter coefficients, {pi]. The output of the programmable filter is sub-

tracted from a reference signal, s(n), to create an error signal, e (n). The adaptive algorithm uses

the error signal and filter states to adjust the filter coefficients in such a way as to minimize the

norm of the error signal. This error norm can be thought of as an error performance surface

mapped out by varying all the filter coefficients. Thus, the adaptive algorithm attempts to find a

minimum in the error performance surface by adjusting the filter coefficients.

An approach to finding a minimum in a performance surface is to use the method of

steepest descent. Applying this method, each filter coefficient is updated independently and, as

WQ Programmable
Filter

to adjust
Filter
Coeff
{Pi3

Signals

I I Adaptive

Filter
States

Algorithm
u

Figure 2.3: Adaptive filter block diagram.
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the name suggests, the surface is traversed in the direction of steepest descent. To find a

minimum in

coefficient is

where p is a small positive step size parameter which controls the rate of convergence. Unfor-

the error performance surface, the steepest descent update equation for the i’th

written as:

(2.13)

tunately, it is usually difficult to obtain the partial derivative term involving the mean squared

error. To circumvent this problem, the least-mean-squared (LMS) algorithm was developed

widrow and Hoff, 19601. With this approach, the instantaneous error squared signal is used to

approximate the mean squared error. Substituting in the formulae for the error signal,

e (n) = S(n) - y (n), and using the fact that the reference signal is not a function of the parameter,

pi, the following LMS update equation is obtained.

?dn)
Pitn+l) =Pi(n) + zp(n)-

aPi
(2.14)

Although in this equation there are no explicit expectation operators, the expectation operation is

performed over time during adaptation of the parameter pi assuming a small step size, p.. Thus,

although the instantaneous gradient may often point in the wrong direction, on average it will

point in the correct direction and the adaptation path of the coefficients will follow the line of

steepest descent.

Although this thesis will present methods to adapt both the poles and zeros of an adaptive

filter, let us look at the well-known special case where only the zeros of a transfer function are

adapted using a linear combiner as shown in figure 2.4. By looking at the reduced problem of

adapting only zeros, some insight can be gained regarding the adaptive LMS algorithm.
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Fixed
FiIter

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

\

:..............................................

Figure 2.4: A linear combiner adaptive filter

The programmable filter in figure 2.4 consists of both the fixed filter and linear combiner

where the fixed filter has one input and N independent outputs. In many implementations, the

fixed filter is simply a tapped delay line resulting in a programmable filter which is simply an

FIR transversal filter. One reason for the great interest in adaptive linear combiners is that the

error performance surface is quadratic and therefore has only one minimum which is easily

found using the LMS algorithm The output of the programmable filter, y (n), can be written as

(2.15)
i=l

Therefore, the partial derivative of y (n) with respect to pi is simply Xi(n). This fact leads to the

following update equation for the coefficient pi,
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PiCn+l) =PiCnl+ WJ? C~hC~l
equation are readily available as system signals

are only multiplications and additions required.

(2.16)

in the adaptive

This fact is the

n that the LMS algorithm is the most popular adaptive filter algorithm.

The LMS algorithm can be extended into the analog domain quite naturally IWidrow et al,

19671. Assuming an analog adaptive linear combiner, the update equation for the multiplying

coefficient pi is simply
f

A tapped analog delay line is often used to obtain an independent set of states, xi(l) from a single

input.

2.3.1. Why orthonormal signals are good

An orthonormal set of signals is a set where the norms of all the signals in the set are the

same and the correlation between any two different signals is zero. This section will investigate

the effect of different sets of input signals on the linear combiner. What will become apparent is

that the cross correlations of the input signals, Xi(n), affect the convergence performance of the

adaptive filter. To quantify this effect, an input correlation matrix R is defined as

Wl~ll mP21 . . ~blJw1

W2d 4W2~21 . . W24vl
R=E[xx’]= . . . (2.18)

E [xix11 E [xix21 : : E [x;xN]

With this definition, the element Rij ec~uals the correlation between the states Xi(n) and Xj(n).

The diagonal elements of R are simply the mean squared values of the states. It is not difficult to

show that R is positive semidefinite and therefore all the eigenvalues are greater than or equal to

zero. In fact, for most well behaved problems all the eigenvalues are greater than zero. Defining
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& and & to be the minimum and maximum eigenvalues of R, respectively, one can show

that these two numbers help in determining the convergence properties of the adaptive filter.

Specifically, if the LMS algorithm is modeled as though the true gradient is followed rather than

the noisy instantaneous one, it can be shown that the step size parameter, p, must be bounded to

guarantee convergence. This bound is determined by &,,= as

oqtc-
2ax

(2.19)

The step size p must be larger than the lower bound in order to adapt while F must be smaller

than the upper bound for the algorithm to remain stable. As well, it can be shown that the

minimum eigenvalue determines the time constant, z, for overall convergence of the coefficients

iYPiI.

(2.20)

Therefore, if one chooses p to be a fraction, a, of the maximum value which guarantees conver-

gence,

(2.21)

then

1  Lax
T=s& (2.22)

This equation indicates that for a constant proportion CX, all the eigenvalues should be equal for

the shortest time constant. The identity matrix has such a property. Therefore, if R equals the

identity matrix, good adaptation properties are obtained. Note that an input correlation matrix

corresponding to the identity matrix implies that the set of input signals constitute an orthonor-

mal set.



For a more physical interpretation of the above rest&s, consider the contour plots of the

performance surfaces shown in figure 2.5. For those readers who are unfamiliar with con-

plots, a contour plot is a method of showing a 3-dimensional surface. Two of the axes are in

surface of the page with the third axis coming straight out of the page. The contour lines are

ly lines of equal height in the third axis. Therefore the steepest descent path at a point on a

eontour line is perpendicular to the tangent at that point. As well, a measure of the steepness of

the steepest descent path can be determined by the distance that the contou.I. lines are apart along

that path. (This assumes that the contour lines are at regular intervals along the third axis.) In

figure 2.5, linear combiners consisting of assumed with variabletwo inputs are multiplying

21

coefficients p 1 and p 2. The minimum error is obtained when p 1 = p 2 = 0 or, equivalently, at the

P2

example adaptation pa

Non-orthonormal states

example adaptanon patVL+/

Orthonormal states

b,k %S Figure 2.5: Contour plots of two performance surfaces (minimum error is at origins).
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origin2.  For the orthonormal example, the contours are circles while the non-orthonormal case

has elliptical contours. In fact, the non-orthonormal example shown has orthogonal states but

the norms of the states are not equal. A non-orthogonal example will simply have the ellipses

tilted so that the principal axes of the ellipses do not line up with the coefficient axis. What is

seen from figure 2.5 is that in the orthonormal example, the gradient always points towards the

minimum. Therefore, if a steepest descent algorithm is applied to some starting point where

1~ 1 I= ip 2 1, both coefficients will approach 0 at the same rate. In contrast, if the same condi-

tions are applied to the non-orthonormal example, the coefficient p2 will converge must faster

than the coefficient p 1. Thus, for this case, the steepness along the p 1 axis dominates the con-

vergence time while the stability of the algorithm is determined by the steepness along the ~2

aXiS.

Concluding this section, we have shown that an orthonormal set of states is desirable for a

good adaptation convergence rate.

2.3.2. Adaptive IIR filters

Adapting the poles of an adaptive filter as well as the zeros adds several complexities to the

system design. Some of these complexities will be discussed in this section.

First, in contrast to the adaptive linear combiner, the error performance surface can have

many minima. Therefore, a steepest descent algorithm may find a local minimum rather than the

global minimum. Fortunately, there appears to be a large class of applications where the perfor-

mance surfaces of adaptive IIR filters have only one global minimum [Stearns, 19811. In the

above reference, although no proof was found, it is conjectured that if the order of the adaptive

’ Note that this is a degenexate case where the output signal is 0 when the the coefficients are at the minimum
point. However, this case still indicates the berkfits of an orthonormal set.
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filter is greater than or equal to the system being modeled, then the error performance surface

will have one global minimum.

Another concern with adaptive IIR filters is that the algorithm may try to place poles of the

programmable flter in the instability region. For this reason, some method is usually required to

ensure that the coefficients of the programmable filter are always chosen such that the filter is

stable. This can be accomplished by choosing filter structures having simple stability checks.

Finally, it should be pointed out that obtaining the gradients for adaptive IIR filters is not as

simple as in the FIR case. In fact, one of the first approaches to adaptive IIR filters white,

1975][Steams et al, 19761 required approximately N times the computations of the programm-

able filter (where N is the programmable filter’s order) to obtain the gradients of the coefficients.

This complexity was significantly reduced in an algorithm where the gradients were approxi-

mated veintuch, 19761. Unfortunately, with this gradient approximation there is no guarantee of

converging to any minimum. Finally, it should be mentioned that there are other approaches to

adaptive IIR filtering than gradient-based approaches. One example is the SHARF algorithm

more et al, 19801 where hyperstability theory is utilized but has limited applications

because it relies on a strictly positive real condition which is difficult to guarantee without know-

ing a great deal about the application.

2.4. State-space theory

If one wishes to build a system with a given linear time-invariant transfer function using

only ideal integrators and summing blocks, there are an infinite number of realizations which

would result in the given transfer function. However, not all realizations would have the same

performance when constructed with actual components. Therefore, we require simple formulae

allowing us to investigate the filter’s performance when realized with different structures.
t3
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State-space system theory has such formulae and is well established in the control and signal

processing literature. Thus, using implementations having a close relationship to state-space

systems, we can benefit from the wealth of analysis tools available for state-space systems.

2.4.1. State-space system description

An N’th order state-space linear time-invariant system is described by the following equa-

tions:

xX(s) = AX(s)+bU (s) (2.23)

Y(s) = cTX(s)+dU (s)

where U(s) is the input signal; X(s) is a vector of N states, which in fact are the integrator

puts; Y(s) is the output signal; and A, b, c, and d are coefficients relating these variables.

transfer-function of the above system is easily shown to be

out-

The

T(s) = &I-A)-’ b + d (2.24)

From equation (2.24) above, we can see that the poles of the system are included in the eigen-

values of A and therefore are determined by only one system coefficient. However, the zeros of

the system are related to all four of the system coefficients.

To obtain more insight into state-space systems, two sets of intermediate-functions need to

be defined ISnelgrove and Sedra, 19861. The first set of functions, F(s), is defined as the

transfer-functions from the system input to the output of each of the integrators,

(2.25)

This definition leads to the formula

F(s) = (sI-A)-’ b (2.26)

The second vector of functions, G(s), is defined as the set of transfer functions from the input of
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each of the integrators to the output. Thus if we inject a signal Q(s) at the input of the i’th

integrator, then

(2.27)

Using this definition we have

G=(s) = &I--A)-’ (2.28)

A transformation that will prove useful throughout the remainder of this thesis creates a

new system which exchanges the two sets of intermediate-transfer functions [Jackson, 19701.

Specifically, given a system, [A,b,c,d] with intermediate-transfer functions, F(s) and G(s), we

can create a new system such that

F-(s) = G(s) and G-(s) = F(s) (2.29)

by arranging that the coefficients of the new system are related to those of the original system by

A,_=A= b-=c cm=b d-=d (2.30)

This result can be easily verified using the formulae in equations (2.26) and (2.28) above. We

shall refer to this new system as the transposed system of the original system3.

2.4.2. Sensitivity equations

Sensitivity formulae relating the change in the transfer-function to changes in the system

coefficients will be presented in this section. These formulae can be derived using the formula

flab
- = TmTti
flmrl

(2.3 1)

where Tij is a transfer-function from point i to point j in a system. An elegant derivation of this

formula is presented in ISnelgrove and Sedra, 19861.

’ The tranposed system is often referred to as the adjoint system in the circuit literature.
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Using equation (2.31), it is not difficult to find the following sensitivity formulae relating

the change in the transfer-function to changes in the system coefficients.

gtsl z $
T(s)

where LS* is the classical sensitivity measure defined as

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

These simple formulae will prove invaluable to us when an adaptation algorithm for IIR

filters is proposed.

2.4.3. Correlation matrices

It is often useful to know the correlation between intermediate-functions. Note that these

functions are of finite energy if the input is of finite energy and A is stable, therefore we use the

above definitions of correlation and norm for finite energy signals. We now define two correla-

tion matrices. The first matrix, K, is defined as

Kij = CFi(S),Fj(S)>

whereas the second matrix, W, is defined as

(2.37)

Wij = <Gi(S),Gj(s)> (2.38)

Note that the diagonal elements of K are the squared norms of the intermediate F(s) func-

tions. Therefore, if K equals the identity matrix, I, the intermediate F functions constitute an

orthonormal set of functions. Systems that have K = I will be called orthonormal systems. Note
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b.
i!
1

that there is a similar relationship between the W matrix and the G(s) functions. These correla-

1 tion matrices will prove useful in finding an “orthonoxmal” ladder structure presented in chapter

i 2.5. Summary

In this chapter, the notation usage and the concepts of expectation, cotrelation and norm

&
8 were explained. Also, some adaptive filter theory was presented. In particular, the steepest des-

c cent LMS algorithm was described along with one benefit of orthonormal signals. As well, some

i difliculties associated with adapting IIR filters were described. Finally, some state-space back-
*

ground theory was presented including the definition of intermediate-functions and a transposed

system where the intermediate-functions are exchanged. Sensitivity equations were also

presented for the system coefficients. The state-space section ended with a definition of the

correlation matrices K and W.



Chapter 3

Orthonormal Ladder Filters

3.1. Introduction

This chapter will present a new continuous-time state-space filter structure which has some

interesting properties that are useful in the design of both adaptive and fixed filters. We call the

filters with this new structure “orthonormal ladder filters.” The name of this new structure is

derived from two of the properties that are inherent to the structure. One property is that all the

state signals are orthogonal when white noise is applied to the input of the filter with the norms

of each of the state signals being equal. Such a property implies that the set of state signals are

an orthonormui set. The other property inherent to this structure is the fact that the state signals

are scaled versions of capacitor voltages and inductor currents of a singly-terminated ludder

when the input is applied to the terminating resistor. The fact that the integrator outputs are

orthogonal with a white noise input is useful when applied to an adaptive linear combiner, as

was described in chapter 2. The close relationship to singly-terminated ladders allows a simple

synthesis procedure and a trivial stability check. Recall from chapter 2 that a simple stability

check is useful in adaptive IIR applications.

Although the material in this thesis is mainly concerned with the design of adaptive filters,

orthonormal ladder filters are also useful in the design of fixed filters. For this reason, much of

the material presented in this chapter will focus on the design aspects of the structure to a known

transfer function.
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One of the more interesting properties of orthonormal ladder filters is the fact that the

resulting circuits are inherently scaled for optimum dynamic range. Moreover, an L2 norm is

used in dynamic range scaling as opposed to an L_ norm. An L2 norm is equivalent to the norm

for finite energy signa.ls defined in chapter 2. Simply stated, L2 scaling implies that the output of

each integrator will have the same RMS value when white noise is applied at the filter input. In

contrast, L_ scaling ensures that all integrator outputs will obtain the same peak voltage when a

swept sinusoid is applied at the filter input. The issue of the relative merits of L2 and L_, scd-

ings is controversial. L_ is often used in analog systems while L2 scaling is widely used in digi-

tal systems. L2 is more realistic in many applications in the sense that it deals with inputs hav-

ing a broadband spectrum (eg. speech) rather than sinusoids. However, L2 scaling is less con-

servative in that it could cause clipping with sine-wave inputs in high-Q cases. In spite of this

fact, it is felt that L2 scaling covers a more general class of fYters than

scaling is relatively difficult to apply to a cascade of biquads, the actual

ladder filters ensures optimum dynamic range scaling with an L2 norm.

