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Abstract

Adaptive recursive filters are often implemented using direct-form realizations. In this
thesis, adaptive agorithms are presented for state-space systems so that the performance of vari-
ous filter structures may be investigated. Through the use of smulations, it was found that much
faster adaptation rates and much improved round-off noise performance may be obtained using
structures other than direct-form when final pole locations can be estimated. Since the resulting
algorithms are gradient-based, where the gradient signals are obtained as the output of additiona
filters, both digital and analog adaptive recursive filters can be realized. A new orthonormal
ladder filter structure is presented which has some properties making it attractive for analog
adaptive filtering. Specifically, the structure is derived from a singly-terminated L C ladder and
has the properties that it is always scaled for optimum dynamic range and its integrator outputs
are orthogona when white noise is applied to the system input. To demonstrate the practicality
of analog adaptive recursive filters using the methods in this thesis, experimental results from a
discrete prototype are given. Aswell, the design details and experimental resultsfor amonol-
ithic realization of a continuous-time programmable filter is presented, thus showing the feasibil
ity of practical fully integrated analog adaptive filters. Finally, the effect of DC offsets present
in analog implementations is investigated and formulae derived so that the these effects can be

estimated and reduced.
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Chapter 1

I ntroduction

1.1. Motivation

Adaptivefilters have become an important tool for system designers. Presently, adaptive

filters are used as channel equalizersin high speed modems, echocancellers on telephone lines,

and avariety of other applications. Infact, without the use of adaptivefilters, the performance

of many systems would certainly be degraded. This degradation would mainly be aresult of the

time varying characteristics found in many engineering problems.

A block diagram of an adaptivefilter isshown infigure 1.1. There are two inputsto this

e
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Figure 1.1: An

adaptive filter.
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system, u(t) and &(t), where &(¢) is often referred to as a reference signal. Qualitatively, the
adaptive filter minimizes some measure of the error signal, &(f). In thisway, the output of the
adaptivefilter, y (£), becomessimilar to thereference signal, &(t), and hencetheterm reference
signal. Note that if the adaptive filter could adapt its output instantaneously such that the error
signal is always zero, then the filter output y (¢) would be equal to &(z). However, thisis not
effect that one wants to obtain with an adaptive filter. In fact, although the adaptive filter minim-
izes the error signal, in many applications the error signal will not and should not go to zero. The
goal of anideal adaptivefilter isto forcethe error to be at aminimum only to the extent that a
fixed linear filter could also achieve assuming the charateristics of the input signalswere time-
invariant. To achieve this goal, the adaptive filter’ s transfer function varies slowly in com-
parison to the signalsu (t) and 8(z). In this way, once the adaptive filter converges, only the part
of the signalsin u(f) and &(r) which are related by alinear transfer function are subtracted to
reduce the error signal. To illustrate this point, an example is given below of an echo canceling
application where the error signal should not go to zero. Finaly, it should be noted that in an
adaptive filter system, the output is usually taken as either the error signal, e (¢), or the filter out-
put, y (¢). Alternatively, in some applications, coefficient values describing the transfer function

of the adaptive filter are the desired outpuit.

Let us now consider one application of an adaptive filter to understand how one applies this
technology. A block diagram showing the application of an adaptive filter to an echo cancella-
tion problem isshown in figure 1.2. In this example, a 2-4 wire hybrid is used to convert two
pairs of wires carrying the receive and talk signals (referenced to telephone set B) to a single pair
of wires having both talk and receive signals on it. With an ideal 2-4 wire hybrid, there would be
no need for an adaptive filter. However, in actual implementations, there is aways some amount

of receive signal which leaks through the hybrid on to the talk signal. This |eaked receive signa
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Figure 1.2: An adaptive filter used in an echo cancellation application.

isreferred to asan echo signal since the speaker on telephone set A will hear their own voice
after some delay through the system. Using an adaptive filter, as shown in figure 1.2, one can
reduce the amount of echo. The echo isreduced by the adaptive filter attempting to match the
filter output, y(t), with the "talk + echo” signal. Sincethesignal y (¢) isafiltered version of the
receivesignal (hopefully uncorrelated with thetalk signal), the only way to minimizetheerror
signal, e(t), is to match y(t) to the echo signal. In this way, the talk signal is sent on with a
reduced amount of echo signal. Note that for this example, one could actually replace the adap-
tivefilter with alinear filter if one knew the characteristics of the 2-4 wire hybrid. However, this
approach is not practical as the characteristics of the hybrid are not trivial to determine and
changewithdifferent telephoneconnections.  For further applications of adaptive filters, the

reader isreferred to [Widrow and Stearns, 1985].

From the above example, we see that an adaptive filter can be thought of asalinear filter

which changesitstransfer function over timein order to minimize some error criterion. Using
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the fact that a transfer function can be described in the frequency domain by poles and zeros, one
can classify adaptive filters into two types; Infinite-lmpul se-Response (IIR) and Finite-Impulse-
Response (FIR) adaptive filters. Adaptive FIR filters change only the zeros of the transfer func-
tion while adaptive IR filters change both the poles and zeros of the transfer function’.
Presently, most adaptive filter implementations consist of the FIR type due to the speed of con-
vergence in finding a minimum and a guaranteed convergence to the minimum error. However,
to achieve a satisfactory performance with an adaptive FIR filter, a high order filter is often
required. In many applications, this order can often be significantly reduced by using an adaptive
lIR filter where both the poles and zeros of the filter’ s transfer function are adjusted. However,
there are problems associated with adaptive | IR filters such as converging to alocal minimum
and ensuring that the filter remains stable. Nevertheless, because of the reduction in filter order,
thereisconsiderableinterest in understanding and devel oping practical adaptive IIR filters. In
fact, although the theory behind adaptive IIR filtersis not yet well established, there are some

applications where adaptive IR filters are now being applied [Eriksson and Allie, 1988]

Aswell as classifying adaptive filtersinto TIR or FIR types, one can aso classify adaptive
filters into two main implementation technologies; analog and digital. Digital implementations
are the most common method of adaptive filter realization where digital signal processing blocks
are used to realize the necessary programmablefilters. Thistechnology isespecially suited for
programmable filters since filter coefficients realized with random-access-memory (RAM) are
easily changed. However, the use of digital signal processing blocks limits the types of applica-
tions to those that can be efficiently realized with digital technology. Specificaly, it is well

known that anal og filters can process much higher frequenciesthan digital filters. Aswell, in

' Note that the transfer function of the filter in an adaptive FIR filter may be of the IIR type but only the zeros



INTRODUCTION 5

applications where no digitization is necessary except for filtering, analog implementations
require much less silicon areathan the equivalent digital systems. Thus, there are applications

where analog adaptive filters are used to meet system specifications.

Intable 1.1, asummary of the present theoretical base and implementation usage for the
different adaptive filter types is presented. This table indicates that the digital adaptive lIR filter
techniques are just starting to mature and that analog adaptive IR filters are only very recently
being investigated. In fact, the analog adaptive IR filtering results so far arc given only for
reasearch implementations IMikhael and Y assa, 1982]. Thus, the main motivation of thisthesis

isto find a practical implementation technique for creatinganalog adaptive IR filters.

1.2. State-of-the-art review

Historically, one of thefirst digital adaptivelIR filter algorithmsin the signal processing

literature was presented in a 1975 publication mite, 1975]. This algorithm used a gradient

Adaptive filter type
FIR IR

Well established theory Growing theory base
Digital and most common and some

implementation method implementations

Technology

Well established theory Very little theory
Analog and mostly high and only few research

speed implementations implementations

Table 1.1: The theory base and usage of different adaptive filter types.
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based approach applied to a direct-form filter in order to update the filter coefficients so that an
error minimum could be located. However, one of the main disadvantages of thisalgorithmis
that many computations are required to compute the necessary gradients. In 1976, anew algo-
rithm was presented [Feintuch, 1976] that significantly reduced the computations required to
adapt an IR direct-form filter. Although this algorithm has been criticized [Johnson and Lari-
more, 1977][Widrow and McCool, 1977] and examples found where it does not converge [Lari-
more et a., 1980], it has recently been used in an industrial application because of its simplicity

[Eriksson and Allie, 1988]

A different approach to adapting IIR direct-form filterswas presented in[Larimoreet al.,
1980] where hyperstability theory isapplied. This hyperstability approach can guarantee con-
vergence to agloba minimum if a certain strictly positive rea condition is met. Unfortunately,

ensuring that this condition is met is not a trivial matter.

The one common point between all the algorithms discussed so far is that they have been
derived assuming adirect-form digital filter. Since thistype of filter is known to be very poor in
analog implementations, it would be desirable to find algorithms which do not rely on this struc-
ture. Inthe digital literature, algorithms exist for adapting the lattice | IR structure [Parikh et &l .,
1980] [Ayala, 1982], however, these algorithmsrequire significant cal culationsto computegra-
dientsand it is not clear how one would convert these algorithms to an analog equivalent. As
well asthe lattice structure, an algorithm was presented for adapting digital biquad IR filters
[Martin and Sun, 1987]. While the work was performed independently, the algorithm in this pub-
licationisquite similar to thisauthor’ sapproach in that sensitivity filtersare used to obtain the
necessary gradientsto adapt structures other than direct-form. However, whereasthisauthor’s

approach appliesto state-space structures, the algorithm in [Martin and Sun, 1987]isintended
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for biquad structures.

With respect to anal og adaptive filtering techniques, implementations presently exist for
high frequency applications [Qureshi, 1985][Treichler et al., 1987]. As well, papers have
recently been published concerning new analog realizations of adaptivefilters [Lev-Ari et al.,
1987]. However, the usual approach has been to use analog delay lines and adapt only the zeros
of the transfer function. With the use of analog delay lines, much of the work in the digital FIR
literature can bereadily applied; however, integration of acompl ete adaptive system becomes
quite difficult. Aswell, adapting only the zeros in an analog system can lead to high order sys-
tems, as discussed above. While in digital systems, orders as high as 200 can be realized, these

high orders are often too large for an analog implementation.

With respect to analog IR filters, this author has seen only one publication which presents

a possible technique for implementation [Mikhael and Y assa, 1982]. In this publication, both
the poles and zeros are adapted using a sequential-linear-search algorithm that can be described
assimply changing afilter coefficient and then measuring the change in the output error RMS
voltage. If the error voltage decreases, the coefficient isleft at that changed position while if the
error increases then the coefficient is changed in the opposite direction. Although thisisasim-
ple technique, there is a serious drawback in that small changesin error RM S voltages must be
observed while the absolute value of the error voltages might be large. Thus, the algorithm

requires an extremely accurate RMS measurement of the error signal which is difficult to obtain.

1.3. Outline of thesis

In chapter 2, necessary background material is presented. Notation and terms are defined
aswell as presenting some adaptive filter theory. Also in this chapter, a brief introduction to

<tate-enace theorv is oiven
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Chapter 3 describes afilter structure having some useful propertiesfor fixed or adaptive
filtering. This new structure was first obtained in ISnelgrove, 1982] by performing a Gram-
Schmidt orthogonalization procedure on companion-form filters. Although no proof was given,
it was conjectured that the structure would always have orthonormal states. In chapter 3 of this
thesis, it is shown that this conjecture is true and design equations and sensitivity results are

given showing the ease of design and the usefulness of this new structure.

State-space adaptive | IR filter algorithms are presented in chapter 4. It is shown in this
chapter that general state-space structures can be adapted using extrafiltersto obtain gradient
signals. It is aso shown that one can adapt a single column or row of a state-space filter and
therefore reduce the number of extragradient filtersto one. These single row or column adap-
tive filters are shown to have superior convergence properties as compared to direct-form filters
in oversampled applications where one can estimate the final pole locations. At the end of
chapter 4 isan appendix giving adesign procedureto obtaina "quasi-orthonormal” digital filter

for oversampled applications.

Chapter 5 presents experimental results for a discrete prototype which demonstrates that the
algorithmsin chapter 4 can successfully be converted to the analog domain. As well, the design
details for a monolithic programmable continuous-time filter are given along with experimental

results for a fabricated device.

It was found during experimentation with the discrete prototype that DC offsets are a seri-
ous concern with analog adaptive filters. In chapter 6, formulae are developed giving the
coefficient error and excess mean sgquared error due to DC offsets. Also in this chapter are some
experimental results, obtained on the discrete prototype, verifying the usefulness of these formu-

lae.
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Finally, conclusions and future work are presented in chapter 7.




Chapter 2

Background Theory

Thischapter will present the necessary background material for aproper understanding of
the remaining chapters. The notation used throughout this thesis will be described in the first
section with the following section presenting some signal processing definitions concerning the
terms expectation, correlation and norm. The important aspects of adaptive filter theory relating
closely to thisthesiswork are presented in section 2.3. Finally, section 2.4 will present areview

of state-space theory where, again, only the material closely related to thisthesiswork will be
described.

2.1. Notation usage

In order that the reader can more readily follow the material presented in this thesis, under-
standing the notation usage isimportant. This notation has representations for continuous and

discrete time functions and their transforms as well as vectors and matrices.

The notation usageisthefollowing: Continuous-timefunctionsare represented by |ower-
case letters and are functions of a variable (eg. x(r)). The Laplace transform of afunction is
written using uppercase letters and is also a function of avariable (eg. X(s)). With asimilar
lowercase and uppercase convention, discrete-time functions and their Z-transform are
represented (eg. x (n) and X(z)). Although continuous and discrete time functions and their
transforms use the same notation, no confusion should arise since only one domain is assumed at
any time throughout this thesis. A set of functions is often written as a vector which is

represented using a bold typeface (eg. x(2)). Vectors and matrices are also represented using a
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Z bold typeface. Aswell, vectors are represented using lowercase letters (eg. ¢) while uppercase
letters are used for matrices (eg. A). Table 2.1 below summarizesthe above rules using exam-

ples.

x(@) --  continuous-time function

x(n) ---  discrete-timefunction

X(s) --- Laplace transform of x (¢)

X(@z) --  Z-transformof x (n)

x(t) -—-  vector of continuous-time functions
X(s) ---  vector of frequency functions

C - vector

A T matrix

x;(t) - thei’th lement of vector x(¢)

C; - thei’th element of vector ¢

Ajj .. theelementinthei’'th row and j’th column of A

Table 2.1: Examples of notation usage.

2.2. Expectations, correlations and norms

Throughout this thesis, concepts such as expectation, correlation and norms of signals are
important. Aswell, signals may be of one of two types: finite energy or finite power. In this
thesis, finite energy signals result from system impulse responses and are therefore deterministic
signals. However, power signals, in this thesis, result from a noise source being applied to a sys-
tem and are therefore non-deterministic signals. Specifically, power signals are node signals of a
system when a noise source is applied. We now proceed to give some meaning to the concepts

of expectation, correlation and norm. Note that al time signals are assumed to be real valued.
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2.2.1. Finite power signals

I n this section, all signals are assumed to be finite power signals. The aforementioned con-
cepts will be defined for the ergodic case where time averages may be substituted for ensemble
averages. It should be pointed out that many signalsinvolved in an adaptivefilter will not be
ergodic even with ergodic inputs since we are dealing with atime-varying system. However, in
practice, if the system is varying slowly then the short term average of asigna in atime-varying
system at time ¢y will approximate the long term average of the equivalent signal in atime-
invariant system whose system coefficients match the time-varying system coefficients at time
t1. So, athough the definitions to be presented are not strictly correct for the time-varying case,

they still give some physical meaning to the concepts of expectation, correlation and norms.