L _. Note that while L2

structure of orthonormal

Another useful property of orthonormal ladder filters is the ability to realize any stable

transfer-function. Arbitrary poles are realized using the ladder feedback structure while transmis-

sion zeros are realized using an output summing stage. While output summing is often avoided

in practice because of fears of poor stopband sensitivity properties, it will be shown that an

orthonormal ladder filter (including, of course, the output summing stage) has a sensitivity per-

formance comparable to a good design based on cascading biquads. Additionally, since for a

given transfer-function the orthonormal ladder realization is unique, the design procedure is

more easily automated than the process of finding an optimal biquad cascade design where

pole-zero pairing and cascade ordering are important [Sedra and Bracket& 19781. As well, in

implementations where an output summing stage is difficult to realize, it will be shown that the
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output summing stage can be replaced by using feed-forward to each of the inputs of the integra-

tors.

State-space orthonormal IIR filter structures are well known in the digital filter literature

[chapter 10, Roberts and Mullis, 19871. One of the reasons for their use is that overflow oscilla-

tions are impossible in these digital filters. However, their main disadvantage is that their struc-

ture is fairly dense. Fortunately, the structure for continuous-time orthonormal ladder filters is

quite sparse.

For an orthonormal filter, the state correlation matrix, K, is the identity matrix. Therefore,

a simple formula is required relating the state correlation matrix and state-space system matrices

in order to find orthonormal systems. We derive such a formula in section 3.2. Although this

formula is well known in the control literature, it is derived here to emphasize its physical

interpretation. Though there are many structures for orthonormal systems, this chapter deals

with one in particular, the orthonormal ladder filter described in section 3.3. In this section the

synthesis procedure for orthonormal ladder filters is described using the relationship of the struc-

ture to singly-terminated LC ladders. In section 3.4, a very simple stability test for orthonormal

ladder filters is presented and in section 3.5, an example of an orthonormal ladder design is

given. Finally, section 3.6 presents a sensitivity and dynamic range comparison between designs

based on orthonormal ladder filters, operational simulations of doubly-terminated LC ladders,

and cascades of biquads.

3.2. State-correlation matrices and the Lyapunov equation

We have, from chapter 2, that the state-correlation matrix K is defined as
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which, by Parseval’s relation, equals the inner product in the time domain given by

(3.2)

The vector of functions F(s) is defined as

F(s) = @I-A)-’ b (3.3)

and taking the inverse Laplace transform of F(s) to obtain a vector of impulse responses, f(t),

one obtains

f(f) = ebb

Substituting equation (3.4) into (3.2), we can write the matrix K as

K = 2xj.i+bbTeArfdf
0

Differentiating the integrand, we find

dCeAfbbTeArrl = AeArbbTeArt + eAtbb+4rrAT
df

Integrating both sides of equation (3.6) from 0 to =, results in

(3.4)

(3.5)

(3.6)

Assuming the A matrix results in stable systems, the left side becomes -bbT while the matrix K

can be substituted into the right side. This leads to the following Lyapunov equation.

AK+KAT+2nbbT=0 (3.8)

This equation allows one to find the correlation matrix, K, given the system matrices, A

and b. Note that the correlation matrix, K, is called the controllability grammian in the control
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1
f

literature [Brockett, 197O][Chen, 19841 and that a similar equation is obtained in the discrete-

time domain [Roberts and Mullis, 19871.

It should be pointed out that the Lyapunov equation (3.8) above can also be used to test the

stability of the A matrix. From the control literature, it can be shown that the matrix A is stable

if the matrix K is positive definite and the positive semidefinite square root of bbT together with

A is observable [Wonham, 19851. Since in orthonormal systems, K is the identity matrix (I is

positive definite), one need only check that the observable constraint is satisfied to determine the

stability of A. Although this fact is not explicitly used in this thesis, it could be used to check

the stability (and hence usefulness) of orthonormal structures other than the one described in this

chapter.

Before leaving this section, it should be noted that a similar relation can be found between

the W correlation matrix and A and c. This relationship is

3.3. Orthonormal

ATW + WA + 2mcT = 0

ladder filter synthesis

09

As previously mentioned, orthonormal systems are obtained when K is the identity matrix.

Therefore, substituting in I for K in equation (3.8), we have the following equation that must be

satisfied for an orthonormal system.

A + AT = -2rtbbT

Consider the state-space structure whose A and b matrices are given by

(3.10)
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A =

0 a1
-1 0 a2

-2 0

0

0 l

.

. il aN-1

-w-l -aN

b =

0 -
0

(3.11)

where all cti’s are greater than zero. The A matrix is tridiagonal and is very nearly skew-

symmetric except for the single non-zero diagonal element. The b vector consists of all zeros

except for the N’th element. This system satisfies equation (3.10) and is therefore an orthonor-

mal system regardless of the actual element values. We call the above system an orthonormal

ZU&T system for reasons which will become apparent shortly.

For the above system to be a useful design structure, a procedure is required to place the

eigenvalues of A, or equivalently the poles of the system, at positions in the left-half plane dic-

tated by the filter transfer-function to be realized. With this goal in mind, we find that the above

structure is very similar to that of the state-space description of a singly-terminated LC ladder

filter where the states are defined to be the inductor currents and capacitor voltages. For the even

order case, the singly-terminated ladder is shown in figure 3.1 below. Here, the resistor value is

defined to be 1 !2 without any loss of generality. As well, reactive components are labelled ri

where ri is either the capacitor or inductor value. The matrices A and b of the state-space

description of the ladder in figure 3.1 are found to be
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Rs = 1

vi

m ~**“*om:-r$~~

N

- 1 ;3z;32

Figure 3.1: A singly terminated ladder and its states

A =

0 1 0 ’
r1

-1 o 1-
r2 r2

zi 0
r3

. . .
1

. 0 -
rN-1

0 -1 -1
rN rN a

b=

.

0

0

0

.

0

1

%’ .

(3.12)

We can transform the above system to that of the orthonormal ladder system with the structure

of equation (3.11) by an appropriate scaling of the system states. Scaling the i’th state of a sys-

tern by a factor pi results in the i’th row of A and b being multiplied by pi and the i’th column of

A divided by fii. Using this fact, the required scaling factors, pi, are found to be

(3.13)

It should be noted that this scaling process does not change the system poles. Scaling the state-

space description of equation (3.12) and comparing the result to the system in (3.11), we find the
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following relationship between the elements of the orthonormal ladder system and the reactive

components of the LC ladder:

L 1
1

1 -Z-
lSi&

riri+l
(3.14)

Recall that our goal is to be able to place the poles of the orthonormal ladder system at

given locations in the left-half s-plane. This can be accomplished by obtaining a singly-

terminated LC ladder with the desired poles and then using the above equation to obtain the ele-

ments of the orthonormal ladder system. From circuit theory, we know that any stable natural

mode polynomial can be uniquely realized by an all-pole singly-terminated ladder with positive

elements mumpherys, 19701. Thus, one always finds a unique A matrix and b vector of an

orthonormal ladder system for any set of stable poles.

Note that an interesting property of all-pole singly-terminated LC ladders has become

apparent. We have shown that the states (inductor currents and capacitor voltages) of an all-pole

singly-terminated LC ladder (when driven from the resistor) are all orthogonal since the states in

equations (3.11) and (3.12) differ only in scaling. Also, the Lz norms, of the ladder states are

ik
where bi is given by equation (3.13). These simple properties appear to have never been

mentioned in previous literature.

To implement the numerator of a particular transfer-function, the proper c vector must be

obtained. To find the required c vector, we first need to find the states of the system. To find the

states, note from figure 3.1 that the m-st state of the ladder, Vrl , is an all-pole function with unity

gain at DC. Hence, the numerator of the first state of the ladder is E (0) where E(s) is the natural
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mode polynomial. Using this fact together with the state equations of the orthonormal ladder

system, we can write the orthonormal states recursively as

F (s)  PlW~
1

= E(s)
(3.15)

The proper c vector is found as the multiplying coefficients

numerator.

(3.16)

3SiSN (3.17)

required to create the desired

We note from equations (3.15)- (3.17) that the numerators of the odd states will be even

polynomials while the numerators of the even states will be odd polynomials. This fact helps to

explain why an output summing amplifier implementing the c vector does not have poor sensi-

tivity properties. Specifically, in the case of finite transmission zeros on the ~CO axis, where the

transmission-zero polynomial P(s) is purely even or odd, only even or odd elements of the c

vector will be non-zero. Thus, a small change in any of the non-zero c elements will result in

transmission zeros remaining on the jc0 axis.

Figure 3.2 shows a block diagram of a general orthonormal ladder filter. The simple leap

frog structure is a result of simulating a singly-terminated ladder. As shown in the block

diagram, the output is obtained as a linear combination of the integrator outputs’.

Although output summing (having a c vector with more than one non-zero element) does

not have poor sensitivity performance, there are situations where a circuit implementation of the

c vector is difficult. An example of such a situation is the design of high frequency

’ Note that, from equation (3.14), the units of ai are Hz as expzcted. However, the units of the feed-in term
are @. This surd term is a result of forcing the states to have the same RMS value when a signal of constant spec-
tral density in V/q is applied at the filter input,
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To create a feed-forward system, an orthonormal ladder system with output summing is

first obtained. The feed-forward system can then be obtained as the transposed system of the

orthonormal ladder system, as described in chapter 2. It is easily shown from equation (2.24) that

the two systems have the same transfer-function. As well, the feed-forward system will have the

same intermediate-transfer functions as the orthonormal ladder system but the two sets of func-

tions will be exchanged. Thus, for the feed-forward system, the intermediate G functions are an

orthonormal set. Since the intermediate-functions are simply interchanged, it is also easy to

show from the sensitivity formulae in [Snelgrove and Sedra, 19861 that the feed-forward and

orthonormal ladder systems will have the same sensitivity performance with respect to system

elements. Finally, although the feed-forward system does not have the F functions scaled for

optimum dynamic range, these functions can be L2 scaled to equal levels using the standard

method of scaling.

3.4. Stability test for orthonormal ladder filters

If orthonormal ladder filters are going to be used in actual adaptive IIR applications, it is

often necessary to have a simple stability test for the A matrix. Since an orthonormal ladder

filter simulates a passive singly-texminated LC ladder, a sufficient stability test is to check that

all cCi, ls5N, are greater than zero. However, an even more trivial test can be derived.

Before developing this simple stability test, a comment should be made here about the

situation where one of the oi, l<i<N equals zero. This situation corresponds to a reactive ele-

ment of the singly terminated ladder going to infinity. In this situation, part of the system will be

decoupled from the damped portion of the system which may result in instabilities. For the sta-

bility test described below, we will make the assumption that none of the CQ coefficients equal

zero.
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Recall that scaling the states of a system does not change the system’s poles. Therefore, we

may scale any or all of the states by -1 and not affect the poles. Consider the case where the

states 1 to j are scaled by -1 and j cN. In this case, the resulting system will be the same as the

original system except that CX~ is now less than zero. This scaling approach can be applied to

obtain orthonorrnal ladder systems where the Q’s may be positive or negative except for aN

which will remain positive. Therefore, to test whether an orthonormal ladder system is stable,

one need only check that aN is positive and the other ai are non-zero.

3.5. Design example

Consider the following fifth-order elliptic lowpass transfer-function with a 1 dR passband

ripple,

*(+-L 0.01321~~ + 0.1037~~ + 0.1739
E(s) s5 + 0.9287s4 + 1.7726~~ + 1.0557~~ + 0.69173 + 0.1739

(3.18)

The reactive elements of the singly-terminated ladder realizing these poles can be found using

continued fraction expansion [Humpherys, 19701 on the polynomial, E(s). Applying such a pro-

cedure results in the following elements.

rr = 0.9078 F r2 = 2.0205 H t-3 = 1.9937 F r4 = 1.4606 H t-5 = 1.0768 F (3.19)

Using equation (3.14), the following elements of the orthonormal ladder system are obtained.

al = 0.7384 a2 = 0.4982 a3 = 0.5860 a4 = 0.7934 % = 0.9287 (3.20)

The intermediate-functions of the orthonormal ladder system are found using equations (3.15)-

(3.17) and are

hW =
0.09346
W)

(3.21)

F2W =
0.1266s

E(s)
(3.22)
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F‘3W =
0.2540~~ + 0.1385

E(s)

4Q

(3.23)

F4W =
0.4335s 3 + 0.3440s

E(s)
(3.24)

F
5
(s) = 0.5437~~ + 0.6181~~ + 0.1018

W)
(3.25)

Finally, to obtain the c vector, we find the elements of c which satisfy the following equa-

tion.

hWd + c2F2W + c3F30) + c4F4W + ~5~5Wl~ Cd= P (~1 (3.26)

Solving for the Ci coefficients, we find the c vector and scalar d required to form the desired

numerator to be

g= [1.3163 0 0.3492 0 0.02431 d = 0 (3.27)

3.6. Sensitivity performance comparison

This section will compare the sensitivity performance of orthonormal ladder filter realiza-

tions with realizations resulting from two alternate synthesis methods. One of the alternate

methods is a state-space sjmuJation of a doubly-terminated LC ladder filter [Johns et al, 1987J.

The other method is a cascade of second-order sections implemented with Tow-Thomas biquads

where the finite transmission zeros of the biquads are realized using feed-forward with a resistor

and a capacitor [Se&a and Bracket& 19781. Pole-zero pairing and cascade ordering are chosen

using the rule-of-thumb in [Moschytz, 19751. To use the analysis methods in ISnelgrove and

Sedra, 19861, we require the cascade structure in a state-space formulation. Fortunately, a cas-

cade of biquads design can be easily put into a state-space description if one allows a non-

constant feedback matrix. The non-constant feedback matrix, A(s) consists of two matrices, Al

and AZ, such that
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A(s) = Al + sA2 (3.28)

With an active-RC circuit, the A2 elements are realized with capacitor feed-ins to integrators.

Finally, for a fair comparison with orthonormal ladder filters, L2 dynamic range scaling was per-

formed on all filters before comparing sensitivity or dynamic range.

Since different criteria are used to judge the filter performance in the passband and stop-

band, slightly different measures will be used in the two regions. However, in both bands, the

multiparameter sensitivity measure presented by Schoeffler [Schoeffler, 19641 is used to find the

standard deviation in the transfer-function for standard deviations of 1 percent of the nominal

component values. The transfer-function deviation, CT 1 T(jco) 1, is found from

(3.29)

where 2
s

represents the gain of the i’th integrator. Formulae in ISnelgrove and Sedra, 19861

were used to compute the derivative in equation (3.29). Changes in the elements of Aij, 6i, and

ci directly correspond to changes in the feed-in resistors and

mentation whereas changes in the elements yi correspond to

tors. Therefore, this deviation measure takes into account all

RC implementation.

capacitors of an active-RC imple-

changes in the integrating capaci-

the passive elements of an active-

Since transfer-function deviation is often the most critical performance measure in the

passband, the passband deviation in dB, D(U), is used to measure sensitivity performance in the

passband. D (6.1) is found from o 1 T (jco) 1 and 1 T (j6.1) 1 as

(3.30)

This passband measure gives the standard deviation of the passband in dE3 from the ideal
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response for standard deviations of 1 percent in component values.

In the stopband, an expected gain curve is plotted. This stopband expected gain value,

Z’&), is found from

CA@ = 2(m30( I n.m I + 0 I WfjN I ) (3.3 1)

This stopband performance measure allows one to easily see the expected stopband transmission

for standard deviations of 1 percent of component values. Note that if the passband deviation

measure were used in the stopband, it would go to infinity at transmission zeros.

For dynamic range comparisons, the figure of merit EJGils will be used [Snelgrove and

Sedra, 19861. This figure of merit is the square of the rms noise level obtained when uncorrelated

white noise sources of unit power spectral density are applied to each of the integrator inputs.

Thus, a filter with good dynamic range will have a low number for ~JGJ~.

For the fifth-order example above, three state-space descriptions were obtained using the

different design approaches. The state-space description of the orthonormal system obtained for

this example is

0 0.7384 0 0 0
-0.7384 0 0.4982 0 0

A= 0 -0.4982 0 0.5860 0 1 b=
0 0 -0.5860 0 0.7934
0 0 0 -0.7934 -0.9287cT = [ 1.3163 0 0.3492 0 0.0243 ] d 0

The state-space system for the doubly-terminated ladder simulation is

A =

-0.4643 -0.5823 0 -0.0821 -0.0045
0.8408 0 -0.5994 0 0
-0.1064 0.527 1 0 -0.4961 -0.0272

0 0 0.6153 0 -0.5892
-0.0097 0.0479 0 0.7574 -0.4643

b =

0
0
0
0

0.5437

0.4655
0

0.1066
0

0.0097

(3.33)

(3.35)
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[ 0 0 0 0 1.3620 ] d = O

and the state-space system for the biquad cascade is

A=

’ -0.3379 0 0 0

0.7709
0.:91

-0.7967 0
(0.0922)s -0.4577 0

0 0 0
0 0 0.5348

cT = [ 0 0 0 0 1.3622 ] d = O

0
0
0

-1.8603
-0.1330 1 b=

0.3297
0
0
0
0

43

1 (3.37)

Note that the first state of the biquad design is a first order lowpass function and this state is used

as the input to the first biquad formed in states 2 and 3. The output of this first biquad is state 3

which is used as the input to the second biquad formed by states 4 and 5.

Figure 3.3 shows a plot of the ideal transfer-function response along with passband devia-

tions, D(a), and stopband expected gain, T&U) curves. We see from these curves that the

orthonormal ladder system has a passband performance somewhere between the performance of

the doubly-terminated ladder simulation and the biquad cascade. The stopband performance of

the orthonormal ladder system is slightly worse than that of a cascade of biquads. The noise

figures for the ladder, orthonormal, and cascade titers of this fifth-order example are 47, 65, and

117 respectively.

An eighth-order elliptic bandpass filter example presented in [Snelgrove and Sedra, 19861

was also investigated. For this eighth-order example, the resulting curves are shown in figure

3.4. We see from these curves that the orthonormal ladder titer still performs quite well in the

passband and upper stopband but is slightly worse than the other two designs in the lower stop-

band. The reason for the poorer sensitivity performance at low frequencies and DC is explained

as follows. The cascade design contains two bandpass filter biquads and therefore varying any

of the components will not affect the two zeros at DC. Similarly, varying the component values
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Orthonormal &
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Figure 3.3: Fifth-order example: Plot of ideal transfer-function along with the expected stop-
band transmission, To(a), for a 1% component standard deviation. Also shown is the standard
deviation in passband response, D (co).
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orthoIlormal A-

Biquad +-
Ladder -E+

Ideal -

S topband
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@lB)
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Figure 3.4: Eighth-order example: Plot of ideal transfer-function along with the expected stop-
band transmission, To(a), for a 1% component standard deviation. Also shown is the standard
deviation in passband response, D (6.1).

of a doubly-terminated ladder having two zeros at DC will not affect the zeros. Since the ladder

prototype has good sensitivity properties at DC, one would expect the active-RC simulation to

also exhibit low sensitivities near DC and as seen from figure 3.4, this is the case. However, the

orthonormal ladder filter creates the two zeros at DC by an output summing network and thus the
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zeros will shift away from DC with component variations. The noise figures for the ladder,

orthonormal, and cascade filter for this eighth-order example are 73, 100, and 15 1 respectively.

These two examples indicate that an orthonormal ladder filter has a passband sensitivity

performance at least as good as a cascade of biquads (often much better) and a slightly worse

stopband performance. The dynamic range performance of orthonoxmal ladder filters appears to

fall between that obtained with LC ladder simulations and cascade designs.

3.7. Summary

A new filter structure called orthonormal ladder filters was presented. These filters are easy

to synthesize through the use of singly-terminated LC ladders prototypes. As well, orthonormal

ladder filters are automatically L2 scaled for optimum dynamic range by the very nature of their

structure. Also inherent in their structure is the fact that the integrator outputs are all orthogonal

when the input is excited by white noise. We have also seen that orthonormal ladder filters can

realize any stable transfer-function and have a performance comparable to a cascade of biquads.

As well, it was shown that the sign of only one system coefficient determines the stability of the

system.

It was also shown that a singly-terminated LC ladder driven through its terminating resistor

has orthogonal states (inductor currents and capacitor voltages). As well, the L2 norms of the

ladder states were shown to have a simple relationship to the elements of the ladder. These sim-

ple relationships appear to have never been mentioned previously in the circuit theory literature.
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Appendix 3.A

Laguerre Networks

Another structure that produces an orthonormal set of states when white noise is applied at

the input is referred to as a Laguerre network. Although it is well known that Laguerre networks

produce a set of orthonormal states [Lee, 19601, the mathematics to prove this property is fairly

involved. This appendix will apply the Lyapunov equation derived in section 3.2 to prove this

orthonormal property of Laguerre networks. Note that no claim is being made that this type of

proof has not previously be presented, rather it is included in this chapter to show the generality

of using the Lyapunov equation in finding orthonormal systems.

A Laguerre network consists of a first order lowpass filter followed by a cascade of first

order all-pass functions as shown in figure 3.A. 1. Noting that the transfer function for X r (s) is

uo pE
-Z

W) s+-P
we can write the state equation for the state X 1 (s) as

(3.A. 1)

smut = -PX1(s) + pmqs)

The transfer function for Xz(s) is seen to be

(3.A.2)

p7E &W s-p x2w s-p x3w s-p x4w
1 m L mm l 0

s+P s+P s+P s+P

Figure 3.A.l: An orthonormal system resulting !Trom Laguerre networks.
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X2@) S - P-=-
&W S+P

From this, we can write an equation
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(3.A.3)

flz(s) = -PXz(@ + (s-P)xl(S)

and substituting in equation 3.A.-1 above to obtain a state equation, we have

(3.A.4)

sXz(s) = -PX#) - 2PXt(s) + qEU(s)

Carrying on this procedure, we find the state equation for Xs (s) to be

(3.A.5)

’

fi3w = -PXs(s) - 2PXz(s) - 2PX1(s) + $rKU(s) (3.A.6)

With this iterative procedure, it is not difficult to show that, in general, the state space descrip-

tion for the given Laguerre network has an A matrix which is lower triangular and all elements

in the diagonal are -P and all elements below the diagonal are -2P. As well, the b vector has all

elements equal to m. In the case of a fourth order system, the following A and b coefficients

are obtained:

A=[iiiG&!J] b=[$E]
Since these coefficients satisfy the Lyapunov equation

AK+KAT+2rcbbT=0 (3.A.8)

(3.A.7)

with K = I, the stated orthonormal property is true.



Chapter 4

Adaptive Recursive State-Space Filters

4.1. Introduction

This chapter will present new algorithms for adapting the poles and zeros of state-space

filters. The adaptive algorithms presented in this chapter are described in the discrete time

domain but these algorithms can be easily modified for the continuous time domain.

It should be pointed out that all the adaptive algorithms presented in this chapter are based

on the LMS steepest descent approach and thus, depending on the performance surface, may

converge to a local rather than global minimum. Although, this type of convergence may seri-

ously limit the usefulness of this approach, there is an indication that if one increases the adap-

tive filter’s order, only a global minimum will exist [Stearns, 19811. As well, there presently

exist adaptive algorithms which guarantee global convergence on direct form structures bari-

more et al, 19801 pan and Jenkins, 19861 and thus it may be possible to modify the algorithms

presented in this chapter to also ensure global convergence.

The Crst algorithm presented is intended for a general state-space recursive filter. Having

the ability to adapt arbitrary state-space filters gives the designer the freedom to explore the per-

formance advantages of different structures. Unfortunately, the computation requirements to

adapt a general state-space gradient filter is quite high. However, it will be shown that the

amount of computation can be reduced by adapting any single column of the feedback matrix.

Alternatively, in the special case of a single-element input summing vector and a small feedfor-

ward component from the input directly to the output, a single row of the feedback matrix can be
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adapted with reduced computation. It will be shown that in applications where final pole loca-

tions can be estimated, these new adaptive filter structures have much faster adaptation rates than

the traditionaI approach using direct-form filters. As well, the noise performance of these new

structures will be shown to be significantly better than the direct form case.

Up to this point, we have been dealing with continuous time state-space systems whereas

digital state-space systems are assumed in this chapter. Thus, we will begin by describing digital

state-space systems in section 4.2. Also presented in this section are modified sensitivity formu-

lae which can be used to adapt the filter coefficients. These gradient formulae arc used to find a

minimum in the performance surface. In section 4.3, the adaptation algorithm for a general

state-space filter is described. Unfortunately, for this general case, obtaining the gradients is

computationally intensive. In section 4.4, a single-column adaptation algorithm is presented that

has significantly less computations required to compute the gradients. As well, sufficiency tests

are developed to help one check whether a column of a particular design can be adapted such

that arbitrary pole locations may be obtained. Also presented in this section is a single-row

adaptation structure. A noise performance comparison between different filter structures is

presented in Section 4.5 to illustrate the advantage of single column and single row adaptation

over direct-form structures. To compare the different rates of adaptation, simulation results for a

number of examples are given in Section 4.6.

4.2. Digital state-space systems

Similar to continuous time state-space systems, an N’th order state-space digital filter can

be described by the following equations:

x(n +1) = Ax(n) + bu (n) (4.1)
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y(n)=c?x(n)+du(n)

where x(n) is a vector of N states, u(n) is the input, y (n) is the output and A, b, c and d are

coefficients relating these variables. The matrix A is NxN, the vectors b and c are Nxl and d is a

scalar. Using z-transforms, the transfer function from the filter input to the output is easily

derived as

= = &I-A)-lb + d
W)

(4.2)

This transfer function equation is similar to the corresponding equation for the continuous time

J domain and therefore, as before, the poles of the system are determined by the A matrix (the

poles are simply the eigenvalues of A).

As in the continuous time domain, two sets of intermediate-transfer functions, F(z) and

G(z) can be defined. The first set, F(z), consists of the transfer functions from the filter input to

the filter states.

F(z) = (zI-A)-lb (4.3)
The second vector of functions, G(z), is defined as the set of transfer functions from the input of

each of the delay operators to the output.

GT(z) = $(zI-A)-’ (4.4)

To obtain gradient signals, we use the sensitivity formulae in chapter 2 (with z substituted

for 3) to relate the derivatives of the output signal with respect to each of the system coefficients

and the intermediate-transfer functions.

(4.5)

(4.6)
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From the above equations it is obvious that the gradient signals required to adapt the c vec-

tor elements are available as the output states, x(n), while the gradient signal for the d scalar is

the input signal, u(n). However, to create the gradient signals required to adapt the elements of

the A matrix and b vector, a new system is required having the intermediate-transfer functions

from the input to the states equal to G(z) of the original system. Fortunately, we can obtain this

new system as the transposed system of the original system as described in chapter 2. How this

new system is applied will become apparent in the next section.

4.3. LMS adaptive algorithm for state-space filters

A block diagram of a state-space recursive adaptive filter is shown in figure 4.1 where the

state-space coefficients now change with each timestep and hence are functions of the timestep

“n”. The state-space system is shown as two separate blocks corresponding to the state-space

describing equations. Specifically, the feedback matrix, A, and input summing vector, b, imple-

ment the first equation of a state-space system and create the state signals, x(n), as the outputs of

the fTirst block. These state signals together with the system input, u, are weighted using the out-

put summing vector, c, and the output scalar, d, to obtain the filter output, y, at the output of the

second block. The error signal, e(n), is the difference between the reference signal, Q), and the

filter output, y(n).

Recall from chapter 2 that during adaptation, coefficients of the adaptive filter are changed

to minimize the mean squared error signal, denoted as E [e ‘@)I. The LMS algorithm for updat-

ing any coefficient p, of the adaptive filter is
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
istate-space filter

s(n)

Figure 4.1: Adaptive state-space filter. The filter is shown in two separate blocks
which correspond to the state-space describing equations.

where 1 is a step size to control convergence of the algorithm. We now assume we can write the

following [Martin and Sun, 19861 [Yassa, 19871

(4.10)

where z-l is the inverse z-transform. Substituting the gradient results of the previous section’

in the update equation (4.9), the following adaptation equations for the system coefficients are

obtained:

’ The,%? resuln~ were for time-invariant linear systems while the adaptation algorithm makes the overall system
non-linear. The use of these gradients is essentially a linearizing assumption which is appropriate for the practical
case of a small step sk, p.
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Aij(tt +l) =Aij(n) + 2~ (n&j(n)

bi(?Z +1) = hi(n) + 2p (n)pi(n)

Ci(n+l) = Ci(tl) + 2jL4? (n)Xi(n)

C.qn +1) = d(n) + 2w (~)U(?z)

where

CXij =gi(tl)@Xj(tl)

Pi = gibW~(~l

and the symbol @ denotes convolution.
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(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Note that the adaptation equations for the elements of A and b involve convolution while

the elements of c and d have straightforward equations. As discussed previously, we can accom-

plish these convolutions by using the transposed system. A new system is created with the feed-

back matrix AT and the input summing vector c. This new system has the impulse response

gi(n) at the Output of the i’th state.

To implement the above adaptation equations, the filter structures shown in figure 4.2 can

be used to obtain all the required gradients of the system coefficients for a general adaptive

state-space filter. The transposed filter with u (n) as its input is used to update the elements of the

b vector while each of the other transposed filters is used to adapt the elements of a column of

the A matrix. As can be seen, the number of computations required to obtain the gradients for

this general state-space filter is quite high: N+2 times that of the filter itself.

It is interesting to note that the gradient equations obtained with this approach are identical

to those obtained for direct form gradient adaptation in [Stearns et al, 1976]mite, 19751. How-

ever, note that an intermediate function approach was applied here whereas algebraic methods

were used to obtain the gradient equations in the aforementioned references. This is to be

expected since both methods are finding the derivative of the output with respect to the filter
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Figure 4.2: Generating the gradients for a general state-space adaptive filter

coefficients.
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4.4. Reduced computation state-space adaptive filters
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To reduce the computations, note that given an independent set of intermediate-transfer

functions, {Fi(z)j, any set of desired transmission zeros can be obtained by changing only the c

vector and d scalar. This allows one to keep the b vector constant while adapting the remaining

state-space system coefficients. Of course, equivalently the c vector could be held constant

while the b vector is allowed to change. However, it can be seen from the update equations

above that the gradient signals required to adapt the c vector are immediately available while the

b vector’s gradient signals are more difficult to obtain. For this reason, we normally choose to

adapt the c vector rather than the b vector.

To further reduce the number of computations, note that IV2 elements of the A matrix are

being adapted where N elements are sufficient to define N poles. Therefore, we look for struc-

tures which can be adapted to any set of poles by changing only N elements of the A matrix.

4.4.1. Single column adaptive filters

Recall that each of the transposed filters of figure 4.2 provides all the gradients required to

adapt a single column of the A matrix. Therefore, if we choose to adapt a modified direct form

where only the elements of the last column are adapted, only one transposed filter is required.

For the modified direct form filter, the A matrix has the form

A =

0 0
1 0
0 1

6 6
3) 0

. 0 0 l.21

. 0 0 a2

. 0 0 u3

.

(4.17)

However, we do not have to restrict ourselves to the modified direct form to obtain compu-

tational savings. From control theory, the pole assignment theorem [Wonham, 19851 states the
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following:

Pole Assignment Theorem

The pair (m’, A) is observable if and only if for every complex conjugate set of N com-
plex numbers there exists a vector k such that the eigenvalues of (A+km’) are the given
set of N complex numbers.

One way to look at this pole assignment theorem is to consider a state-space system with

the fixed feedback matrix A and states x where one wishes to change the poles of the system to

arbitrary locations by introducing extra feedback into the system. The extra feedback is intro-

duced by taking a weighted sum of the states using the value of the m vector to create a feedback

signal, yf (equal to m’x) and then applying the feedback signal, yf, back into the states using the

value of the vector, k (traditionally an input summing b vector). With this approach, it is not

difficult to see that the poles of the new system are the eigenvalues of A+km’. However, to

ensure that arbitrary pole locations can be obtained, the feedback signal, yf, must contain enough

information about the states of the original system leading to the observability constraint in the

theorem. The constraint is that the states of the original system must be observable through the

signal yf. Observability implies that with no input to the system, the initial states of the system

can be determined by looking solely at the output signal. This observability constraint is also

equivalent to having the intermediate G-functions of the system independent [Kuo, 19801.