We write the expectation of the signal x asE [x]. In the discrete-time case, the expectation

is defined as

E[X]= hm ——D( n) 2.1
whereas for the continuous-time case
1 T
=lim— t)dt
Elx] L!En,.,, pe :]Tx( ) (2.2)
The inner product or correlation between two signals x and y is written as E [xy ]. For the

discrete-time case, this correlation is defined as

Elxyl= 11_1)11“2N T2 Z}(n))’ (n) (2.3)
and in the continuous-time domain
1 T
E byl lim ﬁ_fo 1)y (D)dt (2.4)

When E[xy ] =0, the two signals are said to be orthogonal or uncorrelated.
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Another useful definition isthe norm of asignal. The norm of the signal x iswritten askxlp
where the subscript P denotes that the norm is defined for a power signal. This definition should

not be confused with the genera p’th norm of asignal. This power norm is defined as

1
Klp = [E [x2]:| 2 (25)
and is simply the root mean squared (RMS) value of the signal. The norm squared is aso

referred to as the mean squared value. Note that this norm assumes the power signal is not a

finite-energy signal.

2.2.2. Finiteenergy signals

In this thesis, we also require the concept of correlation between transfer functions or,
equivalently, finite energy signals. These definitionsare only requiredin the continuous-time
domain and therefore will only be defined in that domain.

First, we shall define the norm used for finite energy signals andfrom that norm, define the
concept of correlation between two transfer functions. We define these energy normsin such a

way as to be useful in predicting power norms.

Consider the system shown in figure 2.1 where the input is a white noise signal with aspec-

2
tral density of 1#. Choosing to define the norm, |F(s)lg, of the transfer function F (s) as the

output RMS voltage resulting from this white noise input signal, one can use the Wiener-

Khinchine theorem [Ziemer and Tranter, 1976} to show that!

IFOIE= [ IF(o)|*do (2.6)

This norm definition leads naturally to the following correlation definition. The correlation

'Thisintegral is finite for the practical case of stable, strictly proper rational F (s).
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White noise input

Spectral density ) Mean squared output voltage
)
% )
F(jo)|“dw
radls J" (o)
V2 )
= —ZnJIFum a
Hz

Figure 2.1: System used to define energy 51gna1 norm.

between two transfer functions, F1(s) and F ,(s), written as<F (s),F 2(s)> is defined as

<F1(8).Fa(s)>= [F1(j)F (jo)de 2.7)

which by Parseva’s relation, equals the inner product in the time domain given by

<f1().f2(1)>=2n g_fl (Of2(1)dt (2.8)
where f1(¢) and f»(¢) are the impulse responses of the two transfer functions. As before, if
<f 1(£),f2(£)> equals zero, we say the two transfer functions are orthogonal.

Finally, we would like to determine what the correlation between two transfer functions
implies. Towardsthisgoal, consider the system shown infigure 2.2 where anoise signal, u(f),
is used as the input to two systems with impulse responses f ; (¢) and f2(z). The correlation

between the two output power signals, X, (¢) and x,(#), is found from

Elxixp]= lim -,E j x1(D)x2(0)dt (2.9)
= lim 7 j [f1(0)®u (O]f 2()®u (0))de (2.10)

where ® denotes convolution.
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10 p— x1(®

u@®) —

f2) = x200)

Figure 2.2: System used to show that white noise into orthogonal
transfer functions creates orthogona output signals.

Using some manipulations between expectation and correlations [Ziemer and Tranter,

1976}, the following equation can be derived.

E[x1x5] = [f2(D)[f1 (@R, (1)]d7 (2.12)
0
where R, (%) is the autocorrelation of the input signal, u(t). In the case where the input signal
has an autocorrel ation function equal to an impulse (white noise), the above correlation reduces

to

Elx1x2] = [f2(0f @dT= S-<f1(0).£2(0)> (212)
0
Thus, orthogonal finite power signals can be obtained from a white noise input signal and

orthogonal transfer functions.

2.3. Some adaptive filter theory

This section will present some background theory concerning adaptive filters. Only the
basic theory that pertains to the material in thisthesiswill be presented. For a more thorough

description on adaptivefilter theory, the reader isreferred to IWidrow and Stearns, 1985] and
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[Treichler et al, 1987].

A block diagram of a discrete-time adaptive filter is shown in figure 2.3. Thefilter is pro-
grammed by adjusting its filter coefficients, {p;}. The output of the programmable filter is sub-
tracted from areference signal, 8(n), to create an error signal, e (n). The adaptive algorithm uses
the error signal and filter states to adjust the filter coefficientsin such away as to minimize the
norm of the error signal. This error norm can be thought of as an error performance surface
mapped out by varying all the filter coefficients. Thus, the adaptive algorithm attemptsto find a

minimum in the error performance surface by adjusting the filter coefficients.

An approach to finding a minimum in a performance surface is to use the method of

steepest descent. Applying this method, each filter coefficient is updated independently and, as

Om)
u(n) — Programmable ym - Z+ e(n)
Filter \& /)~
Signals
tOF?IOtuel;S // Filter
Coeff States
{pi}
Adaptive —
Algorithm

Figure 2.3: Adaptive filter block diagram.
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the name suggests, the surface is traversed in the direction of steepest descent. To find a
minimum in the error performance surface, the steepest descent update equation for thei’th
coefficient is written as:

a[E(eﬂ
pi(n+1)=pi(n)—uT

(2.13)
wherep isa small positive step size parameter which controls the rate of convergence. Unfor-
tunately, itisusualy difficult to obtain the partia derivativeterminvolving the mean squared
error. To circumvent this problem, the least-mean-squared (LMS) algorithm was developed
[Widrow and Hoff, 1960]. With this approach, the instantaneous error squared signal isused to
approximate the mean squared error. Substituting in the formulae for the error signal,

e (n)=438(n) -y (n), and using the fact that the reference signal is not afunction of the parameter,

p;» the following LM S update equation is obtained.

ps(n+1)=p;(n)+2ue(n)gyé}(:—) (2.14)
Although in this equation there are no explicit expectation operators, the expectation operation is
performed over time during adaptation of the parameter p; assuming asmall step size, . Thus,
although the instantaneous gradient may often point in the wrong direction, on averageit will
point in the correct direction and the adaptation path of the coefficientswill follow the line of

steepest descent.

Although this thesis will present methods to adapt both the poles and zeros of an adaptive
filter, let uslook at the well-known special case where only the zeros of atransfer function are
adapted using alinear combiner as shown in figure 2.4. By looking at the reduced problem of

adapting only zeros, some insight can be gained regarding the adaptive LM S agorithm.
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................................................

x1(n) Linear
Combiner :
x2(n)
Fixed
u(m) ——=  Eijer
xy(n)

Figure 2.4: A linear combiner adaptive filter

The programmablefilter in figure 2.4 consists of both the fixed filter and linear combiner
where the fixed filter has oneinput and N independent outputs. In many implementations, the
fixed filter issimply atapped delay line resulting in aprogrammable filter whichissimply an
FIR transversal filter. Onereason for the great interest in adaptive linear combinersisthat the
error performance surface is quadratic and therefore has only one minimum which is easily
found using the LM S algorithm The output of the programmable filter, y (r), can be written as

N
y(n)= _:z:lpixi(”) (2.15)
Therefore, thepartial derivativeof y (n) with rlespect to p;issimply x;(n). Thisfact leadsto the

following update equation for the coefficient p;.
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pi(n+1)=pi(n) + 2pe (n)x;(n) (2.16)
Note that all the signals in this equation are readily available as system signals in the adaptive
§ linear combiner and that there are only multiplications and additions required. Thisfact isthe

ason that the LM S algorithm is the most popular adaptive filter algorithm.

The LMS agorithm can be extended into the analog domain quite naturally [Widrow et al,
5 1967]. Assuming an anal og adaptive linear combiner, the update equation for the multiplying

coefficient p; issimply

t
pi(t) = 2fe (Dx; (1)dt 2.17)
0
A tapped analog delay line is often used to obtain an independent set of statesx;(r) from asingle

input.

2.3.1. Why orthonormal signals are good

An orthonormal set of signalsisaset wherethe normsof al thesignalsin the set arethe
same and the correlation between any two different signalsis zero. This section will investigate
the effect of different sets of input signals on the linear combiner. What will become apparent is
that the cross correlations of the input signals, x;(n), affect the convergence performance of the

adaptive filter. To quantify this effect, an input correlation matrix R is defined as

Elxix1] Elxy1x2] . . Elxixy]
Elxx1] Elxox] . . Elxay]

R=E[xx]= . oo (2.18)
E Dwxi]l E Dwxal .. E Dovan]

With this definition, the element R;; equals the correlation between the states x;(n) and x;(n).
The diagonal elements of R are simply the mean squared values of the states. It is not difficult to
show that R is positive semidefinite and therefore all the eigenvalues are greater than or equal to

zero. In fact, for most well behaved problems all the eigenvalues are greater than zero. Defining
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Amin and A, to be the minimum and maximum eigenvalues of R, respectively, one can show
that these two numbers help in determining the convergence properties of the adaptive filter.
Specifically, if the LMS agorithm is modeled as though the true gradient is followed rather than
the noisy instantaneous one, it can be shown that the step size parameter, yt, must be bounded to

guarantee convergence. This bound is determined by Apax as

O<pucx (2.19)

2
Amax
The step size 4 must be larger than the lower bound in order to adapt while & must be smaller
than the upper bound for the algorithm to remain stable. As well, it can be shown that the

minimum eigenvalue determines the time constant, t, for overall convergence of the coefficients

{pi}.
1= —t (2.20)
HAmin '
Therefore, if one chooses p to be a fraction, a, of the maximum value which guarantees conver-
gence,
=2 (2.21)
Amax '
then
1 Mmax
T=7—7 2.22
20 A (222)

This equation indicates that for a constant proportion a, all the eigenvalues should be equal for
the shortest time constant. The identity matrix has such a property. Therefore, if R equals the
identity matrix, good adaptation properties are obtained. Note that an input correlation matrix
corresponding to the identity matrix implies that the set of input signals constitute an orthonor-

mal set.
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For amore physical interpretation of the above results, consider the contour plots of the
’ error performance surfaces shown in figure 2.5. For those readers who are unfamiliar with con-
tour plots, a contour plot isamethod of showing a3-dimensional surface. Two of the axesarein
the surface of the page with the third axis coming straight out of the page. The contour lines are
- simply lines of equal height in the third axis. Therefore the steepest descent path at a point on a
contour lineis perpendicular to the tangent at that point. Aswell, a measure of the steepness of
the steepest descent path can be determined by the distance that the contour. lines are apart along
g that path. (This assumesthat the contour linesare at regular intervals along the third axis.) In

. figure 2.5, linear combinersconsisting of two inputsare assumedwith variable multiplying

coefficientspy and p,. The minimum error is obtained when py=p, =0 or, equivalently, at the

P2 P2

/F

'\
__/
P1
‘ \\j
example adaptation path example adaptatlon pah
Orthonormal states Non-orthonorma states

o+ Figure 2.5: Contour plots of two performance surfaces (minimum error is at origins).
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origin. For the orthonormal example, the contours are circleswhile the non-orthonormal  case
haselliptical contours. In fact, the non-orthonormal example shown has orthogonal states but
the norms of the states are not equal. A non-orthogonal example will smply have the ellipses
tilted so that the principal axes of the ellipses do not line up with the coefficient axis. What is
seen from figure 2.5 is that in the orthonormal example, the gradient always points towards the
minimum. Therefore, if a steepest descent algorithm is applied to some starting point where
|p1l=Ip 11, both coefficients will approach O at the same rate. In contrast, if the same condi-
tionsare applied to the non-orthonormal example, the coefficient p, will converge must faster
than the coefficient p,. Thus, for this case, the steepness along the p; axis dominates the con-
vergence time while the stability of the algorithm is determined by the steepnessalongthe p»
axis.

Concluding this section, we have shown that an orthonormal set of states is desirable for a

good adaptation convergence rate.

2.3.2. Adaptive lIR filters

Adapting the poles of an adaptive filter as well as the zeros adds several complexities to the

system design. Some of these complexities will be discussed in this section.

First, in contrast to the adaptive linear combiner, the error performance surface can have
many minima. Therefore, a stegpest descent algorithm may find alocal minimum rather than the
global minimum. Fortunately, there appears to be alarge class of applications where the perfor-
mance surfaces of adaptiveIIR filters have only one global minimum [Stearns, 1981]. In the

above reference, although no proof was found, it is conjectured that if the order of the adaptive

2 Note that this is adegenerate case where the output signal is 0 when the the coefficients are at the minimum
point. However, this case still indicates the benefits of an orthonormal set.
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filter isgreater than or equal to the system being modeled, then the error performance surface

will have one global minimum.

Another concern with adaptive IR filtersis that the algorithm may try to place poles of the
programmabl e filter in the instability region. For this reason, some method is usually required to
ensure that the coefficients of the programmablefilter are always chosen such that thefilter is

stable. This can be accomplished by choosing filter structures having simple stability checks.

Finaly, it should be pointed out that obtaining the gradients for adaptive IR filtersis not as
simpleasinthe FIR case. |In fact, one of the first approaches to adaptive IIR filters white,
1975](Stearns et al, 1976] required approximately N times the computations of the programm-
able filter (where N is the programmable filter’s order) to obtain the gradients of the coefficients.
This complexity was significantly reduced in an algorithm where the gradients were approxi-
mated [Feintuch, 1976]. Unfortunately, with this gradient approximation there is no guarantee of
converging to any minimum. Finally, it should be mentioned that there are other approaches to
adaptive IR filtering than gradient-based approaches. One exampleisthe SHARF algorithm
[Larimore et al, 1980] where hyperstability theory is utilized but has limited applications
because it relies on a strictly positive real condition which is difficult to guarantee without know-

ing agreat deal about the application.

2.4. State-space theory

If one wishesto build asystem with agiven linear time-invariant transfer function using
only ideal integrators and summing blocks, there are an infinite number of realizationswhich
would result in the given transfer function. However, not al realizations would have the same
performance when constructed with actual components. Therefore, we require smple formulae

allowing us to investigate the filter’s performance when realized with different structures.
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State-space system theory has such formulae and iswell established in the control and signal
processing literature. Thus, using implementations having a close relationship to state-space

systems, we can benefit from the wealth of analysis tools available for state-space systems.