In the use of the pole assignment theorem in this thesis the m vector is restricted to be a

basis vector vi where a basis vector, vi, consists of all zeros except for the unit element in the

i’th row. With this restriction and for a given A matrix, the pole assignment theorem states that

we can obtain any desired set of poles by changing only the i’th column of A if (VT, A) is obseiv-

able (observability is further discussed in the next section). Therefore the poles of an arbitrary A

matrix can be adapted using only one transposed filter to obtain the necessary gradients required
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to adapt a single column of A. A block diagram showing how the gradients are obtained for a

single column adaptive filter is given in figure 4.3.

4.4.2. Sufficiency tests for column adaptation

As mentioned above in the pole assignment theorem, to adapt the i’th column of A, (vT,A)

must be observable. (Here, m has been replaced with vi which restricts discussion to the case of

adapting a single column.) To check that this observability constraint is satisfied, the control

literature has a number of different tests which could be used. (For a discussion of observability

tests, see [Kuo, 19801.) Unfortunately, filter designers do not always have access to software

which can easily perform an observability test. For this reason, two simple sufficiency tests are

presented here allowing a filter designer to check whether the above matrix pair satisfies the

observability constraint. If the first test is satisfied then the particular column of A cannot be

adapted while if the second test is satisfied then the column can be adapted. In most

Figure 4.3: Generating the gradients for a single column adaptive filter
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applications, one of these two tests will be satisfid, however, if this is not the case then one of

the many observability tests can be applied.

For both of these tests, consider a given A matrix where one desires to adapt the i’th

column of A to obtain arbitrary pole locations. Def3re the vector of functions, Goi( as

Ggi(z) = VT(ZI-A)-’ (4.18)

This vector of functions is most easily visualized as the intermediate G functions of the state-

space system having a feedback matrix, A, and an output summing vector, Vi; in other words,

with the j’th element of Goi being the transfer function from the input of the j’th delay opera-

tor to the i’th state. To derive the two sufficiency tests, an observability independence theorem

is required which states the following [Kuo, 19801: The pair (vT,A) is observable if and only if

the elements of Goi are linearly independent (over the field of complex numbers).

The two sufficiency tests are:

Column Adaptation Test 1

lf any of the elements of Ggi(z) is zero then the i’th column of A cannot be adapted to
arbitrary pole locations.

The proof for this test comes from the fact that the elements of Goi are not independent

if one of the elements is zero. Since the elements of Goi are not independent then the obser-

vability independence theorem implies that the pair (VT, A) is not observable. Therefore, by the

pole assignment theorem, the i’th column of A cannot be adapted to realize arbitrary poles.

Column Adaptation Test 2

If any of the elements of Goi is of order N then the i’th column of A can be adapted
to realize arbitrary pole locations.

The proof for this test comes from the fact that the elements of Goi are independent if

one element is N’th order. This fact can be proved by contradiction. Assume a given system with
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N delay elements where the elements of Goi are dependent and one of the elements is N’th

order. Since the elements of Goi are dependent, at least one function can be created as a

linear combination of the other functions. Therefore, a system with only N-l delay elements can

be constructed with the same dependent set of Goi elements. However, it is well known that

an N’th order transfer function cannot be created from less than N delay elements. This contrad-

icts the original assumption, therefore if one element is N’th order, the elements of Goi must

be independent. Since the elements of Goi are independent, the observability independence

and pole assignment theorems can be applied to prove the stated test.

As an example of these sufficiency tests, consider the fourth order A matrix

I- -l
0 a12 o o

A = ~21 a22 0 0
0 0 0 u34 (4.19)

0 a42 a43 a 4 4

This system is a cascade of two biquads where (u 12,~ 21 ,a& implement the first biquad and

(u 34~43 ,uu) make up the second biquad while c 42 is the feedforward term from the first to the

second biquad (see figure 4.4).

Consider the case where one wishes to adapt the first column. It is clear from figure 4.4

that the transfer function from the input of the third or fourth delay operators to the first state is

zero. This implies that the last two elements of GO t(z) are zero. Therefore, according to

column adaptation test 1, column one cannot be adapted to realize arbitrary poles. This result

should come as no surprise since adapting the first column cannot affect the poles of the second

biquad as only feedforward terms are added from the first to the second biquad. A similar test

shows that the second column cannot be adapted to realize arbitrary poles.

Now, consider the case of adapting the fourth column. In this case, the elements of God(z)

are the transfer functions from the inputs of the delay operators to the fourth state. Since the
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a 12

Figure 4.4: Si nal flow
5nly the iP

aph for state-space system of cascade of two biquads.
matrix branches are shown.

transfer function from the input of the first delay operator to the fourth state is fourth order,

column adaptation test 2 implies that the fourth column can be adapted to give arbitrary poles.

Finally, a similar test shows that the third column can also be adapted to realize arbitrary poles.

4.4.3. Single row state-space adaptive filter

A situation where only one extra filter is required to obtain the gradients to adapt a single

row of the feedback matrix, A, occurs when the input summing vector, b, equals a basis vector,

vi and the d coefficient is zero. In this case, the transfer function from the filter input to the filter

output is equal to Gi(z). Therefore, to implement equation (4.11) for the i’th row, only one other

system is required having the functions F(z) at the state outputs. This extra system is created

using the b vector and A matrix of the original system. A block diagram showing how to obtain

the gradients for a single row adaptive filter is shown in figure 4.5. Note that if the d element is

close to zero then gradient signal obtained with this method will closely approximate the actual

gradient signal.
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Figure 4.5: Generating the gradients for a single row adaptive filter

To determine whether the i’th row can be adapted to obtain arbitrary pole positions, one

can use the controllability pole assignment theorem [Wonham, 19851. As well, the sufficiency

tests described above for adapting a column of the feedback matrix can be easily modified for

checking whether a row may be adapted.

Note that in the specific case where the state-space filter is in direct form, the resulting real-

izations using single row adaptation are the same as that obtained for direct form gradient adap-

tation in [Yassa, 19871. This method of obtaining gradients requires significantly less computa-

tions than that originally proposed in [Stearns et al, 1976]mite, 19751. Also note that the

non-zero element of the input summing vector, b, does not have to equal one. If the non-zero

element is not unity, then the above results still hold but the gradients for the i’th row will be

scaled. Finally, note that the input vector must have only one non-zero element for efficient sin-

gle row adaptation. This restriction is not present for single column adaptation.
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terns, K and W satisfy the following equations ~ullis and Roberts, 19761

ADAPTIVE STATE-SPACE FILTERS

4.5. Roundoff noise comparison

In this section, the possible noise performance improvement of using a single row adaptive

filter over a direct form adaptive filter will be demonstrated through the use of an example.

First, a measure for comparing the noise performance of different filter structures needs to

be defined. Our noise measure, NM, is a slight variant of the measures presented in @vMlis and

Roberts, 1976][Amit and Shaked, 19881,

NM = truce(KWQ) (4.20)

where K and W are the state correlation matrices for digital state-space systems. In digital sys-

K=AKAT+bbT = g (Akb)(Akbf
k=O

(4.2 1)

W = ATWA + cTc = 5 (cAkf(cAk)
k=O

(4.22)

The matrix Q is a diagonal matrix where Qii is zero if the elements in row i of A consist only of

O’S, ~ 1 ‘S and - 1 ‘s. Otherwise, Qii is one.

!Note that this noise measure is valid when using a modem digital signal processor having a

multiplier/accumulator that does not truncate until writing out to memory. Thus, the noise

model used assumes each row of a state-space system has one noise source due to truncation

error rather than a noise source for each non-zero element. The matrix Q makes an adjustment

for rows where no truncation errors are introduced. In the case of a direct form filter, there are

N-l rows where no truncation errors are present.

Note that the noise measure defined in Mullis and Roberts, 19761 simply has Q equal to

the identity matrix and thus using that measure would result in even higher noise figures for the

direct-form case than those obtained in this thesis. Noise figures for other structures would
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remain relatively unchanged.

With a noise measure to compare different filter structures, we may now proceed with an

example. The example used will be a narrowband, oversampled transfer function, typical in

many practical applications. It is well known that direct fotm filters have poor noise perfor-

mance for such applications. The example transfer function is that of a third-order lowpass filter

with a sampling frequency to passband frequency ratio of about 32. The same transfer function

is used in the simulation results of section 4.6.2 where the poles and zeros of the transfer func-

tion are given (in the last row of table 4.1). Three different realizations of this filter are investi-

gated with respect to noise perfotmance.

The first realization is of the direct form type having the state-space system description

L

0
A = 0 (4.23)

0.8889 -2.i32 2.8!23] b = [ !]

C? = [ 0.01003 -0.01884 0.01088 ] d = 0.005312

Using equations (4.21) and (4.22), the K and W matrices for the direct form realization are

found to be

K =

0.0382 -0.0800 0.0426
w= r -0.0800 0.1679 -0.0898 (4.25)

0.0426 -0.0898 0.0483_ I

As well, for the state-space system shown in equation (4.23), by definition of the Q matrix, Q is

13522 13395
13395 13522
13017 13395 13017 113395 (4.24)

13522

seen to be
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0 0 0
Q =

[ 10 0 0 (4.26)
0 0 1

Using equation (4.20), one can easiIy calculate the noise measure, NM, for this filter to be 652.

Thus, this noise measure is the value one would obtain in the case of an adaptive filter applica-

tion using a direct form structure and the given final transfer function.

The next two filter realizations are obtained using a variation of the orthonormal filter struc-

ture described in chapter 3. Since the orthonormal filter structure gives good results in the

continuous-time domain, it was felt that good filter performance would be obtained in a digital

filter with a high ratio of sampling frequency to passband edge. (For design details, see appendix

4.A.) In this thesis, we shall refer to realizations obtained with this approach as “quasi-

orthonormal filters” since the resulting realizations approach true orthonormal filters as the sam-

pling frequency to passband edge is increased. While quasi-orthonormal filters are used in this

section for comparison, the author believes that any good state-space design techniques [chapter

9, Roberts and Mullis, 19871 should give similar results.

Implementing the narrowband transfer function by a quasi-orthonormal filter, the following

state-space system is obtained.

1 0.1188
A= -0.1188

’ :‘k;] ’ = [ 0.2!6g ]
(4.27)

0 -0.1567 .

g = [ 0.4755 0.0859

The K and W matrices for this structure are

0.2202 -0.01746
K= -0.01746 0.294 1

-0.05 179 -0.04854

0.2168 ] d = 0.005312

-0.05 179
-0.04854
0.2456 I

(4.28)
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Figure 4.7: Example 1 of adaptation paths for state-space gradient method
[Feintuch, 19761 superimposed on contour plot of error performance surface.
start:(al =-0.36, a2 =O.O),end:(al =-0.7, a2 = 1.2).

0.1

and method in
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2

1.85

coefficient

a2

1.7

1.55

1.4

start point end point

0 - state-space gradient
Cl - approx gradient

-1 -0.9 -0.8 -0.7 -0.6
coefficient a 1

Figure 4.8: Example 2 of adaptation paths for state-space gradient method and method in
[Feintuch, 19761 superimposed on contour plot of error performance surface.
start:(al =-0.915, a2 = 1.7), end:(al =-0.8, a2 = 1.7).

The above simulations indicate that the state-space gradient algorithm should always con-

verge to a minimum in the error performance surface while the performance of the method in

[Feintuch, 19761 appears to be quite application dependent with no guarantee of converging to a

minimum.
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4.6.2. Narrowband examples

This section will present adaptation rate results for filters with varying ratios of sampling

frequency to passband edge frequency. All the reference filters are derived from a third-order

elliptic lowpass analog prototype with the following s-plane poles and zeros.

poZes = { -0.3226, -0.1343kj 0.9 1920 I (4.36)

zeros = { kj 2.2705, w I

The passband of the prototype has a 3 dB ripple with the passband edge normalized to 1 rad/sec.

To obtain narrowband digital filters with varying bandwidths, the bilinear transform

[Oppenheim and Schafer, 19751 was applied to the analog prototype,

z = 1 + (T/2)s
1 - (T/2)s

(4.37)

where T is the sampling period. Using the fact that the analog prototype’s passband edge is nor-

malized, one can use the well known prewarping equation to find a relationship between the

sampling period, T, and the ratio of the sampling frequency, as, to the passband frequency, CJ+,.

For purposes of comparison, four values of the sampling period, T, are used: 2,0.8,0.4, and 0.2.

These correspond to ratios of sampling frequency to passband edge frequency of approximately

4,8, 16, and 32 respectively. In all cases, the digital transfer functions were scaled to have a gain

of one at z=l. For each of these values of T, three different structures for the adaptive filter are

used: direct form , single row, and single column adaptive filters. The single row and column

adaptive filters start from the quasi-orthonotmal structure and then either the last row or column

is adapted. The initial pole locations of the adaptive filters are three coincident poles on the real

axis at a point chosen close to the final pole locations. In all three cases, the initial pole locations

are the same and the c vector and d scalar are both set to zero.
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Of course, the step size l.t is an important factor in controlling the adaptation rate and there-

fore, a method is required for choosing the step size for each simulation so that a fair comparison

can be made. First, it should be pointed out that the same step size was used for all the state-

space elements and no power normalization was used. To find the step size for a particular simu-

lation, a trial and etror method was used to first find a “diverging step size” which caused the

simulation to go unstable after 500 iterations. This diverging step size appeared to vary by at

most 20 percent for a particular simulation. The step size then used for simulations was the

diverging step size value divided by 4. One performance measure used is the “iteration for con-

vergence”, taken as the number of iterations required to have the coefficients of the state-space

system converge to 4 significant digits.

Table 4.1 lists the results of the different simulations. Note that as the reference filter

becomes more narrowband, the direct form takes much longer to adapt than either of the other

two structures. As well, note that the noise measure, NM, of the final adapted filter is higher for

the direct form case than the other structures in the cases of high sampling frequency to passband

edge ratio. In the case of the lowest ratio, the noise measure of the row and column adaptation

structures is relatively poor because the quasi-orthonormal Iilter has poor noise properties at pole

locations far from z=l. The graph in figure 4.9 summarizes the convergence times for the vary-

ing narrowband reference filters and different adaptive filter structures. These results indicate

that using structures other than direct form can result in much better adaptation rates in oversam-

pled applications.

4.7. Summary

An algorithm was presented for adapting a general state-space filter. This algorithm

required N+l extra state-space filters to obtain all the gradients required for adapting an N’th
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Transfer Initial Direct Row Column

Function Poles Adapt Adapt Adapt

4

poles0.5 122 0

0.0642WjO.8625

0
zeros
-1.0

-0.675 lkj0.7377 ’

Step Size
p

Iterations for
Convergence

Noise Measure&4

0.01 0.0025 0.0028

16K 60K 5OK

o . 8 8.2 8.2

8

poles0.77 14 0.7

0.692OkjO.5904

0.7
ZCXOS
-1.0

0.09597kjO.9954 OS7

Step Size
p

Iterations for
Convergence

Noise Measurehi

0.00028 0.03 0.015

500K 60K 35K

4 . 8 2.4 5.0

16

poles0.8788 0.8

0.8872kjO.3379

0.8
zeros
-1.0

0.658lkjO.7529 OS8

Step Size 0.000025 0.01
p

0.00375

Iterations for
Convergence 6MEG 5OK 3OK

Noise Measure
NM

4g
. 1.6 2.8

poles0.9375

0.9574kjO. 1775

0.9 Step Size
V

0.OOOOO1 0.0125 0.0015

32
0.9

zeros
-1.0

0.9019kjO.4318 O-g

Iterations for
Convergence >lOMEG 4 0 K 40K

Noise Measurehf 652. 1.4 2.6

Table 4.1: Adaptation rates and noise measures for filters of wying bandwidths.
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Figure 4.9: Convergence times of different structures for filters of varying bandwidths.

order system. Single column and single row adaptive filter structures were then introduced

where only 1 extra state-space filter is required to obtain the necessary gradients. It was shown

that in applications where a good estimate of the final pole locations is known, single column or

row adaptive filters can result in improved convergence rates and significantly better roundoff

noise performance as compared to direct form implementations. These new adaptive filters are

especially effective in the practical case of oversampled systems.
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As a final comment, it should be pointed out that all the gradient signals required for the

1 adaptation methods proposed in this paper can be obtained as the outputs of filters. Thus the

algorithms presented in this chapter can be easily modified to be applied in the continuous time

domain. Adaptive filtering in the continuous time domain will be the main focus of the next

chapter.