2.4.1. State-space system description

An N'th order state-space linear time-invariant system is described by the following equa-

tions:

sX(s) = AX(s+bU (5) (2.23)
Y(s) = ¢! X(s)+dU (s)

whereU (s) istheinput signal; X(s) isavector of N states, whichinfact aretheintegrator out-
puts; Y (s) isthe output signal; and A, b, ¢, and d are coefficientsrelating thesevariables. The

transfer-function of the above system is easily shown to be

T(s)=c (sI-A)'b+d (2.24)
From equation (2.24) above, we can see that the poles of the system areincluded inthe eigen-

values of A and therefore are determined by only one system coefficient. However, the zeros of
the system are related to al four of the system coefficients.
To obtain more insight into state-space systems, two sets of intermediate-functions need to

be defined 1Snelgrove and Sedra, 1986]. The first set of functions, F(s), is defined as the

transfer-functions from the system input to the output of each of the integrators,

Xi(s)
(s)= ——~ 2.25
Fi(s) U6) (2.25)
This definition leads to the formula
F(9=GIA) b (2.26)

The second vector of functions, G(s), is defined as the set of transfer functions from the input of
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each of the integrators to the output. Thus if we inject a signal €;(s) at the input of the i’th

integrator, then

(s) = L)
Gi(s) = &0) (2.27)
Using this definition we have
GT(s) = sI-A)! (2.28)

A transformation that will prove useful throughout the remainder of this thesis creates a
new system which exchanges the two sets of intermediate-transfer functions [Jackson, 1970].
Specifically, given a system, [A,b,¢,d] with intermediate-transfer functions, F(s) and G(s), we
can create a new system such that

Frow(s)=G() and  Guau(s) =F(s) (2.29)
by arranging that the coefficients of the new system are related to those of the original system by

Apew =AT bp,=¢C Cpw=b dy,,=d (2.30)
This result can be easily verified using the formulae in equations (2.26) and (2.28) above. We

shall refer to this new system as the transposed system of the original system3.

2.4.2. Senditivity equations

Sensitivity formulae relating the change in the transfer-function to changes in the system

coefficients will be presented in this section. These formulae can be derived using the formula

dT,
—2 T, T, 231
dlmn

where T;; is a transfer-function from point i to point j in a system. An elegant derivation of this

formula is presented in ISnelgrove and Sedra, 1986].

3 The tranposed system is often referred to as the adjoint System in the circuit literature.



BACKGROUND THEORY 26

Using equation (2.31), it isnot difficult to find the following sensitivity formulae relating

the change in the transfer-function to changes in the system coefficients.

T(s) A
Say =8O6)7 = (2.32)
T(s) b;
b =8l TS ©) (2.33)
T(s) Ci
Se, =fi(S)m (2.34)
T(s)_ d
S, = ) (2.35)
T(s)
whereS, " isthe classical sensitivity measure defined as
P
ST(S) _9T(s) p _ dInT(s) (2.36)

P 7 9p T(s)  Oolmp
These simple formulae will prove invaluable to us when an adaptation algorithm for IR

filters is proposed.

2.4.3. Correlation matrices

Itisoften useful to know the correlation between intermediate-functions. Note that these
functions are of finite energy if the input is of finite energy and A is stable, therefore we use the
above definitions of correlation and norm for finite energy signals. We now define two correla-
tion matrices. The first matrix, K, is defined as

Kij= <F;(s),Fj(s)> (2.37)
whereas the second matrix, W, is defined as

Wi; = <Gi(s),Gj(s)> (2.38)
Note that the diagonal elements of K are the squared norms of the intermediateF(s) func-
tions. Therefore, if K equals the identity matrix, I, the intermediate F functions constitute an

orthonormal set of functions. Systems that have K =1 will be called orthonormal systems. Note
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that there isa similar relationship between the W matrix and the G(s) functions. These correla-
tion matrices will prove useful in finding an "orthonormal" ladder structure presented in chapter

3.

i 2.5. Summary

In this chapter, the notation usage and the concepts of expectation, cotrelation and norm
were explained. Also, some adaptive filter theory was presented. In particular, the steepest des-
cent LMS agorithm was described along with one benefit of orthonormal signals. As well, some
difficulties associated with adapting | IR filterswere described. Finally, some state-space back-
ground theory was presented including the definition of intermediate-functions and a transposed
system where the intermediate-functions are exchanged. Sensitivity equations were also
presented for the system coefficients. The state-space section ended with a definition of the

correlation matricesk and W.



Chapter 3

Orthonormal Ladder Filters

3.1. Introduction

This chapter will present a new continuous-time state-space filter structure which has some
interesting properties that are useful in the design of both adaptive and fixed filters. We call the
filterswith this new structure “orthonormal ladder filters.” The name of thisnew structureis
derived from two of the properties that are inherent to the structure. One property isthat al the
state signals are orthogonal when white noiseis applied to the input of the filter with the norms
of each of the state signals being equal. Such a property implies that the set of state signals are
an orthonormal set. The other property inherent to this structure is the fact that the state signals
are scaled versions of capacitor voltages and inductor currents of a singly-terminated ladder
when the input is applied to the terminating resistor. The fact that the integrator outputs are
orthogonal with awhite noiseinput is useful when applied to an adaptive linear combiner, as
was described in chapter 2. The close relationship to singly-terminated ladders allows asimple
synthesis procedure and atrivial stability check. Recall from chapter 2 that asimple stability

check is useful in adaptive IR applications.

Although the material in this thesis is mainly concerned with the design of adaptive filters,
orthonormal ladder filters are also useful in the design of fixed filters. For thisreason, much of
the material presented in this chapter will focus on the design aspects of the structure to a known

transfer function.
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One of the more interesting properties of orthonormal ladder filters is the fact that the
resulting circuits are inherently scaled for optimum dynamic range. Moreover, an L, normis
used in dynamic range scaling as opposed to an L., norm. An L, norm is equivalent to the norm
for finite energy signals defined in chapter 2. Simply stated, L, scaling implies that the output of
each integrator will have the same RM S value when white noise is applied at the filter input. In
contrast, L.. scaling ensures that all integrator outputs will obtain the same peak voltage when a
swept sinusoid is applied at the filter input. The issue of the relative meritsof L, and L..scal-
ingsiscontroversial. L., isoften used in analog systems while L, scaling iswidely used in digi-
tal systems. L, ismorerealisticin many applicationsin the sensethat it dealswith inputs hav-
ing abroadband spectrum (eg. speech) rather than sinusoids. However, L, scalingislesscon-
servativein that it could cause clipping with sine-wave inputsin high-Q cases. In spite of this
fact, itisfelt that L, scaling coversamore general classof filters than L ... Note that while L,
scaling is relatively difficult to apply to a cascade of biquads, the actual structure of orthonormal

ladder filters ensures optimum dynamic range scaling with anL, norm.

Another useful property of orthonormal ladder filtersisthe ability to realize any stable
transfer-function. Arbitrary poles are realized using the ladder feedback structure while transmis-
sion zeros are realized using an output summing stage. While output summing is often avoided
in practice because of fears of poor stopband sensitivity properties, it will be shown that an
orthonormal ladder filter (including, of course, the output summing stage) has a sensitivity per-
formance comparable to a good design based on cascading biquads. Additionally, sincefor a
given transfer-function the orthonormal ladder realization is unique, the design procedureis
more easily automated than the process of finding an optimal biquad cascade design where
pole-zero pairing and cascade ordering are important [ Sedra and Brackett, 1978]. Aswell, in

implementations where an output summing stage is difficult to realize, it will be shown that the
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output summing stage can be replaced by using feed-forward to each of the inputs of the integra-

tors.

State-space orthonormal IR filter structuresare well known inthedigital filter literature
[chapter 10, Robertsand Mullis, 1987]. One of the reasonsfor their useisthat overflow oscilla-
tions are impossible in these digital filters. However, their main disadvantage is that their struc-
tureisfairly dense. Fortunately, the structure for continuous-time orthonormal ladder filtersis
quite sparse.

For an orthonormal filter, the state correlation matrix, K, isthe identity matrix. Therefore,
asimple formulais required relating the state correlation matrix and state-space system matrices
in order to find orthonormal systems. We derive such aformulain section 3.2. Although this
formula is well known in the control literature, it is derived here to emphasize its physical
interpretation. Though there are many structures for orthonormal systems, this chapter deals
with onein particular, the orthonormal ladder filter described in section 3.3. Inthis sectionthe
synthesis procedure for orthonormal ladder filters is described using the relationship of the struc-
ture to singly-terminated L C ladders. In section 3.4, avery simple stability test for orthonormal
ladder filtersis presented and in section 3.5, an example of an orthonormal ladder design is
given. Finally, section 3.6 presents a sensitivity and dynamic range comparison between designs
based on orthonormal ladder filters, operational simulations of doubly-terminated L C ladders,

and cascades of biquads.

3.2. State-correlation matrices and the Lyapunov equation

We have, from chapter 2, that the state-correlation matrixK is defined as
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Kij=<F;(s),Fj(s)>= [ F;(jo)F;(ja)do @)

which, by Parseval’s relation, equals the inner product in the time domain given by

Kij = <f,().£;()> = 2x [£;,(t)f; (1)t (3.2)
0

The vector of functionsF(s) is defined as

F(s)=(GI-A)'b (3.3)
and taking the inverse Laplace transform of F(s) to obtain a vector of impulse responses, f(t),

one obtains

f(f) =e*'b (3.4)
Substituting equation (3.4) into (3.2), we can write the matrix K as

K = 21t'(|;eA’ bb? e A ds (35)
Differentiating the integrand, we find
d(eAtbbTeATt)

dt
Integrating both sides of equation (3.6) from 0 toee, resultsin

= AeAbbTeA™ + eApbT AT AT (3.6)

(eAbbTeA™) | o = A| [eAbbTeA dd + | [eAbbTeA g AT 3.7)
0 0

Assuming the A matrix resultsin stable systems, the |eft side becomes —bb? while the matrix K
can be substituted into the right side. This leads to the following Lyapunov equation.

AK +KAT +27bb” =0 (3.9)

This equation allows one to find the correlation matrix, K, given the system matrices, A

and b. Notethat the correlation matrix, K, iscalled the controllability grammian inthe control



g
4
g

ORTHONORMAL LADDER FILTERS 32

literature [Brockett, 1970][Chen, 1984] and that a similar equation is obtained in the discrete-

time domain [Roberts and Mullis, 1987].

It should be pointed out that the Lyapunov equation (3.8) above can also be used to test the
stability of the A matrix. From the control literature, it can be shown that the matrix A is stable
if the matrix K is positive definite and the positive semidefinite square root of bb? together with
A is observable[Wonham, 1985]. Since in orthonormal systems, K isthe identity matrix (1 is
positive definite), one need only check that the observable constraint is satisfied to determine the
stability of A. Although thisfact isnot explicitly used in thisthesis, it could be used to check
the stability (and hence usefulness) of orthonormal structures other than the one described in this
chapter.

Before leaving this section, it should be noted that a similar relation can be found between

the W correlation matrix and A and c. This relationship is
ATW + WA +2nec’ =0 (3.9)
3.3. Orthonormal ladder filter synthesis

As previously mentioned, orthonormal systems are obtained when K istheidentity matrix.
Therefore, substituting in 1 for K in equation (3.8), we have the following equation that must be
satisfied for an orthonormal system.

A+ AT = 2nbb! (3.10)

Consider the state-space structure whoseA and b matrices are given by
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0 oy 0 0
-0y 0 05) 0
A= —a O b= . (3.11)
0 aN-1 0 ]
OoN 2
0 —Oy -1 —Oy T

where al o;’s are greater than zero. The A matrix is tridiagonal and is very nearly skew-
symmetric except for the single non-zero diagonal element. The b vector consists of all zeros
except for the N’ th element. This system satisfies equation (3.10) and isthereforean  orthonor-
mal system regardless of the actual element values. We call the above system an orthonormal

ladder system for reasons which will become apparent shortly.

For the above system to be auseful design structure, a procedure isrequired to place the
eigenvalues of A, or equivalently the poles of the system, at positions in the left-half plane dic-
tated by the filter transfer-function to be realized. With this goal in mind, we find that the above
structureisvery similar to that of the state-space description of asingly-terminated L C ladder
filter where the states are defined to be the inductor currents and capacitor voltages. For the even
order case, the singly-terminated ladder is shown in figure 3.1 below. Here, the resistor value is
defined to be 1 Q without any loss of generality. Aswell, reactive components are labelled r;
wherer; is either the capacitor or inductor value. The matrices A and b of the state-space

description of the ladder in figure 3.1 are found to be
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r2
—_—
+ +
Vi - X, L
- rs - ri
X3=V,, X1=V,,

Figure 3.1: A singly terminated ladder and its states

0o — 0 0
r
1, L 0
rs ra
A= 1 b= | 0 (3.12)
r3
. 0 rl 0
N-1
0 -1 -1 1
Y v . v

We can transform the above system to that of the orthonormal ladder system with the structure
of equation (3.11) by an appropriate scaling of the system states. Scaling thei’th stateof a  sys-
tern by afactor B; resultsin thei’th row of A and b being multiplied by B; and thei’th column of

A divided by B;. Using this fact, the required scaling factors, B;, are found to be

B = [L]? (3.13)

It should be noted that this scaling process does not change the system poles. Scalingthe  state-

space description of equation (3.12) and comparing the result to the system in (3.11), we find the
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following relationship between the elements of the orthonormal ladder system and the reactive

components of the LC ladder:

1<i <N (3.14)

Recall that our goal isto be able to place the poles of the orthonormal ladder system at
given locations in the left-half s-plane. This can be accomplished by obtaining a singly-
terminated L C ladder with the desired poles and then using the above equation to obtain the ele-
ments of the orthonormal ladder system. From circuit theory, we know that any stable natural
mocke polynomial can be uniquely realized by an all-pole singly-terminated ladder with positive
elements [Humpherys, 1970]. Thus, one always finds a unigue A matrix and b vector of an

orthonormal ladder system for any set of stable poles.

Note that an interesting property of al-pole singly-terminated L C ladders has become
apparent. We have shown that the states (inductor currents and capacitor voltages) of an all-pole
singly-terminated L C ladder (when driven from the resistor) are al orthogonal since the statesin

equations (3.11) and (3.12) differ only in scaling. Also, the L, norms, of the ladder states are

L' where B; is given by equation (3.13). These simple properties appear to have never been

i

mentioned in previous literature.

Toimplement the numerator of aparticular transfer-function, the proper ¢ vector must be
obtained. To find the required c vector, we first need to find the states of the system. To find the
states, note from figure 3.1 that thefirst state of the ladder, V,, , is an al-pole function with unity

gaina DC. Hence, the numerator of the first state of the ladder iSE (0) where E (s) is the natural
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mode polynomial. Using thisfact together with the state equations of the orthonormal ladder

system, we can write the orthonormal states recursively as

_BE©)
Fis) = Ee) (3.15)
Fa(s)= Of—lms) (3.16)
Fi(S)=[ . ](SFi—l(S)"”ai—ZFi—Z(s)) 3<isN (3.17)
i—1

The proper ¢ vector is found as the multiplying coefficients required to create the desired

numerator.

We note from equations (3.15)- (3.17) that the numerators of the odd states will be even
polynomials while the numerators of the even states will be odd polynomials. This fact helps to
explain why an output summing amplifier implementing the ¢ vector does not have poor sensi-
tivity properties. Specifically, in the case of finite transmission zeros on the jo axis, where the
transmission-zero polynomial P(s) is purely even or odd, only even or odd elements of the c
vector will be non-zero. Thus, asmall change in any of the non-zero ¢ elementswill result in

transmission zeros remaining on thejw axis.