77i ADAPTIVE STATE-SPACE FILTERS

1
t Appendix 4.A

Quasi-orthonormal design procedure

A state-space orthonormal design technique was presented for continuous-time circuits in

chapter 2. The structures resulting from this technique have the advantages that they are

inherently L2 scaled for dynamic range and have good sensitivity and noise performance. As

well, the feedback matrix is nearly skew-symmetric and sparse. This final property is particularly

interesting since an orthonormal digital filter is usually dense. We present in this appendix a

procedure to obtain, for oversampled transfer-functions, a nearly orthonormal state-space digital

filter with a sparse feedback matrix.

The design uses the fact that the forward difference transformation applied to a state-space

system simply shifts poles and zeros by +1 and changes the feedback matrix by adding one to

each of the diagonal elements. Specifically, given a state-space system

sx=Ax+bu

y =cTx+du

(4.A. 1)

if the forward difference transformation s=z-1 is applied, the following system is obtained

zx=(A+I)x+bu (4.A.2)

y =cTx+du

b where the poles and zeros in the z-plane are simply shifted versions of the poles and zeros in the

s-plane.

Using this transformation property, the quasi-orthonorrnal design procedure is:

( 1) Shift both poles and zeros in the z-plane by - 1.

(2) Obtain an orthonormal state-space system for the shifted poles and zeros using the

approach in chapter 2 for continuous time designs.
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(3) Shift the poles and zeros of the state-space system by +1 by adding one to each of the diag-

onal elements of the feedback matrix A.

Note that this design technique is exact in the sense that it pnxluces exactly the desired

transfer function, however it does not exactly reproduce the orthonormal states of the

continuous-time filter. With this approach, the resulting filters approach orthonormal behavior

as the ratio of the sampling frequency to passband edge is increased. Specifically, the diagonal

elements of K will asymptotically become equal and the off-diagonal elements approach zero. It

should be noted, however, that the diagonal elements will be a factor of 27t less than unity. This

factor arises because unit-variance white noise in discrete-time systems spreads noise power

over the 2~ circumference of the unit circle while noise in continuous-time systems is defined as

having unit power density over 1 rad/s. Thus a quasi-orthonormal system obtained as described

above will asymptotically have mean-square output levels a factor 2~ below the mean-square

variance of the discrete-time white input. Of course, a simple scaling of the input vector can be

used to obtain an arbitrary mean-square level. Finally, note that this design method will always

result in a sparse tridiagonal structure for the A matrix.
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Appendix 4.B

Approximate algorithm interpretation

This appendix will relate the approximate algorithm presented in ~eintuch, 19761 to the

algorithm proposed in this paper. The approximate algorithm does not require any extra compu-

tations to obtain gradient signals and is therefore used in practical applications @r&son and

Allie, 19881.

Note that the algorithm in [Feintuch, 19761 was developed for a direct form filter where a

zero-forming filter is cascaded with a pole-fotming filter. The zero-forming filter is adapted

using the usual LMS algorithm with true gradients so we will not concern ourselves with it. On

the other hand, the pole-forming filter is adapted with gradients intended to approximate the true

gradients.

The transfer function, P (z), of the pole forming filter is

(4.B. 1)

where a factor of z-l has been introduced in the numerator to simplify the state-space represen-

tation. This transfer function is realized by the direct form state-space system

A =

0 10.0 0
0 0 1 . 0 0

Oi(L i 0
0 0 0 . 0  1

ar a2 a3 . aN-1 aN

b =

cT=[OO **- 011 C.f=o
It is not difficult to show that the adaptation algorithm of [Feintuch, .976] applied to the above

state-space system results in the update equation

(4.B.2)
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Ui(n+l) = Ui(?l) + 2p(n)Xi(n-l) (4.B.3)

Compting this result with that of equations (4.11) and (4.15), we see that the approximate gra-

dient algorithm simply replaces the impulse response g&z) by a single delay. It was shown in

the simulation results that this approximation is good in some applications and poor in others.

This interpretation helps to explain the adaptation paths taken by the algorithm presented in
z

i peintuch, 19761.



Chapter 5

Monolithic Implementation and Experimental Results

5.1. Introduction

One of the main contributions of this thesis is to demonstrate that monolithic analog adap-

tive IIR filters are feasible. To demonstrate that discrete analog adaptive IIR filters are reahz-

able, a discrete third-order prototype was constructed and the design details are presented in sec-

tion 5.2. The singk row adaptive filter algorithm described in chapter 4 was chosen as the basis

for the prototype, and although one of the motivations for developing analog adaptive filters is

high frequency applications, for evaluation purposes, a low frequency prototype was con-

structed. The experimental results for this discrete prototype are given in section 5.3 and show

that the algorithms presented in chapter 4 can successfully be converted to the analog domain.

However, although the building blocks used in the discrete prototype are typical analog circuits

that have been previously integrated, the specific implementation details of these building blocks

are not intended for a monolithic realization. To show the feasibility of monolithic realizations,

the design details and experimental results for a CMOS monolithic third-order programmable

filter are described in sections 5.4 and 5.5. This programmable filter is realized using the

transconductance-C technique with voltage signals that adjust the values of the filter coefficients

by varying the transconductance of differential input circuits.
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5.2. Discrete prototype design details

To realize the coefficient update algorithm in hardware, one requires some type of muhi-

plier. Since high quality analog multipliers are difficult to implement, it was decided to avoid

using standard multipliers in the coefficient update algorithm block by implementing the sign-

dufu algorithm [Treichler et al, 19871 rather than the traditional LMS algorithm. With the sign-

data algorithm, the error signal is multiplied by only the sign of the gradient signal rather than

the gradient signal itself and therefore the multiplication can be realized by simple hardware.

Specifically, the sign of the gradient signal can be determined by a comparator and with the use

of a multiplexor, the multiplier output is set to either the inverted or non-inverted error signal

depending on the comparator result. Since multiplexors do not introduce any significant offsets,

this type of multiplication results in less output offset voltage than a simple multiplier circuit.

Offsets at the coefficient update integrators can cause problems as will be shown in chapter 6.

The block diagram for the third-order single-row analog adaptive filter is shown in figure

5.1. The basic structure of the programmable and gradient filters is of the orthonormal ladder

type described in chapter 3. There are six coefficients used to adjust the transfer function of the

programmable filter; ai ,i=l-3 and ci ,i=l-3. As shown, three pole coefficient update blocks

are used to adapt the Ui coefficients while the ci coefficients are adapted using three zero

coefficient update blocks. Note that these coefficient update blocks use the sign data algorithm

discussed above. The gradient signals needed to adjust the ci coefficients are simply the states,

Xi(l), of the programmable filter whereas to adjust the Ui coefficients, the gradient signals, cCi(f),

are obtained from a gradient filter. Note that the gradient filter is identical to the feedback circuit

used in tie programmable filter. The error signal is obtained as the difference between the pm-

grammable filter’s output and an external reference signal, s(t).
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The voltage VB is a DC bias voltage set to halfway between ground and the positive rail.

Referring to figure 5.2, the output voltage v&) is easily seen to be

WI = [ Ci4W - i2W + 0301 - i I 01) IR (5.1)
With reference to the term containing id(t) and iz(t) in equation (5.1) above, one can show that

through the use of balanced inputs, +s@) and -s(t), and the fact that the op-amp input terminals

are approximately equal in voltage, the resulting current difference consists of a linear term and

odd-order nonlinear terms’. In other words, for the output voltage, the even-order nonlinear

terms are cancelled (for a most complete description of this cancellation, the reader is referred to

[Tsividis et al, 19861). A similar distortion cancellation is obtained in the current difference

term containing i 3 (f) and i 1 (f). Assuming the transistors operate in the triode region where the

odd-order distortion products are small, the result is a linearizing effect such that the output sig-

nal has low distortion for signals as large as 1 volt peak.

To further analyze this multiplier circuit, we can write an equation for the output voltage as

a function of the input signal, s(f), and the coefficient signal, p(f), using the

transistor. The linear resistance, rb, of a transistor in the triode region

[Tsividis et al, 19861

-1

rds =

linear term of each

can be written as

where j.tN is the N-channel mobility, COX is the gate oxide capacitance per unit area, W and L are

the channel width and length, VG is the gate potential and VT is the threshold voltage. Using this

formula, the output voltage, v&f), can be written as

(5.3)

’ Note that a square-law model for the transistors would result in perfect lineari~ with this circuit.
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From this formula, we see that this circuit acts as a multiplier of the two input voltages s(f) and

p(t) to obtain the output voltage, v,.,(f). Note, there is an offset in the above formula such that

p(f) must equal VB for the output voltage to go to zero, however, this introduced offset does not

affect the operation of the final realization. As well, note that both positive and negative gains

can be obtained by having p (t) above or below VB, respectively, and that, ideally, the minimum

gain obtainable is zero. However, there is a limit to the maximum gain of this same circuit

determined by the resistor value A and the minimum rh obtainable.

Figure 5.3 shows the circuit implementation of the discrete prototype at a block level where

only 4 different blocks are used to create the circuit with the details of each of these blocks

shown in figures 5.4 to 5.7. This set of circuit drawings describe the complete realization for the

discrete prototype analog adaptive filter. Comparing the block diagram in figure 5.1 with the cir-

cuit implementation blocks in figure 5.3, we see that the programmable filter consists of a “Vari-

able Feedback” block and a “Variable Sum” block while the gradient filter consists of only a

“Variable Feedback” block. As well, the error generator corresponds to the “Error Gen” block

with each of the zero and pole coefficient update circuits consisting of a single “Coeff Update”

block.

Let us now look at each of the blocks in more detail. The summer and three multipliers in

the “Variable Feedback” and “Variable Sum” blocks (figures 5.4 and 5.5, respectively) are

implemented using the N-channel MOS multiplier described above. In this implementation,

transistor currents are summed to provide a single output signal corresponding to the necessary

multiplication and summation of the input signals. The resistor values used in the

L multipliers/summer circuits were experimentally chosen to give maximum gains of about 5 for

the gain from a single si signal to the output implying that coefficients values can range from -5
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Figure 5.3: Circuit implementation of breadboard prototype at block level.
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figure 5.1 except that the inputs are summed rather than subtracted and the inputs are AC cou-

pled and amplified. A summation rather than subtraction of inputs is used since it requires less

circuitry and although using a summation inverts the sign of the gradient signal, this effect can

1 easily be accounted for in the coefficient update circuitry. The reason for the AC coupling and

amplification of the error signal is to reduce the effect of DC offsets (DC offset effects are dis-

cussed in chapter 6). It should be pointed out that on an IC realization of an analog adaptive

filter, this AC coupling could be accomplished by using an extra summing coefficient to cancel

out the DC offset in the error signal. Finally, referring to the circuitry for the “Coeff Update”

block in figure 5.7, note that the multiply in the “Coeff Update” block is performed using a two

input multiplexor since the the sign-data algorithm was implemented, as discussed above.

Since single-row adaptive filters normally require some estimate of final pole locations, it

was decided to choose component values for the programmable and gradient filters so that the

fixed time constants corresponded to values used in the reference filter that was used in the first

experimental results discussed below. Thus, the following state-space filter was implemented.

A = 1.2:071 [b =
A33 0.7737

(5.4)

g z [ C l  c 2  c3] d=O

The coefficients in the above matrices which are shown as variables correspond to the state-

space coefficients which are adapted. This normalized state-space system was denormalized to

the resistor and capacitor component values shown by multiplying all coefficient values by

27t x l@ . This gives time constant values around the 1 KHz range.
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5.3. Discrete prototype experimental results

In order to test the adaptive filter, a model matching application was used where the refer-

ence signal, S(f), is obtained as the output of a fixed filter with white noise applied to its input.

The same white noise source is also applied to the adaptive filter input causing the adaptive titer

to match the transfer function of the reference filter.

For the first experimental example, the reference filter was chosen to be a third-order

lowpass filter with finite transmission zeros. The normalized state-space system for the refer-

ence filter was

0.98361
A = 49i361

-I.:307 -i.I805] b = [ 0.7!37 I
12307

0 W)

g = [ 1.5779 0 0.4563 ] d = 0

This normalized system was denormalized using the same scaling value (27~ x l@) as the pro-

grammable and gradient filters and resulted in the passband edge at 1 KHz. Note that, except for

the coefficients which adapt, this system is the same as that for the programmable and gradient

filters and therefore, after adaptation, the coefficients A 31, A 32, and A 33 should correspond to 0,

-1.2307, and -1.8805, respectively and cl, ~2, and c3 should correspond to 1.5779, 0, and

0.4563, respectively. Therefore, this example corresponds to the case where a good structure

(the orthonormal structure) has been chosen and one knows the exact location of final poles.

(Although this is not a realistic case, it is the fist experimental result that will be presented.) For

this example, the normalized reference filter has a pole at the location -1.1167 and a pair of

complex poles at -0.3819kj 1.2179. For the complex pair of poles, defining % and pole Q to be

the natural frequency and pole Q, respectively, we find w = 1.2764 and Q = 3.34.

Figure 5.8 shows the adaptation process of the discrete prototype when using the reference

filter described in equation (5.5) above. In order to observe the adaptation process, adaptation
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Fig= 5.8: Experimental results for adaptive filter mdel matching application.
Vertical scale = 10 dB/div Horizontal scale = 500 Hz&
(a) At power up. Horizontal line is adaptive filter’s transfer function.
&I At 7 .a=~ iri At&cm-
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speed was deliberately set quite slow and the swept sinusoid output from the spectrum analyzer

was used to approximate a white noise input. Note that the unusual looking part of the transfer-

function curve seen near low frequencies is a result of using the fast swept sinusoid as the system

input and is seen on both the reference filter’s response as well as the adaptive filter’s response.

Figure H(a) shows the transfer function of the reference filter and the initial adaptive filter’s

transfer function at power up whereas figure 58(d) shows the same two transfer functions after

adaptation is complete. Note that the two curves in figure 58(d) are almost identical as desired.

Referring to the adaptation times given in figure 5.8, the adaptation speed is seen to be

quite slow. This adaptation speed can be increased so that adaptation occurs in under 1 set by

using a white noise generator as the signal input. Using a white noise generator for the signal

input, figure 5.9(a) shows the spectrum of the outputs of the reference and adaptive filters where,

as before, the two curves are difficult to distinguish. To determine the level of mismatch

between the two spectra, the spectrum of the error signal is plotted along with the spectrum of

the reference signal in figure 5.9. Note that the error signal is approximately 40 dB below the

level of the reference signal indicating a close level of matching between the reference signal,

S(l), and the adaptive filter output, y (f).

In figure 5.10, a different adaptation example is shown where the poles of the third order

reference filter were changed to give a notch type transfer function. The components in the

adaptive filter were unchanged and therefore remained optimized for the pole locations of the

previous example implying that this example corresponds to the more realistic case where the

pole locations can only be estimated and not known exactly. For this example, the reference

filter had the state-space coefficients equal to
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Figure 5.9: Experimental results for third order lowpass reference filter.
Vertical scale = 10 dB/div Horizontal scale = 500 Wdiv
(a) Signal spectra for s(t) and y (f)
(b) Signal spectra for a(f) and e (f)
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Figure 5.10: Experimental results for third order notch reference filter.
Vertical scale = 10 &/div Horizontal scale = 500 Hz/div
(a) Signal spectra for s(z) and y (r)
(b) Signal spectra for &(r) and e (f)

0.98361
A = -2307 0

0 -1.8805
(+!J;] b = [ o.7;37] (5.6)

c?=[O 0 0.45631 d=O

The poles for this system are at the locations -0.5548 and -0.3379kj 1.6034 and have

cuu = 1.6387 and Q = 4.85 for the pair of complex poles. Note that these poles are sigrdicantly

different than the previous example yet the adaptive filter successfully matched the reference

filter.

In a final example, the third order reference filter had the state-space coefficients equal to
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i

0
A= 0

0
407 ] b= [ o*7;37]

-1.2307 -1.8805

cr=[o 0  1.57791 Cf=o

(5.7)

This system is only second order thus requires the third order adaptive filter to match a lower

order system. The poles of this system are at the locations -0.94025&jO.79407 with a zeros at 0

and m. The adaptation results for this example are shown in figure 5.11.

For this example, one might ask the question as to how the third order system successfully

models a second order system. To answer this question, a computer simulation was run using the

Figure 5.11: Experimental results for second order reference filter.
Vertical scale = 10 dB/div Horizontal scale = 500 Hz/div
(a) Signal spectra for s(f) and y (f)
(b) Signal spectra for s(l) and e (t)
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-0.9!36 1
0.98361

1.0337 -2.:307 -2.:185] ’ = [ 0.7!37]
12307

(‘.‘)

$ = [ -1.2611 1.3309 1.5779 ] d 0
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same parameters as this example. The final adapted system had the state coefficients

The poles for this system are located at 4.94025&jO.79407 and -1.0380 with zeros located at 0,

M, and -1.0380. Note that a zero and pole are located on top of one another causing the transfer

function to be reduced from third to second order. With this type of cancellation, one could

argue that the cancelled pole-zero pair might move about in the s-plane and possibly go into the

unstable region of the plane. However, this was not observed in the simulation or in the discrete

prototype experimental results. In fac& the discrete prototype was left running for well over an

hour and no instability was observed.

In concluding this section, these three examples show that the adaptive algorithms

presented in chapter 4 can successfully be translated into analog designs. Note, however, that

only a model matching application with a white noise input has been demonstrated in the three

examples and that no uncorrelated noise was added during the experimentation.

5.4. Monolithic implementation design details

In this section, the design details for a monolithic implementation of a voltage controlled

programmable continuous-time filter will be presented. The circuit was fabricated using a 3

micron CMOS pmcess that is available to Canadian universities through the Canadian

Microelectronics Corporation (CMC). Although the implemented circuit has both the pro-

grammable and gradient filters on chip, only the programmability aspects of the realization will

be discussed in this thesis. Work is presently being done to build external circuits so that the

integrated circuit can perform as an adaptive filter.



EXPERIMENTAL RESULTS 100

To construct a continuous-time programmable filter, one must first choose a basic technique

to implement the filter. Two techniques dominate CMOS continuous-time filter implementa-

tions; MOSFET-C [Tsividis et al, 19861 and G,,,-C (also referred to as transconductance-C)

[Khorramabadi and Gray, 19841. Of these two techniques, the MOSFET-C approach does not

perform as well at high frequencies but appears to have a better dynamic range. Although

dynamic range is important, it was felt that high frequency performance is a more important cri-

terion for analog adaptive filters since this region of frequencies is where analog circuits have a

distinct advantage over digital realizations. One of the reasons MOSFET-C implementations do

not perform as well at high frequencies is the difficulty in designing high frequency op-amps that

have the ability to drive resistive loads. However, with the G,,,-C approach, only capacitive

loads are driven and therefore one can make use of the design techniques developed for use in

high-frequency switched-capacitor filters. In particular, a single-stage folded-cascade transcon-

ductance amplifier having an excellent high-frequency response can be used.

The circuit for a folded-cascade transconductance amplifier is shown in figure 5.12. The

input differential pair of transistors connected to VI and V2 converts the differential input sig-

nal, VI-V2, to a pair of currents, 11 and 12 which are then reflected in the output stage of 8

uansistors such that the output node current, IOU is equal to I t -Z2. The purpose of using stacked

current mirrors in the output stage is to create a very high output impedance and therefore

approach an ideal transconductance amplifier.

One drawback to this simple circuit is that the output current is not linearly related to the

input differential voltage because of the nonlinear behavior of the input differential transistor

pair. This disadvantage could be overcome by using one of the many interesting circuit tech-

niques for realizing linearized transconductance circuits [Seevinck and Wassenaar, 19871
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IB-12

Figure 5.12: A folded-cascade CMOS transconductance amplifier

[Viswanathan, 19861 [Negungadi and Viswanathan, 19841. However, since all these approaches

increase the number of transistors required in the input stage, (and as we shall see, a large

number of input stages is required) it was decided to build the prototype programmable filter

using nonlinearized differential transistor pairs for the input stages.
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The first step in the design was to develop a variable transconductance differential input

stage where a single input voltage could continuously vary the transconductance of the stage

from positive to negative values. One design for such an input stage is shown in figure 5.13.

Ml-M&q
M5-M8=246
m=3OP
MlO,Ml1=7.5/4.5

,

II 16

Figure 5.13: Positive and negative variable transconductance differential input stage.
(a) Circuit details (b) Symbol used to depict circuit.
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Defining 1r-12 to be the output current, and V+-V- to be the input voltage, a positive voltage

on Gh4 results in a positive transconductance while a negative GM voltage causes a negative

transconductance. When the transconductance control signal, GM, is at ground potential, both

differential pairs of transistors receive the same bias currents and as a result of the cross coupling

of these stages, the transconductance is zero. Neglecting the early voltage effect in the transis-

tors, an interesting property of the circuit is that the sum of the output currents 11 and 12 is a

constant value as the transconductance is varied. The transistors sizes shown in figure 5.13 are

those used in the actual implementation of the programmable filter.

The basic circuit building block used to implement the programmable fiber is shown in

figure 5.14. This building block is essentially a transconductance folded cascade amplifier hav-

ing three variable transconductance stages. The currents in the three variable GM stages are

summed together to create a single pair of differential currents which is converted to a single

output current by the transistors Ml-M8 in figure 5.14. The number of variable transconduc-

tance stages used in the building block is three since, as will be seen, this is the maximum

number of signals summed into any one integrator in creating the programmable filter. If an

integrator sums less than three signals, then the inputs into one or more of the variable GM

stages are grounded. As well, note that the constant quiescent current into each of the variable

GM stages make for a simple design in the folded cascade output stage transistors, Ml-M8, in

figure 5.14. As before, the transistor sizes shown are those used in the implementation of the

programmable filter. For completeness, the bias circuit that provides the three bias voltages to

the transconductance amplifiers is shown in figure 5.15.

For the structure of the programmable filter, it was decided to use the transposed orthonor-

mal structure described in chapter 3. A complete diagram of the programmable and gradient
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h+
Vl-

Var GM
Stage

Transistor sizes (in urn)
Ml-Mk48l4.5

(a)
MS-Mtk24l4.5

v1+

2&
V2+
V2- out

GM2
V3+
V3-
GM3

Figure 5.14: Three input variable transconductance folded cascade amplifier
(a) Circuit details (b) Symbol used to depict circuit.
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M 1 ,M2,M4=30/9
M3=30/3

v M5=3x30/9
M6,Ml=48f4.5
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Figure 5.15: Bias circuitry for variable transconductance arnplitiers.

filters using the basic three-input transconductance amplifier is shown in figure 5.16. With this

circuit implementation, the following state-space system for the programmable filter is realized.

The gradient filter realizes the transposed system of the programmable filter in order to generate

gradient signals as described in chapter 4. Referring to figure 5.16 and the system in equation

(5.9), the voltage inputs ALFl, ALF2, and ALF3 are the GM control inputs that adjust the sys-

tem coefficients, q , a~, and q, respectively. Similarly, the voltage inputs B 1, B2, and B3

adjust the coefficients b 1, b2 and b 3. The output signals Xl, X2, and X3 correspond to the
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Vin

Bl

B2

B3

Ghfl
v2+

k2
o u t

V3+

Li&

+D XT2

VTin

BT3

x3

I II ’

T

fiogrammable filter

A
Gradient filter

Figure 5.16: Orthonormal programmable filter implemented on prototype chip.

states (or, equivalently, the integrator outputs) of the programmable system whereas the signals

XTl, XT2, XT3 correspond to the states of the gradient system. Note that from the state-space
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system in equation 5.9, X3 is also the filter’s output.

Referring to the system in equation (5.9), note that no output stmuning of states is used to

create the zeros of the transfer function. Instead, input summing creates the necessary zeros

through varying the coefficients b 1, b2, and b3 where these b vector coefficients are adjusted

using the pad inputs B 1, B2, and B3 in figure 5.16. The reason that input summing (which is a

result of using the transposed orthonormal structute) is used rather than output summing is that

with output summing, a summing network would be required having a larger bandwidth than the

integrator circuits and, unfortunately, this type of network is difficult to design. It should be

pointed out here that if the programmable filter were of an order higher than three, say N, the use

of input summing would still require at most three signals summed into any one integrator

whereas output summing would require a separate summing stage having N signals summed

together. Note also, that no capacitors are on chip as it was decided to use off-chip capacitors so

that a slower prototype circuit could be evaluated.

5.5. Monolithic programmable filter experimental results

A photo-micrograph of the fabricated programmable and gradient filters is shown in figure

5.17 where the top right circuit is a test structure of the three input variable transconductance

amplifier and the two lower circuits consist of the programmable and gradient filters (the upper

circuit is the programmable filter). The area for the programmable filter is only 0.7 mm2 and a

similar area is taken up by the gradient filter. To bias the circuit, a bias resistor is placed

between the bias pin and the negative supply. For the experimental results in this section, this

bias resistor was chosen to be 300 IU2 and thus set the bias currents to approximately those

shown in the circuit diagrams of the prototype. With a zb 3 volt power supply, the programmable

filter circuit dissipates 3 mW or, equivalently, 1 mW per pole while the gradient filter dissipates
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Figure 5.17: Photo-micrograph of 3 urn CMOS programmable and gradient filters.

an equal amount of power.

The test structure of the basic amplifier was used to plot the transconductance of the

amplifier vs. the control voltage resulting in the transconductance plot shown in figure 5.18. The

output resistance of the test amplifier was measured to be 2 MQ. Note that this transconductance

plot shows a fairly linear relationship between the transconductance and the control voltage.

Although this was an unexpected result, the mechanism behind this linearization is explained in

[Babanezhad and Temes, 19851 where a very similar circuit was analyzed. In this analysis, it is

shown that if the differential voltage applied to the variable GM stage in figure 5.13 is small,

then the transconductance from the input control voltage to the difference in the output currents
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Figure 5.18: Experimental results for variable transconductance amplifier.

approaches a linear relationship. Since in measuring the transconductance, a small differential

input voltage signal was used, the linear relationship shown in figure 5.18 was obtained.

Using the transconductance plot in figure 5.18 and arbitrarily choosing 0.4 volts to

correspond to a coefficient value of unity, the control voltages necessary to create the lowpass

filter described by the system in equation (5.5) were determined. However, note that the pro-

grammable filter implements the transposed system of equation (5.5) and forces cs to be one.

Thus, in fact the following system is realized.
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i
0.9:361

-0.98361
A=

0 1.2;07

C=[O 0 1] d=O

(5.10)

For this specific example, Alfl, Alf2, and Alf3 were set to 0.394,0.493 and 0.766 volts, respec-

tively while Bl, B2, and B3 were set to 0.627,0, and 0.181 volts, respectively. As well, external

capacitors of value 2.7 nF were placed on the outputs Xl, X2, and X3 to create the necessary

integration so that the passband edge was located at 1 KHz. The experimental spectrum response

of the programmable filter for this example is shown in figure 519(a) where signal levels were

approximately 100 mV peak. Note that although the ideal transfer function has a zero on the

imaginary axis, the experimental spectrum response shows that the zero has moved off the axis.

It is believed that this effect is due to the finite output impedance of the transconductance

amplifiers causing the integrators to be lossy. To demonstrate that this is indeed the case, con-

sider the system in equation (5.10) where the DC gain of the integrators is only 100. For this

situation, the system in equation (5.10) is mod&d by subtracting 0.01 off each of the diagonal

elements in the A matrix, resulting in the following system

-0.01 -0.98361 1.5779

A= 0.98361 -0.01 -1.:307 b =0 1.2307 -1.8905 1 i 0.4!63

G=[O 0  1 ]  Lf=o

(5.11)

For this lossy integrator system, the poles and zeros are shifted left 0.01 in the s-plane from the

equivalent roots in the ideal integrator case and thus the lossy case zeros move off the imaginary

axis. To place the poles and zeros back at their desired locations, one could pie-shift the poles

and zeros by the amount that they are expected to shift. However, rather than perform this com-

plicated procedure, it was found that by adding a negative term to 62 the zeros could be shifted

right and therefore back on the imaginary axis. Specifically, for the above lossy system, if b2 is

set to a.0074 the zeros fall on the imaginary axis once again. Although this simple method does
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Figure 5.19: Lowpass transfer function response for programmable filter.
Vertical scale = 10 dB/div Horizontal scale = 500 Hz&v
(a) Response when by is set to zero.
(b) Response after !IZ is adjusted to place zeros

on the imaginary axis.

not correct the pole locations, the transfer functions tested in this section appear to be insensitive

enough that the final function is close to the desired response. The spectrum response for the

programmable filter with bz adjusted to create zeros on the imaginary axis is shown in figure

5.19(b) where bz was measured to be about -0.05 volts after adjustment.

Finally, to demonstrate that the programmable filter can realize different transfer functions,

two spectrum responses for the programmable filter are shown in figure 5.20 where the different

responses are created by changing the voltage into the transconductance control inputs. Note
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Figure 5.20: Two different lowpass filter responses obtained with the
programmable filter.
Vertical scale = 10 dB/div Horizontal scale = 1 KHz/div

that both transfer functions have the same passband yet quite different stopbands and this could

only be accomplished by changing both the poles and zeros of the filter. For both of these filters,

62 was adjusted to place the transmission zeros on the imaginary axis.

5.6. Summary

This chapter has shown experimental and design details for a discrete prototype analog

adaptive filter demonstrating that the adaptive algorithms presented in chapter 4 can successfully

be transformed into the analog domain. As well, the design details and experimental results for a

fabricated monolithic programmable filter were presented. Work is presently being done on

adapting the programmable filter and realizing a fully integrated analog adaptive filter.



Chapter 6

The Effects of DC Offsets in Analog Implementations

6.1. Introduction

During experimentation with the discrete prototype analog adaptive IIR filter described in

chapter 5, it was found that the system was sensitive to DC offsets present at the integrators used

to implement the coefficient update formula. In fact, DC offsets appear to be one of the most

severe problems in realizing analog adaptive filters. In the discrete prototype, to overcome the

effects of the DC offsets, a large gain was required in the realization of the error signal. Chapter

5 shows the implementation of the large gain on the error signal while this chapter explains how

this gain reduces the DC offset effects. Unfortunately, in some applications, realizing this large

gain may be difficult to achieve and thus one would like to determine the minimum gain neces-

sary. Thus, it is important to determine the effect of these offsets and develop analytical results

that one can use to ensure that practical designs will meet the desired specifications. For these

reasons, this chapter investigates the effect of constant offset terms present in the coefficient

update formulae. General formulae will be derived giving the excess mean squared error result-

ing from these offsets for the LMS and sign-data algorithms. This general formula will show that

a high correlation between gradient signals increases the excess error due to DC offsets.

Section 6.2 will present a model illustrating the locations of the DC offsets that will be con-

sidered in this chapter. In section 6.3, a second-order FIR example will be presented to obtain

some insight as to why gradient signals with a high degree of correlation result in a large offset-

induced excess error. A general formula for offset-induced excess error will be derived in sec-
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tion 6.4 for the case of m adaptive filters and in section 6.5, it will be shown that this same for-

mula can be used to give approximate results for the IIR case. Throughout sections 6.2 to 6.5,

simulation results using digital adaptive filters will be given to verify the formulae derived, how-

ever, to feel confident that the derived formulae are useful in analog implementations, a com-

parison with experimental results is necessary. To accomplish this comparison, section 6.6

presents a modification of the excess error formula to account for use of the sign-data algorithm

that is utilized in the prototype analog adaptive filter. Finally, experimental results are given in

section 6.7 showing that the presented formulae agree with results from the discrete prototype.