Figure 3.2 shows ablock diagram of ageneral orthonormal ladder filter. The ssmpleleap
frog structure is a result of simulating a singly-terminated ladder. As shown in the block
diagram, the output is obtained as a linear combination of the integrator outputs'.

Although output summing (having ac vector with more than one non-zero element) does

not have poor sensitivity performance, there are situations where a circuit implementation of the

c vector is difficult. An example of such a situation is the design of high frequency

' Note that, from equation (3.14), the units of o; are Hz as expected. However, the units of the feed-interm
areyHz. This surd term is aresult of forcing the states to have the same RMS value when a signal of constant spec-
tral density invV/yHz 1S applied at thefilter input,
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U(s)
X1(5)
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X2(s)
:®—’ Y (s)
_ /CN
Xn(s)

Figure 3.2: Block diagram of an orthonormal ladder filter

transconductance-C filters where a wide-band output summing network is difficult to implement.
In such a situation, it is much easier to add one more input to each of the integrators than to
design a high frequency summing stage with many inputs. For these situations, feed-forward
(having a b vector with more than one non-zero element) can be used to create the required
transmission zeros. It is important to note, however, that the feed-forward system to be described

does not have an orthonormal set of F functions.
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To create afeed-forward system, an orthonormal ladder system with output summing is
first obtained. The feed-forward system can then be obtained as the transposed system of the
orthonormal ladder system, as described in chapter 2. It is easily shown from equation (2.24) that
the two systems have the same transfer-function. Aswell, the feed-forward system will have the
same intermediate-transfer functions as the orthonormal ladder system but the two sets of func-
tions will be exchanged. Thus, for the feed-forward system, the intermediate G functions are an
orthonormal set. Since the intermediate-functions are simply interchanged, it is aso easy to
show from the sensitivity formulae in [Snelgrove and Sedra, 1986] that the feed-forward and
orthonormal ladder systemswill have the same sensitivity performance with respect to system
elements. Finally, although the feed-forward system does not have the F functions scaled for
optimum dynamic range, these functions can be L, scaled to equal levels using the standard

method of scaling.

3.4. Stability test for orthonormal ladder filters

If orthonormal ladder filters are going to be used in actual adaptive IR applications, itis
often necessary to have a smple stability test for the A matrix. Since an orthonormal ladder
filter ssimulates a passive singly-terminated L C ladder, asufficient stability test isto check that

al o, 1<i<N, are greater than zero. However, an even more trivia test can be derived.

Before developing this simple stability test, a comment should be made here about the
situation where one of the a;, 1<i <N equals zero. This situation correspondsto areactive ele-
ment of the singly terminated ladder going to infinity. Inthis situation, part of the system will be
decoupled from the damped portion of the system which may result in instabilities. For the sta-
bility test described below, we will make the assumption that none of the «; coefficientsequal

Z€ro.
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Recall that scaling the states of a system does not change the system’ s poles. Therefore, we
may scale any or all of the states by -1 and not affect the poles. Consider the case wherethe
states 1 to j arescaled by -1 and j <N. Inthiscase, theresulting system will be the same asthe
original system except that a; is now less than zero. This scaling approach can be applied to
obtain orthonorrnal ladder systems where the ar;’s may be positive or negative except for ay
which will remain positive. Therefore, to test whether an orthonormal ladder system is stable,

one need only check that ay is positive and the other o; are non-zero.

3.5. Design example
Consider thefollowing fifth-order elliptic lowpass transfer-function withal dB passband

ripple,

P(s) _ 0.013215* +0.1037s2 + 0.1739
E(s)  $5+40.9287s%+1.772653 +1.0557s% + 0.6917s + 0.1739

Thereactive elements of the singly-terminated |adder realizing these poles can be found using

T(s)= (3.18)

continued fraction expansion [Humpherys, 1970] on the polynomial, E(s). Applying such a pro-

cedure results in the following elements.

ri=0.9078F r,=20205H r3=19937F r4=14606H rs=1.0768F (3.19)
Using equation (3.14), the following elements of the orthonormal ladder system are obtained.

o =0.7384 a,=0.4982 «a3=0.5860 o4=0.7934 os5=0.9287 (3.20)
Theintermediate-functions of the orthonormal ladder system arefound using equations  (3.15)-

(3.17) and are
_ 009346
Fi(s)= E(s) (3.21)
Fy(s) = 212868 (322)

E(s)
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_ 0.25405%+0.1385

' (3.23)
F3(s) E@s)
0.4335s 3 +0.3440s
= 3.24
F4(s) £6) (3.24)
543754 +0.6181s% + 0.1018
L s (3.25)

Finally, to obtain the c vector, we find the elements of ¢ which satisfy the following equa-
~ tion.

[c1F1(s)+ caF 2(s)+ c3F3(s) + c4F 4(s) + c5F 5(s)IE (s) =P (s5) (3.26)
Solving for the ¢; coefficients, we find the ¢ vector and scalar d required to form the desired

numerator to be
¢/ =[{1.3163 0 0.3492 00.02431 d=0 (3.27)
3.6. Senditivity performance comparison

This section will compare the sensitivity performance of orthonormal ladder filter realiza-
tions with realizations resulting from two alternate synthesis methods. One of the alternate
methods is a state-space simulation of a doubly-terminated L C ladder filter [Johnset a, 1987].
The other method is a cascade of second-order sections implemented with Tow-Thomas biquads
where the finite transmission zeros of the biquads are realized using feed-forward with a resistor
and a capacitor [Sedra and Brackett, 1978]. Pole-zero pairing and cascade ordering are chosen
using the rule-of-thumb in [Moschytz, 1975]. To use the analysis methods in I Snelgrove and
Sedra, 1986], we require the cascade structure in a state-space formulation. Fortunately, acas-
cade of biquads design can be easily put into a state-space description if one allows anon-
constant feedback matrix. The non-constant feedback matrix, A(s) consists of two matrices, A,

and Ay, such that
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A(s)=A;+5A, (3.28)

With an active-RC circuit, the A, elements are realized with capacitor feed-insto integrators.

Finally, for afair comparison with orthonormal ladder filters,L, dynamic range scaling was per-

formed on all filters before comparing sensitivity or dynamic range.

Since different criteriaare used to judge the filter performancein the passband and stop-
band, dlightly different measureswill be used in the two regions. However, in both bands, the
multiparameter sensitivity measure presented by Schoeffler [ Schoeffler,1964] is used to find the
standard deviation in the transfer-function for standard deviations of 1 percent of the nominal

component values. The transfer-function deviation, s |T(jw)|, is found from

. 2
olTGwyl =001] ¥ AT “’)'x] (3.29)
=A; b Y: ox

Y;
Where—';‘— represents the gain of thei’th integrator. Formulae in 1Snelgrove and Sedra, 1986]

N

were used to compute the derivative in equation (3.29). Changesintheelementsof  A;;, b;, and
¢; directly correspond to changes in the feed-in resistors and capacitors of an active-RC imple-
mentation whereas changesintheelements v; correspondto changesin the integrating capaci-
tors. Therefore, this deviation measure takes into account all the passive elements of an active-

RC implementation.

Since transfer-function deviation is often the most critical performance measure in the
passband, the passband deviation indB, D (w), is used to measure sensitivity performance in the
passband. D () isfound fromo | T (jw)|and| T (jw)| as

_ o|lT(w)|
D (w) = 20logg [1 + T } (3.30)

This passband measure gives the standard deviation of the passband in dB from the ideal
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response for standard deviations of 1 percent in component values.

In the stopband, an expected gain curve is plotted. This stopband expected gain value,
T 4(m), isfound from

T g(w) =20log1o(IT(w) |+ 0| T(w)|) (331)
Thisstopband performance measure allows one to easily see the expectedstopband transmission
for standard deviations of 1 percent of component values. Note that if the passband deviation

measure were used in the stopband, it would go to infinity at transmission zeros.
For dynamic range comparisons, the figure of merit Z,-IGI'I% will be used [ Snelgrove and

Sedra, 1986]. This figure of merit is the square of the rms noise level obtained when uncorrelated
white noise sources of unit power spectral density are applied to each of the integrator inputs.

Thus, afilter with good dynamic range will have alow number for Z’,IG,-l%.

For thefifth-order example above, three state-space descriptions were obtained using the
different design approaches. The state-space description of theorthonormal system obtained for

thisexampleis

0 0.7384 0 0 0 0
-0.7384 0 0.4982 0 0 0
A= 0 -0.4982 0 0.5860 O b= 0 (3.33)
0 0 -0.5860 0 0.7934 0
0 0 0 -0.7934 -0.9287 0.5437
¢ = | 1.31630 0.3492 00.0243]1 4O
The state-space system for the doubly-terminated ladder smulation is
-0.4643  -0.5823 0 -0.0821  -0.0045 0.4655
0.8408 0 -0.5994 0 0 0
A= | -0.1064 05271 0 -04961 -0.0272 | b= | 0.1066 (3.35)
0 0 0.6153 0 -0.5892 0
-0.0097  0.0479 0 0.7574  -0.4643 0.0097
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1 ¢f=[000013620] d=0O
L and the state-space system for the biquad cascade is

" -0.3379 0 0 0 0 0.3297
0.7709 0 -0.7967 0 0 0
A= | (00922)s 06491  -0.4577 0 0 b= 0 (3.37)
0 0 1.4464 0 -1.8603 0
0 0 (0.3191)s 05348 -0.1330 0

f={000013622] d=0
Note that the first state of the biquad design is afirst orderiowpass function and this state is used

astheinput to thefirst biquad formed in states 2 and 3. The output of thisfirst biquad is state 3

which is used as the input to the second biquad formed by states 4 and 5.

Figure 3.3 showsaplot of theideal transfer-function responsealongwith passband devia-
tions, D(w), and stopband expected gain, T s(w) curves. We see from these curves that the
orthonormal ladder system has a passband performance somewhere between the performance of
the doubly-terminated ladder simulation and the biquad cascade. The stopband performance of
the orthonormal ladder system is slightly worse than that of a cascade of biquads. The noise
figures for the ladder, orthonormal, and cascade filters of this fifth-order example are 47, 65, and

117 respectively.

An eighth-order elliptic bandpass filter example presented in [Snelgrove and Sedra, 1986]
was a so investigated. For thiseighth-order example, the resulting curves are shownin figure
3.4. We seefrom these curvesthat the orthonormal ladder filter till performs quite well in the
passband and upper stopband but is slightly worse than the other two designsin the lower stop-
band. The reason for the poorer sensitivity performance at low frequencies and DC is explained
asfollows. The cascade design containstwo bandpass filter biquads and therefore varying any

of the components will not affect the two zeros at DC. Similarly, varying the component values
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10
Orthonormal &
Biquad - |0
Ladder &
|deal —
A
.-20
0.5
D (w) T4(w)
d
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Expected Gains --40
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Deviation
T --80

1
Normalized Frequency

Figure 3.3: Fifth-order example: Plot of ideal transfer-function along with the expected stop-
band transmission, T g(®), for a 1% component standard deviation. Also shown is the standard
deviation in passband response, D (w).
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Orthonormal 4+~ |-0
Ladder &
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Figure 3.4: Eighth-order example: Plot of ideal transfer-function along with the expected stop-
band transmission, T s(w), for a 1% component standard deviation. Also shown isthe standard
deviation in passband response, D (o).

of a doubly-terminated ladder having two zeros at DC will not affect the zeros. Since the ladder
prototype has good sensitivity propertiesat DC, onewould expect the active-RC simulation to

also exhibit low sensitivities near DC and as seen from figure 3.4, thisis the case. However, the

orthonormal |adder filter creates the two zeros at DC by an output summing network and thus the
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zeros will shift away from DC with component variations. The noise figures for the ladder,

orthonormal, and cascade filter for this eighth-order example are 73, 100, and 15 1 respectively.

These two examplesindicate that an orthonormal ladder filter has a passband sensitivity
performance at least as good as a cascade of biquads (often much better) and a slightly worse
stopband performance. The dynamic range performance of orthonoxmal |adder filters appears to

fall between that obtained with LC ladder simulations and cascade designs.

3.7. Summary

A new filter structure called orthonormal ladder filters was presented. These filters are easy
to synthesize through the use of singly-terminated L C ladders prototypes. As well, orthonormal
ladder filters are automatically L, scaled for optimum dynamic range by the very nature of their
structure. Also inherent in their structure is the fact that the integrator outputs are all orthogonal
when the input is excited by white noise. We have also seen that orthonormal ladder filters can
realize any stable transfer-function and have a performance comparable to a cascade of biquads.
Aswell, it was shown that the sign of only one system coefficient determines the stability of the

system.

It was also shown that asingly-terminated L C ladder driven through its terminating resistor
has orthogonal states (inductor currents and capacitor voltages). Aswell, the L, norms of the
ladder states were shown to have a simple relationship to the elements of the ladder. These sim-

ple relationships appear to have never been mentioned previously in the circuit theory literature.
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Appendix 3.A

L aguerre Networks

Another structure that produces an orthonormal set of states when white noise is applied at
theinput is referred to as a Laguerre network. Although it iswell known that Laguerre networks
produce a set of orthonormal states [L ee, 1960], the mathematics to prove this property isfairly
involved. Thisappendix will apply the Lyapunov equation derived in section 3.2 to provethis
orthonormal property of Laguerre networks. Note that no claimis being made that thistype of
proof has not previously be presented, rather it isincluded in this chapter to show the generality

of using the Lyapunov equation in finding orthonormal systems.

A Laguerre network consists of afirst order lowpass filter followed by a cascade of first

order all-pass functions as shown in figure 3.A. 1. Noting that the transfer function for X, (s) is

X16) _ \Pm (BA.1)
U(s) s+P o

we can write the state equation for the state X (s) as

sX1(65)==-PX1(s)+ VP U(s) (3.A.2)
The transfer function for X ,(s) is seen to be

U(s) N2 X1(S)1 s—pP |X208) | s—p |X3()| 5—p X4(s)
o s+P StP s+P s+P e
white noise

Figure 3.A.l: An orthonormal system resulting from Laguerre networks.
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X2(5) S-P "
X(s)  s+P (343
From this, we can write an equation
sX2(s)=-PX1(s) + (s—P)X1(s) (3.A4)
and substituting in equation 3.A.-1 above to obtain a state equation, we have
5X2(s)=—-PX1(s) — 2PX 1(s) + VP/m U (s5) (3.A5)
Carrying on this procedure, we find the state equation forX s (s) to be
sX3(s)=—-PX3(s)— 2PX 2(s) = 2PX 1 (s) + VP/m U (s) (3.A.6)

With thisiterative procedure, it is not difficult to show that, in general, the state space descrip-
tion for the given Laguerre network has an A matrix which islower triangular and all elements
in the diagonal are -P and al elements below the diagonal are -2P. Aswell, the b vector has al

elements equal toP/r. In the case of afourth order system, the following A and b coefficients

are obtained:
-P 0 0 O JP/n
_=-2P -P 0 O _| VWP
A=l 2p 2p P 0| PT| Px (3A.7)
-2P -2P -2P -P \P/n
Since these coefficients satisfy the Lyapunov equation
AK + KAT +27bbT =0 (3.A.8)

with K = 1, the stated orthonormal property is true.