Also presented in section 6.7 is an explanation as to why the large gain on the error signal

reduces DC offset effects.

It should be pointed out that the DC offset formulae for the FIR case using the IMS algo-

rithm (the sign-data algorithm was not analyzed) has previously been presented’ [Compton,

19881. However, this previous derivation of the formulae does not easily show that these same

formulae apply to the IIR case and thus, a different derivation of these formulae is given in this

chapter.

6.2. Coefficient update DC offset modeling

The LMS update formula for the coefficient pi applied to analog realizations was given in

chapter 2 as

A block diagram of this analog coefficient update formula is shown in figure 6.1. At first glance,

this diagram may appear unusual since it appears that the coefficient pi is obtained as the output

’ It should be mentioned that this reference was found a&r the theoretical work in this chapter was performed.
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Figure 6.1: Block diagram of coefficient update formula.

of an integrator with no apparent feedback to keep the output signaI from saturating. In fact,

there is negative feedback present in that the error signal is a function of the parameter pi (the

gradient signal is also a function of pi but to a lesser extent). At steady state, if the signal pi

starts to drift upwards, the error signal correlates with the

bring pi back down. This is the same mechanism which

minimum in the performance surface or, equivalently, a

uncorrelated with the gradient signal.

gradient signal in such a way as to

allows the adaptive filter to find a

location where the error signal is

Now consider the effect of a DC offset applied to the integrator used in determining the

coefficient pi. The i’th coefficient update formula with a DC offset becomes

(6.2)

where mi is the DC offset for the i’th update formula. The block diagram for this case is shown

in figure 6.2 where the DC offset is injected as a separate signal so that the integrator may be

considered ideal.

Note that with the model in figure 6.2, the DC signal need not come from only the DC

offset of the integrator but can also include the DC offsets of both the error and gradient signals.

It is easily shown that if both the error and gradient signals have DC offsets, then these DC
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signals will correlate with each other resulting in an additional DC offset. Therefore, by defining

mi to also include this offset signal, we

ideal with respect to DC offsets.

When an adaptive filter is at steady

may consider both the error and gradient signals to be

state, the expected value of the coefficient signal pi is a

constant value implying that the expected value of the signal into the integrator must be zero.

Thus at steady state, the following equation holds

E[f?(f)~+t?Zi]=O
i (6.3)

where E [*I denotes expectation. Since the expected value of a DC signal is the DC level, we can

write

(6.4)

Recall from chapter 2 that the inside of the expectation operator in equation (6.4) is the instan-

taneous estimate of the derivative of the mean squared error with respect to the parameter pi, or

in mathematical terms,

e(f) ?Y @’ -1 de2(f)-=--
aPi 2 aPi

Figure 6.2: Block diagram of coefficient update formula with DC offset, mi.
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Substituting equation (6.5) in equation (6.4) above and swapping the expectation and derivative

operators, we also have the following condition at steady state.

This formula implies that when no DC offset is present in the i’th update formula (mi = 0), the

adaptive filter settles at a point where the partial derivative of the performance surface with

respect to the i’th coefficient is zero. This is precisely the condition for finding a minimum.

However, in rhe case of a non-zero DC offset, the adaptive filter settles at a point where the same

partial derivative is at a value equal to twice the DC offset. In other words, the filter settles at a

position where the error is slightly correlated with the gradient signal in order to cancel the

effect of the DC offset, as seen from equation (6.4). Note that a DC offset forces the filter

coefficients to be incorrect which implies an error in the programmable fiber’s transfer function

at all frequencies (not just at DC).

6.3. Second order example

To obtain some insight into the effects of DC offsets, we will develop a formula giving the

excess mean squared error due to offsets for a simple second order FIR example. For this exam-

ple, we change to the digital domain because of the simplicity of the simulations in that domain

with which we can verify our results. This example is designed to illustrate the effect of non-

orthogonal gradients on offset-induced error.

The second order example chosen to investigate is shown in figure 6.3. The reference sig-

nal is obtained as the output of a simple FIR filter corresponding to adding the present input sig-

nal to the previous input signal. Note that the signals v 1 (n) and vz(n) are orthonormal while the

signals x 1 (n) and xz(n) both have norms equal to one but are correlated with each other by the

factor /r. When h equals zero, the pair x 1 (n) and xz(n) form an orthonormal set whereas when h
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n o i s e

(val=l)

Figure 6.3: Second order FIR example for DC offset analysis.

equals one, the same pair are a dependent set. The output of the programmable filter, y(n), is

seen to be a weighted sum of the signals xl(n) and xz(n) and the update equations for

coefficients p 1 and p 2 with DC offsets are found from

pi(n+l)=pi(n)+2j.l e(?Z)X(n)+??Zi
L 1

where mi is the DC offset for the i’th update formula.

(6.7)

From adaptive filter theory, it is easily shown that the performance surface for this example

is simply midrow and Stearns, 19851

E[e2] =E[e2]min + @-P*I~W-P*I @.Q
where E [e ‘]e is the minimum mean squared error (zero for this example), p is the vector of
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coefficients, {pi},

and p* is the vector of coefficients corresponding to the minimum mean squared error which for

this example is easily found to be

p* z Il-q-& 1

1ik
The input correlation matrix, R, for this example is simply

(6.10)

(6.11)

Setting the minimum mean squared error to zero and making the change of variables,

q=p-P*
results in the following expression for the mean squared error.

(6.12)

Expanding this equation results in

E [e ‘I= qTRq (6.13)

Ek21 =d +d +Wm
where q 1 and q 2 are the elements of q.

(6.14)

By setting the mean squared error to constant values, one can immediately see that this

example has elliptical contours for the performance surface. In the case where the correlation

number, h, is zero, the contours become circles, as expected.

To find the point where the adaptive filter settles, we take the partial derivatives of this

mean squared error formula and set them equal to the respective DC offsets as in equation (6.6).

Taking these derivatives results in the following equations that must both be satisfied at steady

state.
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q l+M2=m 1 (6.15)

q2+b =m2 (6.16)

Using a graphical approach to solve these two equations, we can plot two lines corresponding to

equations (6.15) and (6.16) on the performance surface contour plot. These two lines are lines of

constant partial derivative of the error performance surface with respect to the coefficients ql

and q2. The intersection of the two lines will be the steady state point of the system.

For the case of h equal to 0.7 and m 1 and m 2 both equal to zero, figure 6.4 is a contour plot

of the performance surface together with the constant partial derivative lines plotted as thick

0.04

0.02

q2
0.00

-0.02

. -0.04
-0.04 -0.02 0.00

q1

0.02 0.04

Figure 6.4: Contour plot of performance surface for second order example with h = 0.7. Also
plotted are the constant derivative lines for m 1 = rn2 = 0.
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lines. In this case, one sees that the intersection of the two constant partial derivative lines is at

the minimum of the performance surface, as expected. As well, note from equations (6.15) and

(6.16) that the slopes of these two lines are -h and $ in this diagram. Thus, as the correlation

number h approaches unity, the two lines become parallel.

Now consider the case where m 1 = 0.01, m2 = 0 and h is once again 0.7. Figure 6.5 is a

plot of the performance surface and the constant partial derivative lines for this situation. It is

seen from figure 6.5 that at steady state, the rms value of the error is certainly not at the

minimum in the performance surface. In this case, the steady state rms value of the error is seen

0.04

Q2
0.M

- 0 . 0 4 -0.02 0.00 0.02 0.04
Ql

Figure 6.5: Contour plot of performance surface for second order example with h = 0.7 Also
plotted are the constant derivative lines for m 1 = 0.01 and m2 = 0.
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to be 0.014. It is interesting to note that as the correlation number, h, approaches unity and the

lines become parallel, the excess mean squared error due to offsets will approach infinity.

We can also perform some mathematical manipulations to get a formula giving the rms

error for this particular second order example. Solving for the values of 4 1 and q2 using equa-

tions (6.15) and (6.16), we have at steady state

m-h2
q1=

(1-h2)
(6.17)

m2-h
q2=

(1-h2)
(6.18)

Substituting these values for q 1 and q2 into the root mean square ermr formula gives the follow-

ing result for the excess mean squared error due to DC offsets.

I& =
rnf +m$ -2hmlm2

l-h2
This formula verifies the graphical realization that the excess mean squared error will go to

infinity as the states become more correlated.

The above second order example was simulated and root mean squared values estimated by

using 5000 samples after steady state was attained. Table 6.1 lists the simulated excess root

mean squared error (rmse) for different correlation numbers and DC offsets as well as the calcu-

lated rmse. Any differences between the simulated and derived values are believed to be the

result of using a finite number of samples to approximate the rms value of a signal as well as

using non-zero step sizes to adapt.

6.4. Offset-induced error for the FIR case

In this section, a formula will be derived giving the excess mean squared error due to DC

offsets for an N’th order adaptive linear combiner. In the next section, it will be shown that this
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Table 6.1: The simulated and calculated root mean squared error (rmse) with varying correlation
values, /t and DC offsets, nt 1 and nt 2.

same formula gives approximate results for the generaI case of an adaptive IIR filter with DC

offsets.

Consider the general adaptive linear combiner described in chapter 2 and shown again in

figure 6.6. The gradient signals are simply the input states into the linear combiner and can be

written as a vector

x(n) E

As well, the correlation matrix, R, is defined as

(6.20)

R 3 E[x(n)xT(n)] (6.21)

Referring to figure 6.6 and assuming a small step size, at steady state the coefficients, p, are

no longer functions of the iteration number and therefore the error signal can be written as

e(n) = &(n jx’(n)p (6.22)

Using the same definitions as the last section where p* is the vector of coefficients
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Figure 6.6: A linear combiner adaptive filter

corresponding to the minimum mean squared error and q is the difference between p and p*, we

can write the error as

e (n) = &(nkxT(n)p*-xT(n)q (6.23)

Recall that we are interested in finding the excess mean squared error that results f?om DC

offsets, therefore we make the assumption that the mean squared error equals zero if all the DC

offsets are zero. Making this assumption implies that when q = 0, the error signal is always zero

and therefore

Ii(n) = xT(n)p*

Thus, the excess error signal can be reduced to simply

(6.24)

e(n)= -&Oq (6.25)
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Now writing the DC offsets as a vector m, we can apply equation (6.4) above for the set of

DC offsets to obtain

E [x(n)e(n)] = -m

Combining equations (6.25) and (6.26) results in

(6.26)

E [x(n)xT(n)q] = m

and using the definition of the correlation matrix, R, we obtain the following formula.

(6.27)

q=R-‘rn (6.28)

This equation gives the error in coefficient values due to DC offsets. To obtain the excess mean

squared error due to DC offsets, we use the definition for the mean squared error and perform the

following manipulations,

Id =~MM~~l (6.29)

= E bfxb ~~%hl (6.30)

= mTRsTE [x(n)xT(n)]RB1 m (6.3 1)

z mTR-* m (6.32)

Equation (6.32) above is the formula which gives the excess mean squared error due to DC

offsets. Note that in the case where all the gradient signals are orthonormal (ie. R equals the

identity matrix), the excess mean squared error is simply the sum of the squares of the DC

offsets. Also note that the level of the input signal affects the excess error through the correla-

tion matrix R. Finally, note that in the FIR case, this correlation matrix, R, is not a function of

the adaptive coefficients , pi, since it only depends on the outputs from a fixed filter. For this

reason, the offset-induced excess error value obtained through the use of equation (6.32) does

not depend on the final transfer function of the adaptive filter. It will be seen that this is not the

case for the IIR situation to be described in the next section.
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As a test for this error formula, one can apply it to the second order example described in

the last section and obtain the same result that was derived there. As an additional test, a third

order adaptive linear combiner with DC offsets was simulated where the reference transfer func-

tion was zs2 + z-l + 1. The input correlation matrix R for the simulation was chosen to be

and the DC offset vector m was arbitrarily set to

(6.33)

m= (6.34)

For this example, the calculated excess rmse using equation (6.32) is 0.0922 and the simulated

rmse was 0.092.

6.5. Offset-induced error for the IIR case

Note that equation (6.32) was derived for adaptive linear combiners and does not strictly

apply in the case of adaptive IIR filters. Fortunately, by redefining the gradient vector x to

include all gradients for the IIR case and assuming the DC offsets cause small changes in the

coefficients {pJ, equation (6.32) can be used to approximate the excess mean squared error.

Specifically, the elements of the gradient vector, x(n), for the IIR case are defined as

(6.35)

The correlation matrix, R, is defined, as before, to be

R = E[x(n)x*(n)] (6.36)

Note, that in the case where white noise is applied to the system input, the correlation matrix R

can be obtained by using impulse responses as described in chapter 2. Specifically, the element

Rij can be found from the following equation
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where ?dd. and m
&+ Pj

are the gradient responses when an impulse is applied to the system

input and the coefficients are fixed at their final values. If continuous-time rather than discrete-

time circuits are being used then the summation function in equation (6.37) above is changed to

an integration. Finally, the DC offset vector, m, is defined, as before, to be the DC offsets intro-

duced in each coefficient update formula.

To illustrate that this equation applies to the IIR case, one can follow the same analysis as

in the adaptive linear combiner situation except that writing the error as equation (6.25) must be

justified. This equation can be justified, if small coefficient changes are assumed since with this

assumption, the error can be written as

e(?z)=8(n)-y*(?+- p-----N tiW&
icl aPi

(6.38)

where y*(n) is defined as the output y(n) obtained with the optimum coefficients causing

minimum mean squared error and &i is defined to be the change in coefficients due to DC

offsets. As before, since we are interested in excess MSE due to DC offsets, we can assume the

minimum MSE is zero and write

e (n) = xT(n)q (6.39)

where the elements of q are &i. This small coefficient change assumption justifies the use of

equation (6.39) above and therefore one can use equation (6.32) to approximate the excess error

due to DC offsets in adaptive IIR filters.

Note that in the IIR case, the correlation matrix, R, is a function of the adapting

coefficients, pi, and is therefore a function of the adaptive filter’s transfer function. This implies

that in the IIR case, one requires knowledge of the final transfer function for the adaptive filter in
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order to apply the offset-induced excess error formula. Since this exact transfer function is usu-

ally not known, one can only hope to obtain approximate results with this method by estimating

the final transfer function.

To check the validity of this formula for the RR case, a second order model matching

example with DC offsets present was simulated. In this simulation, only the bottom row of the

A matrix was adapted while all other parameters remained equal to the optimum values. The

reference filter had the state-space describing equations:

A = j.8 1!7] b=[ 0.:25] c=[ Y] cf=O
Defining x(n) to be the vector of gradient signals required to adapt the bottom row of A, and

assuming the final transfer function of the adaptive filter equals the transfer function described in

equation (6.40), for the white noise input case, the correlation matrix, R, was found to be

R =

With offsets equal to 0.01, the simulated

1.032 0.9913
0.9913 1.032 I (6.41)

and calculated rms errors were 0.1 and 0.07, respec-

tively. The bottom row of the A matrix settled at the coefficient values -0.75 and 1.65. This

example shows a reasonable agreement between the calculated and simulated values. However,

by decreasing the offset, the accuracy of the small change approximation in equation (6.38) is

improved and therefore an even closer agreement should be obtained. Decreasing the offsets to

0.001, the simulated and calculated rms errors were 0.007 and 0.00704, respectively, which is

certainly a close agreement. For this simulation, the bottom row of the A matrix settled at the

coefficient values -0.797 and 1.697.

Finally, note from equation (6.32) that the value of the excess error due to DC offsets is

proportional to the inverse of the correlation matrix, R. This fact implies that the excess error

will increase as the states become more con-elated since the matrix R will become more ill-
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conditioned. This increased excess error is another reason to look for structures with orthonor-

mal gradients.

6.6. Offset-induced error for the sign-data algorithm

Recall from chapter 5 that the sign-data algorithm m&plies the error signal by the sign of

the gradient signal rather than the gradient signal itself for reduced hardware complexity. There-

fore, for the many practical applications that use the sign-data algorithm, the offset-induced

excess error formula needs be adjusted to account for this different adaptive algorithm.

In accounting for the use of the sign-data algorithm, we make use of the Signum function,

sgn [x 1, defined in the following equation.

Sgn[x] = 1 ifxXI (6.42)

=-1 ifxc0

With this Signum function, equation (6.26), above, is replaced by

E[Sgn [x(n)]e (n)] = -m (6.43)

where the Signum of a vector is defined as applying the signum function to each of the vector

elements. As before, we can write the error signal as a function of q and x(n) using equation

(6.25) and therefore can write

EM bWl~%Ol~ = m
This leads to the following equation for q.

6441

q=i-‘m

where the Signum correlation matrix, i, is defined as

(6.45)

R = E [sgn [x(n)]xT(n)]

or, equivalently, the element Rij is defined as

~ij = Qan h~~~~j~~~l

(6.46)

(6.47)
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Now, we can use equation (6.30) and substitute in the new expression for q to obtain the follow-

ing offset-induced excess error formula for the sign-data case.

I& = &-&$$I m (6.48)

Note, that in the above equation, the matrices R and R need to be obtained. For white noise

inputs, the matrix R can be obtained as has been shown above. Unfortunately, it is not clear how

to obtain the matrix k except by applying the defining equation (6.47). However, in the special

case where the input has a Guussiun white noise zero mean characteristic one can find a closed

form expression for the elements of R in terms of the elements of R. Specifically, if the input

signal has a zero mean Gaussian distribution, the joint probability density function, QXiXj(qV~j),

between the signals xi and Xj can be written as [Papoulis, 1984, p. 1861

Using this joint probability function, the term iij can be found by integrating the weighted pro-

bability density function over both variables or mathematically,

oom

iij = J J Sgn[XllX2~~i~j(Xi,Xj)~l~2 (6.50)
-

Performing this integration (which is not a trivial process!) leads to the following closed form

expression for the elements of 6.

(6.5 1)

Therefore, in the case of zero mean Gaussian white noise inputs, equation (6.51) can be usA to

obtain k and equation (6.48) can be used to give the offset-induced excess ertor in adaptive FIR

filters using the sign-data algorithm. The same formulae can be used to give approximate results

for adaptive IIR filters also using the sign-data algorithm.
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6.7. Experimental Results

In this section, DC offset experimental results using the discrete prototype will be com-

pared to the theoretical results using the offset-induced excess error formulae above. Since the

discrete prototype uses the sign-data algorithm, equation (6.48) will be the formula used for

comparison.

Figure 6.7 shows the method of applying a known DC offset signal to the i’th coefficient

update integrator. First, note in figure 6.7, that the sign of the gradient signal is multiplied

ke (t) where k is an amplification constant for the error signal to reduce the offset effects.

bY

In

chapter 5, it was seen that k ‘was arbitrarily chosen to be 82 for the discrete prototype. It is easily

seen that this reduces the offset effects since adding this gain factor implies that [keis will

replace [ei$ in equation (6.48) above. Since, the right hand side of equation (6.48) is unaffected

by the addition of the gain factor, k, the resulting offset-induced excess rms error is reduced by

the factor k. Experimentation confirms the reduction in offset-induced excess error when increas-

ing the gain factor, k. It should be pointed out that this gain factor will be difficult to realize at

high frequencies since high frequency gain circuits are not a trivial task to implement. This

difficulty in implementation is one of the major reasons for developing these DC offset related

formulae. With these formulae available and a known tolerance on DC offsets, a designer can

choose the minimum error gain factor, k, necessary to meet specifications.

Referring again to figure 6.7, an equivalent DC offset voltage was applied to the i’th

coefficient update integrator by adding the resistor network shown in figure 6.7(a) to the virtual

ground terminal. This method of applying the DC offset was chosen so that the connections to

the discrete prototype could be simply added on in parallel rather than having to “cut” into the

circuit. As shown in figure 6.7(b), the magnitude of the applied equivalent DC offset was
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Figure 6.7:

Pi

Injecting a DC offset into the coefficient update integrator.
(a) Experimental method
(b) Equivalent circuit

122mV
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(an arbitrary number dependent on resistor values) where the sign of the offset is determined by

the sign of the supply voltage that is applied to the offset resistor network. With this approach,

two offset-induced excess rms error voltages are measured, iA+ and IkeI”, which correspond to

using a positive and negative voltage supply, respectively. If no other offset voltages are present

in the circuit, then the above theory predicts that i/uzlP should equal ltiln. , However, this is not

observed due to the fact that there already exists unknown equivalent offsets resulting from the

non-idealities of the circuit realization. If we call the vector of unknown offsets ml and the

measured rms error with no external offsets applied, lkelml, then we can write

2 -lWmI -ml‘Hrnl (6.52)

where H is defined to be fimTR$‘. Now letting the known vector of positive applied offsets be

rnz, we can write equations for [AzIP and I&.

and

IWZ = (ml + dWm~ + w) (6.53)

= mfHml + rn$Hrnz + mfHrn2 + m$Hml (6.54)

IWi = OnI - wfI-Um~ - w) (6.55)

= rnrHrn1 + rn$Hrnz - mfHm2 - rngHrn1 (6.56)

Letting wel,,,z be the offset-induced excess error due to rn2 only, from equations (6.52), (6.54)

and (6.56), it is not difficult to show the following equality.

lk4i12 = %lk& + %lk& - lkx?l&I (6.57)

Finally, we can now compare experimental results with theoretical ones. For the DC offset

experimentation,

results presented

and the adaptive

found to be:

the reference filter was set to the same as that used in the first experimental

in chapter 5. Specifically, the reference filter corresponded to equation (5.5)

filter cotresponded to equation (5.4). For this case, the R and & matrices are
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R =

-1.0000 0 0 0.2483 0.4986 0.3246
0 1.0000 0 -0.4986 -0.1579 0.0032
0 0 1.0000 0.3246 -0.0032 0.0966

0.2483 -0.4986 0.3246 0.8187 0 0.2171
0.4986 -0.1579 -0.0032 0 0.5470 0

_ 0.3246 0.0032 0.0966 0.2171 0 0.2284

-0.7979 0 0 0.1981 0.3978 0.259
0 0.7979 0 -0.3978 -0.1260 0.0026
0 0 0.7979 0.259 -0.0026 0.077 1

0.2189 -0.4397 0.2863 0.7219 0 0.1915
0.5379 -0.1704 -0.0035 0 0.5901 0

.0.5420 0.0053 0.1614 0.3625 0 0.3813

(6.58)

(6.59)

Table 6.2 shows a comparison of theoretical vs. experimental excess error voltages due to DC

offsets. For this comparison, white noise was applied to the system input and with no applied

offsets, the rms voltage of the error voltage was measured giving ikelmI. Then, a positive and

negative offset voltage was applied to the i’th coefficient integrator so that lke[P and [k& could

be measured. With these three measurements, the experimental value for [k~[,,,~ can be derived

using equation (6.57). Finally, this experimental value of [kelmz is compared against the

5 A32 0.7 0.51 0.58 0.575 1
6 A33 0.7 0.46 0.56 0.538 4

Table 6.2: A comparison of theoretical and experimental results for injected DC offsets. When
no DC offsets applied, lkelmI equals 0.2 Vrms. The i’th row corresponds to DC offsets on the
i’th integrator.
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theoretical value obtained using equation (6.48). This corresponds to each row in table 6.2 relat-

ing to a DC offset vector of Sl.122vi applied where vi is a basis vector with a value of unity in

the i’th row. To measure the rms voltages of the amplified error, IkeI, a digital-readout true rms

meter was used. Unfortunately, it was not a simple matter to read the rms value of the output

error signal since low frequency components were present and thus successive meter readings

varied considerably. The value used was an estimate of the average of a few successive readings.

Note that [k~[~~ was measured to be 0.2 Vrms. Also, note that in table 6.2, the same notation

for the adapting coefficients is used as that in equation (5.4). We see from table 6.2 that all

measurements agree within 20 percent of the theoretical predictions. This degree of accuracy is

reasonable considering that all circuit non-idealities other than integrator DC offsets have been

ignored and that noise rms measurements were made. This degree of accuracy should be close

enough for design purposes when one considers the variability of DC offsets in a given technol-

ogy.

6.8. Summary

Through the use of experimentation with a discrete prototype, it was observed that DC

offsets on the coefficient integrators appears to be the most severe non-ideal effect of analog

adaptive filters. To reduce the effect of these DC offsets, a high gain was used to amplify the

error signal. (A explanation of how this gain reduces DC offsets was presented in section 6.7.)

However, at high frequencies, this gain may be difficult to implement and thus, a designer needs

some guidance in choosing a minimum gain that guarantees that the system will meet

specifications.

Towards choosing this minimum gain, this chapter has developed foxmulae which give the

expected excess error and the coefficient deviations due to the DC offsets of these integrators. It
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was shown that the derived formulae are exact for the adaptive linear combiner case (FIR),

whereas for the IIR case, the formulae are an approximation using first order sensitivities. These

formulae were also modified for the sign-data LMS algorithm so that realizations using this algo-

rithm could be analyzed. Finally, experimental results were compared to theoretical values

showing a close agreement between the two sets.



Chapter 7

Summary and Conclusions

7.1. Introduction

The main purpose of this thesis was to investigate the feasibility of analog adaptive recur-

sive filters. The author believes that using the approach developed in this thesis, analog recursive

filters arc certainly feasible. However, along the way of this feasibility investigation, ideas have

been developed which should be useful in more areas than just a.naIog adaptive recursive filters.

In particular, the orthonormal ladder filter appears to be a viable alternate structure to a cascade

of biquads. As well, the adaptive algorithms presented in chapter 4 seem to be of some use in

the digital domain.

Section 7.2 will summarize the material presented in this thesis and outline the main contri-

butions made. Suggestions for further research will be presented in section 7.3.

7.2. Summary

In chapter 2, necessary background material was presented including notation usage and the

definition of some commonly used teims; expectation, correlation and norms. As well, some

adaptive filter theory was presented where it was shown that orthonormal signals are useful

when using the LMS adaptive algorithm. Also presented in this chapter was a brief introduction

to state-space filter theory. Of particular importance were the definitions of the correlation

matrices K and W and the idea of a transposed system such that the intermediate-functions, F(s)

and G(s), are exchanged.



SUMMARY AND CONCLUSIONS

The first contribution made in this thesis was the presentation in chapter 3 of a new filter

structure resulting in circuits referred to as “orthonormal ladder filters”. Through the use of

examples, it was shown that orthonormal ladder filter realizations have a sensitivity and dynamic

range performance comparable to a cascade of biquads. However, other interesting properties

make this new filter structure useful in the design of adaptive filters. Specifically, it was shown

that the inherent structure of orthonormal ladder filters guarantees that the resulting realizations

are L2 scaled for optimum dynamic range. As well, it was shown that the set of integrator out-

puts in these filters form an orthonormal set when white noise is applied at the filter input.

Finally, it was shown that the sign of only one coefficient determines the stability of the system

and thus provides a simple stability check.

The next main contribution was presented in chapter 4 where new adaptive algorithms for

state-space recursive systems were given which could be applied in either the digital or analog

domain. A general algorithm for adapting all the coefficients of a state-space system was first

presented but, unfortunately, requires an excessive amount of computations. To reduce the

amount of computations, single-row and single-column adaptive structures were presented.

Although these adaptive filters have no restrictions on their pole locations, it is felt that these

new filters are best suited to applications where an estimate of final pole locations is known. For

these types of applications, it was shown that these new adaptive filters have significant perfor-

mance improvements over the traditional direct-form implementations, especially in the practi-

cal cast of oversampled systems. It should be pointed out that the adaptive algorithms presented

in this thesis are all based on the LMS steepest descent approach and would have to be modified

to ensure global rather than local convergence.
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In chapter 5, it was demonstrated that the algorithms of chapter 4 could successfully be

converted to the analog domain and that fully integrated analog adaptive recursive filters are

possible. Towards demonstrating the successful conversion of the adaptive algorithms, design

details and experimental results were presented for a discrete prototype of a third-order single-

row analog adaptive filter. The results are very encouraging. With respect to fully integrating

an analog adaptive recursive system, design details and experimentaI results were given for a

monolithic CMOS programmable filter. The results for this programmable filter show that only

a small amount of silicon is required and that the programmable filter’s performance indicates

good programmability. Thus, though an extra filter is required to create gradient signals to adapt

the programmable filter, it should be possible to fully integrate an analog adaptive recursive

f&r.

Finally, chapter 6 addressed the important issue of the effects of DC offsets present in ana-

log adaptive recursive filter realizations. Formulae giving the excess error and coefficient devia-

tion due to DC offsets were developed for both the LMS and sign-data algorithm for both FIR

and IIR filters. The formulae for the LMS case were verified using simulations, and experimen-

tal results showed a close agreement between predicted and measured results for the sign-data

case. As well, it was shown that by increasing the gain of the error signal, the effects of DC

offsets could be reduced.

7.3. Suggestions for further work

The orthonormal filter structure developed in chapter 3 has non-zero elements in each row

and each column. Therefore, to continuously adapt a programmable filter with this structure, one

requires N extra gradient filters where N is the order of the programmable filter. One way to

reduce this computational burden would be to find an orthonormal structure with arbitrary pole
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locations but with the varying elements all in only one column and one row. If such a structure

could be found, then one would require only 2 extra gradient filters for an N’th order filter. The

advantage of such a structure might be that performance improvements similar to single row and

single column adaptive filter would be attained without the need for final pole location estimates.

The reason for believing that such an improvement would be obtained is that this type of

improvement was observed during adaptive filter simulations with the orthonormal structure

where N extra gradient filters were used to obtain gradients. Of course, it is entirely possible

that such a column and row structure does not exist.

Another area of research to investigate is to modify the Lyapunov formula given in chapter

3 to account for input signals with non-white statistics and thus obtain orthonormal structures for

arbitrary inputs. This would be useful where the input signal’s statistics can be estimated and

they vary significantly from white noise. Along the same thought would be to look for some sort

of self-orthogonalizing structure for analog circuits similar to digital adaptive lattice structures.

With regard to the adaptive algorithms presented in chapter 4, it would be very useful if

these algorithms could be modified to ensure global convergence. Although, this may be quite a

theoretical challenge, the final algorithm could be quite simple. For example, the SHARF algo-

rithm [Larimore et al, 19801 is different from the approximate gradient approach [Feintuch,

19761 in that the SHARF algorithm merely requires a filter on the error signal and the a strictly

positive real condition must be satisfied.

With respect to analog implementations, the effects of adapting coefficients clipping should

be investigated. This clipping effect could cause local minima to be created depending on the

performance surface.
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Also on a theoretical level, much work could be done to improve the adaptation speed of

convergence such as using different step size constants for different coefficients and varying the

step size during adaptation.

With respect to the more practical aspects of future research, the next logical step in this

research is to adapt the programmable IC filter using external circuitry and then build a fully

integrated analog adaptive recursive filter. Since the structure of the programmable filter is that

of an orthonormal ladder filter and only one gradient filter is available, the gradient filter will

have to be multiplexed to adapt a single column at a time. Although this will reduce the adapta-

tion speed, the system should perform well without an estimate of final pole locations. As well,

a fully integrated single row or column adaptive filter should be constructed with some applica-

tion in mind.

Note that since all gradients are obtained as outputs of filters using a state-space system

description, one could construct adaptive filters with arbitrary operators, for example, damped

integrators. This would involve replacing the 3” or “2 operator with some other type of opera-

tor. In particular, operators in switched-capacitor filters could be used to adapt SC filters. It

would be interesting to see if this type of approach led to any advantages.

Along the lines of the DC offset results, more effort could be applied to reducing the effects

of DC offsets without the need for such a high gain on the error signal.

Of course, the analog adaptive recursive filter approach developed here should be applied

to some practical applications.

Finally, it should be pointed out that adapting continuous-time integrated filters to match

desired transfer functions appears to be quite similar to the problem of self-tuning “fixed”

continuous-time integrated filters [Tsividis et al, 19861. With this in mind, interesting research
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might involve applying many of the analog adaptive concepts in this thesis toward the imple-

mentation of high quality continuous-time integrated filters.
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