Chapter 4

Adaptive Recursive State-Space Filters

4.1. Introduction

This chapter will present new algorithms for adapting the poles and zeros of state-space
filters. The adaptive algorithms presented in this chapter are described in the discrete time

domain but these algorithms can be easily modified for the continuous time domain.

It should be pointed out that all the adaptive algorithms presented in this chapter are based
on the LM S steepest descent approach and thus, depending on the performance surface, may
convergeto alocal rather than globa minimum. Although, thistype of convergence may seri-
ously limit the usefulness of this approach, thereis an indication that if one increases the adap-
tive filter’s order, only a global minimum will exist [Stearns, 1981]. Aswell, there presently
exist adaptive algorithmswhich guarantee global convergence on direct form structures [Lari-
more et al, 1980] [Fan and Jenkins, 1986] and thusit may be possible to modify the algorithms

presented in this chapter to also ensure global convergence.

Thefirst algorithm presented isintended for ageneral state-spacerecursivefilter. Having
the ability to adapt arbitrary state-space filters gives the designer the freedom to explore the per-
formance advantages of different structures. Unfortunately, the computation requirementsto
adapt a genera state-space gradient filter is quite high. However, it will be shown that the
amount of computation can be reduced by adapting any single column of the feedback matrix.
Alternatively, in the special case of a single-element input summing vector and a small feedfor-

ward component from the input directly to the output, a single row of the feedback matrix can be
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adapted with reduced computation. It will be shown that in applicationswherefinal poleloca-
tions can be estimated, these new adaptive filter structures have much faster adaptation rates than
the traditional approach using direct-form filters. Aswell, the noise performance of these new

structures will be shown to be significantly better than the direct form case.

Up to this point, we have been dealing with continuous time state-space systems whereas
digital state-space systems are assumed in this chapter. Thus, we will begin by describing digital
state-space systems in section 4.2. Also presented in this section are modified sensitivity formu-
lae which can be used to adapt the filter coefficients. These gradient formulae arc used to find a
minimuminthe performance surface. In section 4.3, the adaptation algorithm for a genera
state-spacefilterisdescribed. Unfortunately, for this general case, obtaining the gradientsis
computationally intensive. In section 4.4, a single-column adaptation agorithm is presented that
has significantly less computations required to compute the gradients. As well, sufficiency tests
are devel oped to help one check whether a column of a particular design can be adapted such
that arbitrary pole locations may be obtained. Also presented in this section is a single-row
adaptationstructure. A noise performance comparison between different filter structures is
presented in Section 4.5 to illustrate the advantage of single column and single row adaptation
over direct-form structures. To compare the different rates of adaptation, simulation results for a

number of examples are given in Section 4.6.

4.2. Digital state-space systems

Similar to continuous time state-space systems, an N'th order state-space digital filter can

be described by the following equations:

x(n +1) = Ax(n) + bu (n) (4.1)
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¥ (n) = c"x(n) + du (n)
where x(n) is avector of N states, u (n) isthe input, y (#) isthe output and A, b, c and d are

coefficients relating these variables. The matrix A iISNxN, the vectorsb and c are Nxl andd isa
scalar. Using z-transforms, the transfer function from the filter input to the output is easily

derived as

Y@@ _ _AY-1

U@ J(I-A) 'b+d (4.2)
This transfer function equation is similar to the corresponding equation for the continuous time
domain and therefore, as before, the poles of the system are determined by the A matrix (the

poles are simply the eigenvalues of A).

As in the continuous time domain, two sets of intermediate-transfer functions, F(z) and
G(z) can be defined. Thefirst set, F(z), consists of the transfer functions from the filter input to
the filter states.
F(z) =(zI-A)"'b (4.3)
The second vector of functions, G(z), is defined as the set of transfer functions from the input of
each of the delay operators to the outpuit.
G'(@)=c'(zI-A)" (4.4)
To obtain gradient signals, we use the sensitivity formulae in chapter 2 (with z substituted
for s) to relate the derivatives of the output signal with respect to each of the system coefficients

and the intermediate-transfer functions.

oY (z) _
A, Gi(2)X(z) (4.5)
aY(z) _

ab; =Gi(2)U(2) (4.6)
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%ff—)ﬂi(z) @7
¥ () _
—ad =U(2) (4.8)

From the above equations it is obvious that the gradient signals required to adapt the ¢ vec-
tor elements are available asthe output states, x(n), whilethe gradient signal for the d scalar is
the input signal, u (n). However, to create the gradient signals required to adapt the elements of
the A matrix and b vector, anew systemisrequired having theintermediate-transfer functions
from the input to the states equal to G(z) of the original system. Fortunately, we can obtain this
new system as the transposed system of the original system as described in chapter 2. How this

new system is applied will become apparent in the next section.

4.3. LM S adaptive algorithm for state-space filters

A block diagram of a state-space recursive adaptive filter is shown in figure 4.1 where the
state-space coefficients now changewith each timestep and hence are functions of the timestep
"n". The state-space system is shown as two separate blocks corresponding to the state-space
describing equations. Specifically, the feedback matrix, A, and input summing vector, b, imple-
ment the first equation of a state-space system and create the state signals, x(n), as the outputs of
thefirst block. These state signals together with the system input, u, are weighted using the out-
put summing vector, ¢, and the output scalar, d, to obtain the filter output, y, at the output of the

second block. The error signal, e(n), is the difference between the reference signal, 8(n), and the

filter output, y(n).

Recall from chapter 2 that during adaptation, coefficients of the adaptive filter are changed
to minimize the mean squared error signal, denoted as E [e 2(n)]. The LMS algorithm for updat-

ing any coefficient, p, of the adaptivefilter is
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/ xl(n /

um) —Ls A(n).b(n) c(n).d(n) |

xn(n)

x1(n) xn(n)

Adaptive
Algorithm

Figure 4.1: Adaptive state-space filter. The filter is shown in two separate blocks
which correspond to the state-space describing equations.

p(n+1)=p(n) + 2ue (n)—gﬁ:—; 49)

wherey is a step size to control convergence of the algorithm. We now assume we can write the
following [Martin and Sun, 1986] [Y assa, 1987]

—a%;”) -Z {—ag,(, )} (4.10)

-1
whereZ istheinverse z-transform. Substituting the gradient results of the previous section’
inthe update equation (4.9), the following adaptation equationsfor the system coefficientsare

obtained:

! These results were for time-invariant linear systems while the adaptation algorithm makes the overall system
non-linear. The USE of these gradients is essentially alinearizing assumption which is appropriate for the practical
case of asmall step size, l.
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Ajj(n+1) = Aj;(n) + 24te (n)otj(n) (4.12)
bi(n +1) = bi(n) + 2pe (n)Bi(n) (4.12)
ci(n+1) =ci(n)+ 2pe (n)x;(n) (4.13)
d(n +1) = d(n) + 2jte (n)u(n) (4.14)
where
a;; = gi(n)®x;(n) (4.15)
Bi=gi(n)®u(n) (4.16)

and the symbol ® denotes convolution.

Note that the adaptation equationsfor the elementsof A and b involveconvolutionwhile
the elements of ¢ and 4 have straightforward equations. As discussed previously, we can accom-
plish these convolutions by using the transposed system. A new system is created with the feed-
back matrix AT and the input summing vector c. This new system has the impulse response

gi(n) a the Output of thei’th state.

To implement the above adaptation equations, the filter structures shown in figure 4.2 can
be used to obtain all the required gradients of the system coefficients for a general adaptive
state-space filter. The transposed filter withu (n) asitsinput is used to update the elements of the
b vector while each of the other transposed filtersis used to adapt the elements of a column of
the A matrix. Ascan be seen, the number of computations required to obtain the gradientsfor

this general state-space filter is quite high:N+2 times that of the filter itself.

It isinteresting to note that the gradient equations obtained with this approach are identical
to those obtained for direct form gradient adaptation in [Stearns et al, 1976][White, 1975]. How-
ever, note that anintermediate function approach was applied here whereas algebrai c methods
were used to obtain the gradient equations in the aforementioned references. This is to be

expected since both methods are finding the derivative of the output with respect to the filter
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u(n)

u(n)

x1(n)

xn(n)

x1(n)
Ab : c,d —— y(n)
xn(n)
S
—> Bi(n)
AT,c
—  Py(n)
—  a;(n)
AT,c
—3>  on1(n)
—>  an(n)
AT ¢ 3
—>  Oyn(n)

Figure 4.2: Generating the gradients for a genera state-space adaptive filter

coefficients.
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4.4. Reduced computation state-space adaptive filters

To reduce the computations, note that given an independent set of intermediate-transfer
functions, {F;(z)}, any set of desired transmission zeros can be obtained by changing only the c
vector and d scalar. This allows one to keep the b vector constant while adapting the remaining
state-space system coefficients. Of course, equivalently the ¢ vector could be held constant
while the b vector is allowed to change. However, it can be seen from the update equations
above that the gradient signals required to adapt the ¢ vector are immediately available while the
b vector’ sgradient signalsare more difficult to obtain. For thisreason, we normally chooseto

adapt the ¢ vector rather than the b vector.

To further reduce the number of computations, notethat N 2 dements of the A matrix are
being adapted whereN elements are sufficient to define N poles. Therefore, we look for struc-

tures which can be adapted to any set of poles by changing onlyN elements of the A matrix.

4.4.1. Single column adaptivefilters

Recall that each of the transposed filters of figure 4.2 provides all the gradients required to
adapt a single column of the A matrix. Therefore, if we choose to adapt a modified direct form
where only the elements of thelast column are adapted, only one transposed filter isrequired.

For the modified direct form filter, the A matrix has the form

0 0 0 0 a
1 0 0 0 aj
A= 0 1 0 0 a3 (4.17)
0 0 . 1 O ah;-l
. 0 0 . 0 1 an

However, we do not have to restrict ourselves to the modified direct form to obtain compu-

tational savings. From control theory, the pole assignment theorem [Wonham, 1985] states the
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following:

Pole Assignment Theorem

The pair (m!, A) is observable if and only if for every complex conj uqate set of N com-
plex numbers there exists a vector k such that the eigenvalues of (A+km”) are the given
set of N complex numbers.

Oneway to look at this pole assignment theorem isto consider a state-space system with
the fixed feedback matrix A and states x where one wishes to change the poles of the system to
arbitrary locations by introducing extrafeedback into the system. The extrafeedback isintro-
duced by taking a weighted sum of the states using the value of them vector to create a feedback
signal, yr (equa to m’x) and then applying the feedback signal, ys» back into the states using the
value of the vector, k (traditionally aninput summing b vector). With this approach, it is not
difficult to see that the poles of the new system are the eigenvalues of A+km!. However, to
ensure that arbitrary pole locations can be obtained, the feedback signal, ys, must contain enough
information about the states of the original system leading to the observability constraint in the
theorem. The constraint is that the states of the original system must be observable through the
signal y;. Observability implies that with no input to the system, the initia states of the system
can be determined by looking solely at the output signal. This observability constraint isalso

equivalent to having the intermediate G-functions of the system independent {Kuo, 1980].

In the use of the pole assignment theorem in thisthesisthe m vector isrestricted to be a
basis vector v; where a basis vector, v;, consists of all zeros except for the unit element in the
I"th row. With thisrestriction and for agiven A matrix, the pole assignment theorem states that
we can obtain any desired set of poles by changing only the i’th column of A if (v7, A) is observ-
able (observability is further discussed in the next section). Therefore the poles of an arbitraryA

matrix can be adapted using only one transposed filter to obtain the necessary gradients required
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to adapt asingle column of A. A block diagram showing how the gradients are obtained for a

single column adaptive filter is given in figure 4.3.

4.4.2. Sufficiency tests for column adaptation

As mentioned above in the pole assignment theorem, to adapt the i’th column of A, (v7,A)
must be observable. (Here, m has been replaced with v; which restricts discussion to the case of
adapting a single column.) To check that this observability constraint is satisfied, the control
literature has a number of different tests which could be used. (For a discussion of observability
tests, see [Kuo, 1980].) Unfortunately, filter designers do not always have access to software
which can easily perform an observability test. For this reason, two simple sufficiency tests are
presented here allowing afilter designer to check whether the above matrix pair satisfies the
observability constraint. If thefirst test is satisfied then the particular column of A cannot be

adapted while if the second test is satisfied then the column can be adapted. In most

o(n)
(
ikl ym) - X
u(n) Ab awin] &9 ,@ = e(n)

r —  0y;(n)
xi(n) —— A'c :

EELEN oi(n)

Figure 4.3: Generating the gradients for a single column adaptive filter
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applications, one of these two testswill be satisfied; however, if thisis not the case then one of

the many observability tests can be applied.

For both of these tests, consider a given A matrix where one desires to adapt the i’th
column of A to obtain arbitrary pole locations. Define the vector of functions, Gg;(z), as
Ghi(@)=vi(I-A)™ (4.18)
Thisvector of functionsis most easily visualized as the intermediate G functions of the state-
space system having afeedback matrix, A, and an output summing vector, v;; in other words,
with the j’th element of Gg;(z) being the transfer function from the input of the j’th delay opera-
tor to the i’th state. To derive the two sufficiency tests, an observability independence theorem
isrequired which states the following [Kuo, 1980]: The pair (v7,A) isobservableif and only if

the elements of Go;(z) are linearly independent (over the field of complex numbers).

The two sufficiency tests are:

Column Adaptation Test 1

If any of the elements of GJ;(z) is zero then the i’th column of A cannot be adapted to
arbitrary pole locations.

The proof for this test comes from the fact that the elements of Gy;(z) are not independent
if one of the elementsiszero. Since the elements of Gp;(z) are not independent then the obser-
vability independence theorem implies that the pair(vF, A) is not observable. Therefore, by the
pole assignment theorem, the i’th column of A cannot be adapted to realize arbitrary poles.

Column Adaptation Test 2

If any of the elements of Gg;(z) is of order N then thei’th column of A can be adapted
to realize arbitrary pole locations.

The proof for thistest comes from the fact that the elements of Gg;(z) are independent if

one element is N'th order. This fact can be proved by contradiction. Assume a given system with
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N delay elements where the elements of Gy;(z) are dependent and one of the elementsisN’th

order. Since the elements of Go;(z) are dependent, at least one function can be created as a
linear combination of the other functions. Therefore, a system with only N-I delay elements can
be constructed with the same dependent set of Gp;(z) elements. However, it iswell known that
an N'th order transfer function cannot be created from less than N delay elements. This contrad-
ictsthe origina assumption, therefore if one element is N’th order, the elements of Gg;(z) must
be independent. Since the elementsof Gg;(z) areindependent, the observability independence

and pole assignment theorems can be applied to prove the stated test.

As an example of these sufficiency tests, consider the fourth orderA matrix

0O 812 o o
A= a a» o0 O
O O O as
0ag2a43 244

(4.19)

This System is a cascade of two biquads where (a12,a 21,a22) implement the first biquad and
(a 34,443 ,a44) Make up the second biquad whilea 4, is the feedforward term from the first to the

second biquad (seefigure 4.4).

Consider the case where one wishes to adapt the first column. It is clear from figure 4.4
that the transfer function from the input of the third or fourth delay operatorsto the first state is
zero. This implies that the last two elements of Gg(z) are zero. Therefore, according to
column adaptation test 1, column one cannot be adapted to realize arbitrary poles. Thisresult
should come as no surprise since adapting the first column cannot affect the poles of the second
biquad as only feedforward terms are added from the first to the second biquad. A similar test

shows that the second column cannot be adapted to realize arbitrary poles.

Now, consider the case of adapting the fourth column. In this case, the e ements of Gp 4(z)

are the transfer functions from the inputs of the delay operators to the fourth state. Since the
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Figure 4.4: Signal flow graph for state-space gstem of cascade of two biquads.
nly the A matrix branches are shown.

transfer function from the input of the first delay operator to the fourth state is fourth order,
column adaptation test 2 impliesthat the fourth column can be adapted to give arbitrary poles.

Finally, a similar test shows that the third column can also be adapted to realize arbitrary poles.

4.4.3. Singlerow state-space adaptivefilter

A situation where only one extrafilter is required to obtain the gradients to adapt a single
row of the feedback matrix, A, occurswhen the input summing vector, b, equals a basis vector,
v; and thed coefficient iszero. In this case, the transfer function from the filter input to the filter
output is equal to G;(z). Therefore, to implement equation (4.11) for thei’th row, only one other
system isrequired having the functions F(z) at the state outputs. This extrasystem is created
using the b vector and A matrix of the original system. A block diagram showing how to obtain
the gradients for a single row adaptive filter is shown in figure 4.5. Note that if the d element is
close to zero then gradient signal obtained with this method will closely approximate the actual

gradient signal.
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Figure 4.5: Generating the gradients for a single row adaptive filter

To determine whether the i’th row can be adapted to obtain arbitrary pole positions, one
can use the controllability pole assignment theorem [Wonham, 1985]. Aswell, the sufficiency
tests described above for adapting a column of the feedback matrix can be easily modified for

checking whether a row may be adapted.

Note that in the specific case where the state-space filter is in direct form, the resulting real-
izations using single row adaptation are the same as that obtained for direct form gradient adap-
tation in [Y assa, 1987]. This method of obtaining gradients requires significantly less computa-
tions than that originally proposed in [Stearns et a, 1976][White, 1975]. Also note that the
non-zero element of theinput summing vector, b, doesnot haveto equal one. If the non-zero
element is not unity, then the above results still hold but the gradients for the i’ th row will be
scaled. Finaly, note that the input vector must have only one non-zero element for efficient sin-

gle row adaptation. This restriction is not present for single column adaptation.
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4.5. Roundoff noise comparison

In this section, the possible noise performance improvement of using a single row adaptive

filter over a direct form adaptive filter will be demonstrated through the use of an example.

First, ameasure for comparing the noise performance of different filter structures needsto
be defined. Our noise measure, Ny, isadlight variant of the measures presented in [Mullis and

Roberts, 1976][Amit and Shaked, 1988],

Ny = trace(KWQ) (4.20)
where K and W are the state correlation matricesfor digital state-space systems. Indigital  sys-

terns, K and W satisfy the following equations [Mullis and Roberts, 1976]

K = AKAT +bb7 = 3 (A*b)(A*b)! (421)
k=0

W = ATWA + cfc= 3 (cAH) (cA*) (4.22)
k=0

The matrix Q is adiagonal matrix where Q;; is zero if the elements inrow i of A consist only of

O's, 1sand-1's. Otherwise, Q;; iSone.

'Note that this noise measure is valid when using a modem digital signal processor having a
multiplier/accumulator that does not truncate until writing out to memory. Thus, the noise
model used assumes each row of a state-space system has one noise source due to truncation
error rather than anoise source for each non-zero element. The matrix Q makes an adjustment
for rowswhere no truncation errors are introduced. In the case of adirect form filter, thereare

N-I rows where no truncation errors are present.

Note that the noise measure defined in [Mullis and Roberts, 1976] smply has Q equal to
the identity matrix and thus using that measure would result in even higher noise figures for the

direct-form case than those obtained in this thesis. Noise figures for other structures would
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remain relatively unchanged.

With anoise measure to compare different filter structures, we may now proceed with an
example. The example used will be a narrowband, oversampled transfer function, typical in
many practical applications. It iswell known that direct form filters have poor noise perfor-
mance for such applications. The example transfer function isthat of a third-orderlowpass filter
with a sampling frequency to passband frequency ratio of about 32. The same transfer function
is used in the ssimulation results of section 4.6.2 where the poles and zeros of the transfer func-
tion are given (in the last row of table 4.1). Three different realizations of thisfilter are investi-

gated with respect to noise performance.

The first realization is of the direct form type having the state-space system description

0 1 0 0
A= 0 0 1 b = 0 (4.23)
0.8880 -2.7432 2.8523 1

¢/ =[ 0.01003 -0.01884 0.01088 ] d =0.005312
Using equations (4.21) and (4.22), the K and W matrices for the direct form realization are

found to be
K= [ 13395 13522 13395 (4.24)
1367 13385 Hgh
0.0382 -0.0800 0.0426
W= -0.0800 0.1679  -0.0898 (4.25)
| 0.0426  -0.0898  0.0483

Aswell, for the state-space system shown in equation (4.23), by definition of the Q matrix, Q is

seento be
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0 [ ;

0
Using equation (4.20), one can easily calculate the noise measure, Ny, for thisfilter to be 652.

(4.26)

Rl e

Thus, this noise measure is the value one would obtain in the case of an adaptive filter applica-

tion using a direct form structure and the given final transfer function.

The next two filter realizations are obtained using a variation of the orthonormal filter struc-
ture described in chapter 3. Since the orthonormal filter structure gives good results in the
continuous-time domain, it was felt that good filter performance would be obtained in adigital
filter with a high ratio of sampling frequency topassband edge. (For design details, see appendix
4.A.) In this thesis, we shall refer to realizations obtained with this approach as "quasi-
orthonormal filters’ since the resulting realizations approach true orthonormal filters as the sam-
pling frequency to passband edgeisincreased. While quasi-orthonormal filtersare usedinthis
section for comparison, the author believes that any good state-space design techniques [chapter

9, Roberts and Mullis, 1987] should give similar results.

Implementing the narrowband transfer function by a quasi-orthonormal filter, the following

state-space system is obtained.

1 0.1188 0 0
A= | -0.1188 1 0.1567 | b = 0 (4.27)
0 -0.1567  0.8523 0.2168

ol =[ 0.4755 0.0859 0.2168] d=0.005312
The K and W matrices for this structure are

K= -0.01746 02941 -0.04854

-005179  -0.04854  0.2456

02202  -0.01746 -0.05179
(4.28)
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1.0369 1.4300 0.9107
0.4573 09107 1.02656

W=

1.6698 1.0369  0.4573
(4.29)

Note that the K matrix indicates the structure is close to being orthonormal. Using the fact that
the Q matrix for this structure is the identity matrix, the noise measure, Ny, is found to be 1.04.
This noise figure is not much worse than the Mullis and Robert’s optimal filter [Mullis and
Roberts, 1976] which has a noise measure of 0.73 (the noise measure for the optimal filter can be
calculated from the eigenvalues of KW). Thus, the quasi-orthonormal design approach appears
to be a good structure for oversampled filters. Unfortunately, to obtain this low noise figure in
an adaptive filter application, one would have to adapt the quasi-orthonormal structure where
varying elements of the A matrix are in each of the rows and columns of A. Thus, a high com-

putational load would be required to obtain the gradients for the elements of A.

We now proceed to investigate the case where a single row of the feedback matrix A is
adapted to move the poles from an initial position to their final position. Using the same design
procedure as above, a quasi-orthonormal state-space realization was obtained with all its poles at
0.9. The poles of this filter were then adapted to the pole locations of the desired transfer func-
tion by changing only the last row of the A matrix. As well, the ¢ vector and d scalar were

changed to obtain the desired zeros. The following state-space system was obtained.

1 0.0577 0 0
A= -0.0577 1 0.1633 b= 0 (4.30)
-0.1686 -0.2163 0.8524 0.309

' =[0.6984 0.0579 0.0352]1 d=0.00531
Finally, the following K and W were found for the above system.
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0.1149  -0.0187 -0.1846
K= -0.0187 0.6493  -0.0814 (4.31)
-0.1846  -0.0814  0.7709

W= 1.4571 0.6479  0.4300

1.0212 0.4300 0.5054

4.8721 14571 1.0212
4.32)

The noise measure, Ny, for this filter is 1.4 which is slightly worse than the above case but is
still orders of magnitude better than the figure for the direct form implementation. Thus, it
appears that low roundoff noise adaptive filters may be obtained if one has a good estimate of
the final pole locations. Of course, if the starting pole locations are farther from the final pole
locations, one would expect a higher noise figure. Other examples of roundoff noise improve-

ment will be presented in the next section.

4.6. Simulation results

This section will present computer simulation results of the above adaptive algorithms. The
simulations are based on system identification applications where the adaptive filter is required
to adjust its coefficients to match a reference transfer function. A block diagram of the applica-
tion used for these simulations is shown in figure 4.6. The examples presented are grouped into
two sets. The first group is intended to demonstrate that our state-space algorithm results in
adaptation paths that closely follow those of steepest descent. The second group of examples
indicates that much better adaptation rates may be obtained, in oversampled applications, by

using structures other than direct-form.
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Figure 4.6: System identification application used for simulations

4.6.1. Adaptation paths

In the adaptation path examples, we shall use second-order reference transfer functions so
that a contour plot of the error performance surface can be superimposed with the adaptation
paths taken. For comparison purposes, we shall also plot the adaptation path taken by the
approximate gradient algorithm proposed in [Feintuch, 1976]. (See appendix 4.B for an
interpretation of the approximate algorithm in relation to the algorithm presented in this

chapter).

The adaptive filters are implemented using the following direct form state-space system

0 1 [o]
A= a;  ay =11 (4.33)
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J'=[0 11 d=0
For the state-space gradient approach, the single-row adaptation algorithm described in section

4.3 was used. For the approximate gradient approach, the algorithm described in appendix 4.B
was used. For both algorithms, a small step size was used to observe the adaptation path of the

coefficients.

For the first example, the following reference transfer function was used.

z—l
1-1.2z7"14+0.7272

Therefore, after adaptation, the coefficients (a, a,) should be (—0.7, 1.2). The starting point for

(4.34)

both algorithms was at (-0.36, 0). Figure 4.7, below, shows the adaptation path of the
coefficients superimposed on a contour plot of the error performance surface. In this case, the
state-space gradient algorithm follows the steepest descent path, as expected, while the approxi-

mate gradient path is not far from the steepest descent path.

In the second example, the poles of the reference filter were chosen to be close to the unit
circle with the location of the starting point poles even closer. This example is used to demon-
strate that the state-space gradient method again follows the path of steepest descent while the
approximate gradient approach deviates drastically. The reference transfer function used was

;-1
1-1.7z71 +0.8272

The starting point for the coefficients (a,, a,) was (—0.915, 1.7). The adaptation paths and con-

(4.35)

tour plot for this example are shown in figure 4.8, below. From figure 4.8, we see that the state-
space gradient algorithm still follows the path of steepest descent. However, the approximate
gradient approach is quite far from the steepest descent path during the first half of adaptation

and then follows the steepest descent path during the second half of adaptation.
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Figure 4.7: Example 1 of adaptation paths for state-space gradient method and method in
[Feintuch, 1976] superimposed on contour plot of error performance surface.
start:(a, = —0.36,a, =0.0), end:(a; =-0.7,a, = 1.2).
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O - approx gradient
coefficient N
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Figure 4.8: Example 2 of adaptation paths for state-space gradient method and method in
[Feintuch, 1976] superimposed on contour plot of error performance surface.
start:(@a; =—0.915,a, =1.7),end:(a; =-0.8,a, = 1.7).

The above simulations indicate that the state-space gradient algorithm should aways con-
vergeto aminimum in the error performance surface while the performance of the method in
[Feintuch, 1976] appears to be quite application dependent with no guarantee of converging to a

minimum.
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4.6.2. Narrowband examples

This section will present adaptation rate results for filters with varying ratios of sampling
frequency to passband edge frequency. All thereferencefilters are derived from athird-order

elliptic lowpass analog prototype with the following s-plane poles and zeros.

poles ={ -0.3226, —0.1343+; 0.9 1920 } (4.36)

zeros ={ 1j 2.2705, « }
The passband of the prototype has a 3 dB ripple with the passband edge normalized to 1 rad/sec.

To obtain narrowband digital filters with varying bandwidths, the bilinear transform

[Oppenheim and Schafer, 1975] was applied to the anal og prototype,

_ 1+(T/2)s
1-(T72)s
where T isthe sampling period. Using the fact that the analog prototype’s passband edge is nor-

(4.37)

malized, one can use the well known prewarping equation to find arelationship between the
sampling period, T, and the ratio of the sampling frequency, wy, to the passband frequency, w,.
For purposes of comparison, four values of the sampling period,T, are used: 2, 0.8, 0.4, and 0.2.
These correspond to ratios of sampling frequency to passband edge frequency of approximately
4,8, 16, and 32 respectively. In all cases, the digital transfer functions were scaled to have again
of one at z=I. For each of these values of T, three different structures for the adaptive filter are
used: direct form, single row, and single column adaptivefilters. The single row and column
adaptivefilters start from the quasi-orthonormal structure and then either the last row or column
is adapted. Theinitia pole locations of the adaptive filters are three coincident poles on the real
axis at a point chosen close to the final pole locations. In all three cases, the initial pole locations

are the same and the ¢ vector andd scalar are both set to zero.
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Of course, the step sizep is an important factor in controlling the adaptation rate and there-
fore, a method is required for choosing the step size for each smulation so that a fair comparison
can be made. Firgt, it should be pointed out that the same step size was used for al the state-

space elements and no power normalization was used. To find the step size for a particular smu-

lation, atrial and error method was used to first find a*“ diverging step size” which caused the
simulation to go unstable after 500 iterations. This diverging step size appeared to vary by at
most 20 percent for aparticular simulation. The step size then used for simulations was the
diverging step size value divided by 4. One performance measure used is the “iteration for con-
vergence”, taken as the number of iterations required to have the coefficients of the state-space

system converge to 4 significant digits.

Table 4.1 lists the results of the different ssmulations. Note that as the reference filter
becomes more narrowband, the direct form takes much longer to adapt than either of the other
two structures. Aswell, note that the noise measure, Ny, of the final adapted filter is higher for
the direct form case than the other structuresin the cases of high sampling frequency topassband
edgeratio. Inthe case of thelowest ratio, the noise measure of the row and column adaptation
structures is relatively poor because the quasi-orthonormal filter has poor noise properties at pole
locationsfar from z=|. Thegraphin figure 4.9 summarizes the convergence times for the vary-
ing narrowband reference filters and different adaptivefilter structures. Theseresultsindicate
that using structures other than direct form can result in much better adaptation rates iroversam-

pled applications.

4.7. Summary

Analgorithm was presented for adapting a genera state-space filter. This algorithm

required N+l extra state-spacefiltersto obtain all the gradients required for adapting an N’th
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o, Transfer Initial Direct Row | Column
@, Function Poles Adapt | Adapt | Adapt
e 0 Stepus'ze 001 | 00025 | 00028
0.06429+0.8625
4 Iterations for
0 Convergence 16K 60K 50K
ZEeros
-1.0 Noiseﬁ"eawre
-0.675 1kj0.7377 © M 08 8.2 8.2
PPy 07 Stepus'ze 000028 | 003 | 0015
0.6920:0.5904
8 Iterations for
0.7 Convergence SU0K 60K 35K
ZETros
-1.0 Noiseny 2asure
0.09597+j0.9954 | 07 Ry 4 24 50
PeR 038 Stepus'ze 0000025 | 001 | 0.00375
0.8872+/0.3379
16 [terations for
0.8 Convergence SMEG 0K 30K
ZEeros
-1.0 Noise Measure
0.6581+j0.7529 | ©8 Ny 49. 16 28
PeE 0.9 S[epus'ze 0000001 | 00125 | 0.0015
0.9574+0. 1775
32 [terations for
09 Comvergence | 71OMEG 40K 40K
ZEeros
-1.0 Noisepy! sasure
0.9019+j0.4318 | 09 Mo 652. 14 26

Table 4.1: Adaptation rates and noise measures for filters of varying bandwidths.
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Figure 4.9: Convergence times of different structures for filters of varying bandwidths.

order system. Single column and single row adaptive filter structures were then introduced
where only 1 extra state-space filter is required to obtain the necessary gradients. It was shown
that in applications where a good estimate of the final pole locations is known, single column or
row adaptivefilters can result inimproved convergencerates and significantly better roundoff
noise performance as compared to direct form implementations. These new adaptive filters are

especialy effective in the practical case of oversampled systems.
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Asafina comment, it should be pointed out that all the gradient signals required for the
adaptation methods proposed in this paper can be obtained as the outputs of filters. Thusthe
algorithms presented in this chapter can be easily modified to be applied in the continuous time
domain. Adaptive filtering in the continuous time domain will be the main focus of the next

chapter.
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Appendix 4.A

Quasi-orthonormal design procedure

A state-space orthonormal design technique was presented for continuous-time circuits in
chapter 2. The structures resulting from this technique have the advantages that they are
inherently L, scaled for dynamic range and have good sensitivity and noise performance. As
well, the feedback matrix is nearly skew-symmetric and sparse. This fina property is particularly
interesting since an orthonormal digital filter isusually dense. We present in this appendix a
procedure to obtain, for oversampled transfer-functions, a nearly orthonormal state-space digital

filter with a sparse feedback matrix.

The design uses the fact that the forward difference transformation applied to a state-space
system simply shifts poles and zeros by +1 and changes the feedback matrix by adding oneto

each of the diagonal elements. Specifically, given a state-space system

sx=Ax +bu (4A.1)
y= cI'x +du
if the forward difference transformations=z-1is applied, the following system is obtained
zx=(A+Dx+bu (4.A.2)

y=c'x +du
where the poles and zeros in the z-plane are ssimply shifted versions of the poles and zeros in the

s-plane.
Using this transformation property, the quasi-orthonormal design procedureis:
(1) Shift both poles and zerosin the z-plane by - 1.

(2) Obtain an orthonormal state-space system for the shifted poles and zeros using the

approach in chapter 2 for continuous time designs.
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(3) Shift the poles and zeros of the state-space system by +1 by adding one to each of the diag-

onal elements of the feedback matrix A.

Note that this design technique is exact in the sense that it produces exactly the desired
transfer function, however it does not exactly reproduce the orthonormal states of the
continuous-timefilter. With thisapproach, theresulting filters approach orthonormal behavior
astheratio of the sampling frequency to passband edgeisincreased. Specifically, thediagona
elements of K will asymptotically become equal and the off-diagona elements approach zero. It
should be noted, however, that the diagonal elements will be afactor of 2z less than unity. This
factor arises because unit-variance white noise in discrete-time systems spreads noise power
over the 2z circumference of the unit circle while noise in continuous-time systems is defined as
having unit power density over 1rad/s. Thus a quasi-orthonormal system obtained as described
above will asymptotically have mean-square output levelsafactor 2x below the mean-square
variance of the discrete-time white input. Of course, a simple scaling of the input vector can be
used to obtain an arbitrary mean-square level. Finally, note that this design method will always

result in a sparse tridiagonal structure for theA matrix.
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Appendix 4.B

Approximate algorithm interpretation

This appendix will relate the approximate algorithm presented in [Feintuch, 1976] to the
agorithm proposed in this paper. The approximate algorithm does not require any extra compu-
tationsto obtain gradient signals and is therefore used in practical applications [Eriksson and

Allie, 1988].

Note that the algorithm in [Feintuch, 1976] was developed for adirect form filter where a
zero-forming filter is cascaded with a pole-forming filter. The zero-forming filter is adapted
using the usual LM S agorithm with true gradients so we will not concern ourselves with it. On
the other hand, the pole-forming filter is adapted with gradients intended to approximate the true

gradients.

The transfer function, P (z), of the pole forming filter is

-1
Z
l-ayz—ay_1z2— - —agzV (4B.1)

where afactor of z~! has been introduced in the numerator to simplify the state-space represen-

P(z)=

tation. This transfer function is realized by the direct form state-space system

0 10.0 0 0
0 0 1 . 0 0 0
A= S b= | . (4.B.2)
0 0 0 | 0 0
O 0 O 0 1 0
a, ap; as . ay-1 ay 1

=00 --- 01] d=0
It is not difficult to show that the adaptation algorithm of [Feintuch, 976} applied to the above

state-space system results in the update equation
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a;(n+1)=a;(n) + 2ue(n)x;(n—1) (4.B.3)
Comparing thisresult with that of equations(4.11) and (4.15), we seethat the approximate gra-

dient algorithm simply replaces the impulse response gy (n) by asingle delay. It was shown in

the simulation results that this approximation is good in some applications and poor in others.

Thisinterpretation helps to explain the adaptation paths taken by the algorithm presented in

| [Feintuch, 1976].
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Monolithic Implementation and Experimental Results

5.1. Introduction

One of the main contributions of this thesis is to demonstrate that monolithic analog adap-
tivelIR filters are feasible. To demonstrate that discrete analog adaptive IR filtersare realiz-
able, a discrete third-order prototype was constructed and the design details are presented in sec-
tion 5.2. The single row adaptive filter algorithm described in chapter 4 was chosen as the basis
for the prototype, and although one of the motivations for developing analog adaptive filtersis
high frequency applications, for evaluation purposes, a low frequency prototype was con-
structed. The experimental results for this discrete prototype are given in section 5.3 and show
that the algorithms presented in chapter 4 can successfully be converted to the analog domain.
However, athough the building blocks used in the discrete prototype are typical analog circuits
that have been previously integrated, the specific implementation details of these building blocks
are not intended for amonolithic realization. To show the feasibility of monolithic realizations,
the design detailsand experimental resultsfor aCMOS monolithic third-order programmable
filter are described in sections 5.4 and 5.5. This programmable filter is realized using the
transconductance-C technique with voltage signals that adjust the values of the filter coefficients

by varying the transconductance of differential input circuits.
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5.2. Discrete prototype design details

To redlizethe coefficient update algorithm in hardware, one requires sometype of multi-
plier. Since high quality analog multipliers are difficult to implement, it was decided to avoid
using standard multipliersin the coefficient update algorithm block by implementing the  sign-
data algorithm [Treichler et al, 1987] rather than the traditional LM S algorithm. With the sign-
data algorithm, the error signal is multiplied by only the sign of the gradient signal rather than
the gradient signal itself and therefore the multiplication can be realized by simple hardware.
Specificaly, the sign of the gradient signal can be determined by a comparator and with the use
of amultiplexor, the multiplier output is set to either theinverted or non-inverted error signa
depending on the comparator result. Since multiplexors do not introduce any significant offsets,
thistype of multiplication resultsin less output offset voltage than asimple multiplier circuit.

Offsets at the coefficient update integrators can cause problems as will be shown in chapter 6.

Theblock diagram for the third-order single-row anal og adaptivefilterisshowninfigure

5.1. The basic structure of the programmable and gradient filtersis of the orthonormal ladder
type described in chapter 3. There are six coefficients used to adjust the transfer function of the
programmable filter; g; ,i=I-3 and ¢; ,i=I-3. As shown, three pole coefficient update blocks
are used to adapt the q; coefficients while the ¢; coefficients are adapted using three zero
coefficient update blocks. Note that these coefficient update blocks use the sign data algorithm
discussed above. Thegradient signalsneeded to adjust the ¢; coefficientsare simply the states,
x;(1), of the programmable filter whereas to adjust the a; coefficients, the gradient signals, ;(z),
are obtained from a gradient filter. Note that the gradient filter isidentical to the feedback circuit
used in tie programmablefilter. The error signal is obtained asthe difference between the pro-

grammable filter's output and an externa reference signal,8(s).
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Figure 5.1: Block diagram of a third-order single-row analog adaptive filter
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We see from the block diagram in figure 5.1 that multiplier/summer circuits are required
- the programmable and gradient filters. The circuit that realizes these multiplier/summer
ages is based on a circuit linearization technique that was originally proposed for creating fixed
pntinuous-time integrated filters [Banu and Tsividis, 1983] where control over time-constants is
ecessary to account for process variations. The circuit realization for a single multiplier and
?,summcr stage is shown in figure 5.2. Matched N-channel MOS transistors are used to imple-

“ment the four transistors and are contained in one Siliconix integrated circuit (the SD5001N).

p(1)

s(t) Vo(t)
(@)

p@)

i)

+s(¢)
i2(t)

=s(t)

i3(t) Vo(l)

=s(t)

is(t)

+s5(1) < R

Vg = %VDD ——

(b)
Figure 5.2: (a) Multiplier symbol (b) Circuit implementation
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The voltage Vg is a DC bias voltage set to halfway between ground and the positive rall.

Referring to figure 5.2, the output voltagev,(¢) is easily seento be

Vo) =[(i4(®) —i2())+ (i3()—i1 () IR 5.1
With reference to the term containing i 4(¢) and i, () in equation (5.1) above, one can show that
through the use of balanced inputs, +s(t) and —s(¢), and the fact that the op-amp input terminals
are approximately equal in voltage, the resulting current difference consists of alinear term and
odd-order nonlinear terms’. In other words, for the output voltage, the even-order nonlinear
terms are cancelled (for a most complete description of this cancellation, the reader is referred to
[Tsividiset al, 1986]). A similar distortion cancellation is obtained in the current difference
term containing i 3 (¢) and i 1 (¢). Assuming the transistors operate in the triode region where the
odd-order distortion products are small, the result is alinearizing effect such that the output sig-

nal has low distortion for signals as large as 1 volt peak.

To further analyze this multiplier circuit, we can write an equation for the output voltage as
afunction of theinput signal, s(z), and the coefficient signal, p(t), using the |inear term of each
transistor. The linear resistance, ry, Of atransistor in the triode region can be written as

[Tsividiset al, 1986]

-1
w
Tds = [HNCax Z‘(VG - VT% (5.2)
wherepy is the N-channel mobility, C,, is the gate oxide capacitance per unit area, Wand L are
the channel width and length, V; is the gate potential and Vr is the threshold voltage. Using this

formula, the output voltage, v,(¢), can be written as

V() = R(NCor S NP (O)-V) (53)

!'Note that a square-law model for the transistors would result in perfect linearity with this circuit.
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From this formula, we see that this circuit acts as a multiplier of the two input voltages s(¢) and
p(¢) to obtain the output voltage, v,(r). Note, there is an offset in the above formula such that
p(f) must equal Vg for the output voltage to go to zero, however, this introduced offset does not
affect the operation of thefinal realization. Aswell, note that both positive and negative gains
can be obtained by having p () above or below Vg, respectively, and that, ideally, the minimum
gain obtainable is zero. However, there is a limit to the maximum gain of this same circuit

determined by the resistor valueR and the minimum r, obtainable.

Figure 5.3 shows the circuit implementation of the discrete prototype at a block level where
only 4 different blocks are used to create the circuit with the details of each of these blocks
showninfigures5.4t0 5.7. This set of circuit drawings describe the complete realization for the
discrete prototype analog adaptive filter. Comparing the block diagram in figure 5.1 with the cir-
cuit implementation blocks in figure 5.3, we see that the programmable filter consists of a*“Vari-
able Feedback” block and a*“Variable Sum” block while the gradient filter consists of only a
“Variable Feedback” block. Aswell, the error generator correspondsto the“Error  Gen" block
with each of the zero and pole coefficient update circuits consisting of a single"Coeff Update”

block.

Let us now look at each of the blocks in more detail. The summer and three multipliersin
the “Variable Feedback” and “Variable Sum” blocks (figures 5.4 and 5.5, respectively) are
implemented using the N-channel MOS multiplier described above. In this implementation,
transistor currents are summed to provide a single output signal corresponding to the necessary
multiplication and summation of the input signals. The resistor values used in the
multipliers/summer circuits were experimentally chosen to give maximum gains of about 5 for

the gain from asingle §; signal to the output implying that coefficients values can range from -5
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Figure 5.3: Circuit implementation of breadboard prototype at block level.
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Figure 5.4: Circuit details of "Variable Feedback" block.
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Figure 5.5: Circuit details of "Variable Sum" block.
(a) Symbol (b) Circuit implementation
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Figure 5.7: Circuit details of "Coeff Update" block.
(a) Symbol (b) Circuit implementation

to 5. The remaining circuitry in the "Variable Feedback" block corresponds to an implementa-
tion of the feedback network for the programmable or gradient filters. Looking at the "Error

Gen" block in figure 5.6, we see that it directly implements the error generation block diagram in
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figure 5.1 except that the inputs are summed rather than subtracted and the inputs are AC cou-
pled and amplified. A summation rather than subtraction of inputsis used sinceit requires less
circuitry and athough using a summation inverts the sign of the gradient signal, this effect can
easily be accounted for in the coefficient update circuitry. The reason for the AC coupling and
amplification of the error signal is to reduce the effect of DC offsets (DC offset effects are dis-
cussed in chapter 6). It should be pointed out that on an | C realization of an analog adaptive
filter, this AC coupling could be accomplished by using an extra summing coefficient to cancel
out the DC offset inthe error signal. Finally, referring to the circuitry for the “ Coeff Update”
block in figure 5.7, note that the multiply in the “Coeff Update” block is performed using atwo

input multiplexor since the the sign-data algorithm was implemented, as discussed above.

Since single-row adaptive filters normally require some estimate of fina pole locations, it
was decided to choose component valuesfor the programmabl e and gradient filters so that the
fixed time constants corresponded to values used in the reference filter that was used in the first

experimental results discussed below. Thus, the following state-space filter was implemented.

0 0.98361 0 0
A=| 098361 0 12307 fb=| 0 (5.4)
A Ay, Ass 0.7737

cI'=[cl c2 ¢3]d=0
The coefficients in the above matrices which are shown as variables correspond to the state-

space coefficients which are adapted. This normalized state-space system was denormalized to
the resistor and capacitor component values shown by multiplying all coefficient values by

2n x 10° . This gives time constant values around the 1 KHz range.
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5.3. Discrete prototype experimental results

In order to test the adaptive filter, amodel matching application was used where the refer-
encesignal, &(t), isobtained asthe output of afixed filter with white noise applied to itsinput.
The samewhite noise source is also applied to the adaptive filter input causing the adaptivefilter

to match the transfer function of the reference filter.

For the first experimental example, the reference filter was chosen to be a third-order
lowpass filter with finite transmission zeros. The normalized state-space system for the refer-
ence filter was

0 0.98361 0 0
A= —0.98361 0 12307 | b = 0 (5.5)
0 -1.2307 -1.8805 0.7737

¢f=[ 15779 004563] d=0
This normalized system was denormalized using the same scaling value (2r x 10°) as the pro-

grammable and gradient filters and resulted in the passband edge at 1 KHz. Note that, except for
the coefficients which adapt, this system is the same as that for the programmable and gradient
filters and therefore, after adaptation, the coefficientsA 3;, A 33, and A 33 should correspond to 0,
-1.2307, and -1.8805, respectively and ¢, ¢, and c¢3 should correspond to 1.5779, O, and
0.4563, respectively. Therefore, this example corresponds to the case where agood structure
(the orthonormal structure) has been chosen and one knows the exact location of final poles.
(Although thisis not arealistic case, it is thefirst experimental result that will be presented.) For
this example, the normalized reference filter has a pole at the location -1.1167 and a pair of
complex poles at —0.3819+; 1.2179. For the complex pair of poles, defining wy and pole Q to be

the natural frequency and pole Q, respectively, we find wg = 1.2764 and Q = 3.34.

Figure 5.8 shows the adaptation process of the discrete prototype when using the reference

filter describedin equation (5.5) above. Inorder to observethe adaptation process, adaptation
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() @

Figure 5.8: Experimental results for adaptive filtermodel matching application.
Vertical scale = 10 dB/div Horizontal scale = 500 Hz/div
(@) At power up. Horizontal line is adaptive filter's transfer function.
{RY At 7 coar (rY At & car
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speed was deliberately set quite slow and the swept sinusoid output from the spectrum analyzer
was used to approximate a white noise input. Note that the unusual looking part of thetransfer-
function curve seen near low frequenciesis aresult of using the fast swept sinusoid as the system
input and is seen on both the reference filter’ s response as well as the adaptive filter’ s response.
Figure 5.8(a) showsthe transfer function of the referencefilter and theinitial adaptivefilter's
transfer function at power up whereas figure5.8(d) shows the same two transfer functions after

adaptation is complete. Note that the two curvesin figure 5.8(d) are amost identical as desired.

Referring to the adaptation times given in figure 5.8, the adaptation speed is seen to be
quite slow. This adaptation speed can beincreased so that adaptation occursinunder 1 sec by
using awhite noise generator as the signal input. Using awhite noise generator for the signal
input, figure 5.9(a) shows the spectrum of the outputs of the reference and adaptive filters where,
as before, the two curves are difficult to distinguish. To determine the level of mismatch
between the two spectra, the spectrum of the error signal is plotted along with the spectrum of
thereference signal infigure 5.9. Note that the error signal is approximately 40 dB below the
level of thereference signal indicating aclose level of matching between thereferencesignal,

3(r), and the adaptive filter output, y (z).

Infigure5.10, adifferent adaptation example is shown where the poles of thethird order
reference filter were changed to give a notch type transfer function. The components in the
adaptivefilter were unchanged and therefore remained optimized for the pole locations of the
previous exampleimplying that this example corresponds to the more realistic case wherethe
pole locations can only be estimated and not known exactly. For this example, the reference

filter had the state-space coefficients equal to
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(@) (b)

Figure 5.9: Experimental results for third order lowpass reference filter.
Vertical scale = 10 dB/div Horizonta scale = 500 Hz/div
() Signal spectrafor 8(z) andy (¢)
(b) Signal spectra for 8(¢) and e (z)
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(a) (b)

Figure 5.10: Experimental results for third order notch reference filter.
Vertical scale = 10 dB/div Horizontal scale = 500 Hz/div
(a) Signal spectraford(t) andy (t)
(b) Signal spectrafor 8(t) and e (r)

0 0.98361 0 0
A=1| -1.2307 0 0.98361 b= 0 (5.6)
0 -1.8805 -1.2307 0.7737

c'=[0 0 0.45631 d=0
The poles for this system are at the locations -0.5548 and —0.3379%; 1.6034 and have

wg = 1.6387 and Q = 4.85 for the pair of complex poles. Note that these poles are significantly
different than the previous example yet the adaptive filter successfully matched the reference

filter.

In afinal example, the third order reference filter had the state-space coefficients equal to
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0 0 0 0
A={0 0 1237 [b=| 0 (5.7)
0 -1.2307 -1.8805 0.7737

Jd'=[00 157791d=0
Thissystem isonly second order thus requiresthe third order adaptivefilter to match alower

order system. The poles of this system are at the locations —0.94025+,0.79407 with a zeros at 0

andee. The adaptation results for this example are shown in figure 5.11.

For this example, one might ask the question as to how the third order system successfully

models a second order system. To answer this question, a computer simulation was run using the

(a) (b)

Figure5.11: Experimenta results for second order reference filter.
Vertical scale = 10 dB/div Horizontal scale = 500 Hz/div
(a) Signal spectrafor&(r) andy (¢)
(b) Signal spectrafor 6(t) and e (¢)
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same parameters as this example. The final adapted system had the state coefficients

0 0.98361 0 0
A=1 -0.98361 0 12307 (b = 0 (5.8)
10337 -2.0307 -2.9185 0.7737

el =[ -1.2611 1.3309 1.5779 1d O
The polesfor this system are located at —0.940251,0.79407 and -1.0380 with zeros located at O,

o, and -1.0380. Note that a zero and pole are located on top of one another causing the transfer
function to be reduced from third to second order. With this type of cancellation, one could
argue that the cancelled pole-zero pair might move about in the s-plane and possibly go into the
unstable region of the plane. However, this was not observed in the simulation or in the discrete
prototype experimental results. In fact, the discrete prototype was left running for well over an

hour and no instability was observed.

In concluding this section, these three examples show that the adaptive algorithms
presented in chapter 4 can successfully be translated into anal og designs. Note, however, that
only a model matching application with awhite noise input has been demonstrated in the three

examples and that no uncorrelated noise was added during the experimentation.

5.4. Monalithic implementation design details

In this section, the design detail sfor amonoalithic implementation of avoltage controlled
programmable continuous-time filter will be presented. The circuit was fabricated using a3
micron CMOS process that is available to Canadian universities through the Canadian
Microelectronics Corporation (CMC). Although the implemented circuit has both the pro-
grammable and gradient filters on chip, only the programmability aspects of the realization will
be discussed in thisthesis. Work is presently being done to build external circuits so that the

integrated circuit can perform as an adaptive filter.
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To construct a continuous-time programmabl e filter, one must first choose a basic technique
to implement the filter. Two techniques dominate CM OS continuous-time filter implementa-
tions, MOSFET-C [Tsividis et a, 1986) and G,,—C (aso referred to as transconductance-C)
[Khorramabadi and Gray, 1984]. Of these two techniques, the MOSFET-C approach does not
perform as well at high frequencies but appears to have a better dynamic range. Although
dynamic range isimportant, it was felt that high frequency performance is a more important cri-
terion for analog adaptive filters since this region of frequencies is where analog circuits have a
distinct advantage over digital realizations. One of the reasons MOSFET-C implementations do
not perform as well at high frequencies is the difficulty in designing high frequency op-amps that
have the ability to drive resistive loads. However, with the G,,—C approach, only capacitive
loads are driven and therefore one can make use of the design techniques developed for usein
high-frequency switched-capacitor filters. Inparticular, asingle-stage folded-cascode transcon-

ductance amplifier having an excellent high-frequency response can be used.

The circuit for afolded-cascode transconductance amplifier isshown in figure 5.12. The
input differential pair of transistors connectedto V', and V, convertsthe differential input sig-
nal, V{-V,, to apair of currents, I, and I, which are then reflected in the output stage of 8
transistors such that the output node current, I,,,, isequal to |;-I,. The purpose of using stacked
current mirrors in the output stage is to create a very high output impedance and therefore

approach an ideal transconductance amplifier.

One drawback to thissimplecircuit isthat the output current isnot linearly related to the
input differential voltage because of the nonlinear behavior of the input differential transistor
pair. This disadvantage could be overcome by using one of the many interesting circuit tech-

niques for realizing linearized transconductance circuits [Seevinck and Wassenaar, 1987]
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Figure 5.12: A folded-cascade CMOS transconductance amplifier

[Viswanathan, 1986] [ Negungadi and Viswanathan, 1984]. However, since all these approaches
increase the number of transistors required in the input stage, (and as we shall see, alarge
number of input stagesis required) it was decided to build the prototype programmable filter

using nonlinearized differential transistor pairs for the input stages.
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Thefirst step in the design was to devel op a variabl e transconductance differential input
stage where asingle input voltage could continuously vary the transconductance of the stage

from positive to negative values. One design for such an input stage is shown in figure 5.13.

| o

Vs

z:lnranmsniﬁtor sizes
M1-M4=9/3
M5-M8=24/6
M9=30/9
M10M11=7.5/4.5

(a)
V. Var GM
V_ — Stage
GM ——
(b)

Figure 5.13: Positive and negative variable transconductance differential input stage.
(@) Circuit details (b) Symbol used to depict circuit.
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Defining 1,-1, to be the output current, and V-V _ to be the input voltage, a positive voltage
on GM resultsin a positive transconductance while a negative GM voltage causes a hegative
transconductance. When the transconductance control signal, GM, isat ground potential, both
differential pairs of transistors receive the same bias currents and as a result of the cross coupling
of these stages, the transconductanceis zero. Neglecting the early voltage effect inthetransis-
tors, an interesting property of the circuit is that the sum of the output currents 7, and 7, isa
constant value as the transconductance is varied. The transistors sizes shown in figure 5.13 are

those used in the actual implementation of the programmable filter.

The basic circuit building block used to implement the programmabl e filter is shown in
figure 5.14. This building block is essentially a transconductance folded cascode amplifier hav-
ing three variable transconductance stages. The currentsin the three variable GM stages are
summed together to create asingle pair of differential currentswhichisconverted to asingle
output current by the transistors MI-M8 in figure 5.14. The number of variable transconduc-
tance stages used in the building block is three since, as will be seen, this is the maximum
number of signals summed into any one integrator in creating the programmable filter. If an
integrator sums less than three signals, then the inputs into one or more of the variable GM
stagesare grounded. Aswell, note that the constant quiescent current into each of thevariable
GM stages make for asimple designin thefolded cascode output stage transistors, MI-M8, in
figure 5.14. Asbefore, the transistor sizes shown are those used in the implementation of the
programmablefilter. For completeness, the bias circuit that providesthe three biasvoltagesto

the transconductance amplifiersis shown in figure 5.15.

For the structure of the programmable filter, it was decided to use the transposed orthonor-

mal structure described in chapter 3. A complete diagram of the programmable and gradient
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Figure 5.14: Three input variable transconductance folded cascode amplifier
(@) Circuit details (b) Symbol used to depict circuit.
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Figure 5.15: Bias circuitry for variable transconductance amplifiers.

filters using the basic three-input transconductance amplifier is shown in figure 5.16. With this

circuit implementation, the following state-space system for the programmable filter is realized.

0 o 0 b,

A=l o O 5} b=| by (5.9
0 & —0l3 b3
J:[om] d=0

The gradient filter realizes the transposed system of the programmable filter in order to generate
gradient signals as described in chapter 4. Referring to figure 5.16 and the system in equation
(5.9), thevoltageinputs ALF1, ALF2, and ALF3 arethe GM control inputs that adjust the sys-
tem coefficients, o, , o, and o, respectively. Similarly, the voltage inputs B 1, B2, and B3

adjust the coefficients by, b, and b 3. The output signals XI, X2, and X3 correspond to the
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Figure 5.16: Orthonormal programmable filter implemented on prototype chip.

states (or, equivaently, the integrator outputs) of the programmable system whereas the signals

XT1,XT2, XT3 correspond to the states of the gradient system. Note that from the state-space



EXPERIMENTALRESULTS 107

system in equation 5.9, X3 is also the filter’ s outpuit.

Referring to the system in equation (5.9), note that no output summing of statesisused to
create the zeros of the transfer function. Instead, input summing creates the necessary zeros
through varying the coefficients b, b4, and b3 where these b vector coefficientsare adjusted
using the pad inputs B, B3, and B3 in figure 5.16. The reason that input summing (whichisa
result of using the transposed orthonormal structure) is used rather than output summing is that
with output summing, a summing network would be required having a larger bandwidth than the
integrator circuits and, unfortunately, this type of network is difficult to design. It should be
pointed out here that if the programmable filter were of an order higher than three, say N, the use
of input summing would still require at most three signals summed into any one integrator
whereas output summing would require a separate summing stage having N signals summed
together. Note also, that no capacitors are on chip asit was decided to use off-chip capacitors so

that a slower prototype circuit could be evaluated.

5.5. Monalithic programmable filter experimental results

A photo-micrograph of the fabricated programmable and gradient filtersis shown in figure
5.17 where thetop right circuit isatest structure of the three input variabl e transconductance
amplifier and the two lower circuits consist of the programmable and gradient filters (the upper
circuit isthe programmablefilter). The areafor the programmablefilterisonly 0.7 mm? and a
similar area is taken up by the gradient filter. To bias the circuit, a bias resistor is placed
between the bias pin and the negative supply. For the experimental resultsin thissection, this
bias resistor was chosen to be 300 KQ and thus set the bias currents to approximately those
shown in the circuit diagrams of the prototype. With a+ 3 volt power supply, the programmable

filter circuit dissipates 3 mW or, equivalently, 1 mW per pole while the gradient filter dissipates
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Figure5.17: Photo-micrograph of 3um CMOS programmable and gradient filters.

an equal amount of power.

The test structure of the basic amplifier was used to plot the transconductance of the
amplifier vs. the control voltage resulting in the transconductance plot shown in figure 5.18. The
output resistance of the test amplifier was measured to be 2 MQ. Note that this transconductance
plot shows afairly linear relationship between the transconductance and the control voltage.
Although this was an unexpected result, the mechanism behind this linearization is explained in
[Babanezhad and Temes, 1985] whereavery similar circuit wasanalyzed. Inthisanaysis, itis
shown that if the differential voltage applied to the variable GM stagein figure 5.13 issmall,

then the transconductance from the input control voltage to the difference in the output currents
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Figure 5.18: Experimental results for variable transconductance amplifier.

approachesalinear relationship. Sincein measuring thetransconductance, asmall differential

input voltage signal was used, the linear relationship shown in figure 5.18 was obtained.

Using the transconductance plot in figure 5.18 and arbitrarily choosing 0.4 volts to
correspond to a coefficient value of unity, the control voltages necessary to createthe lowpass
filter described by the system in equation (5.5) were determined. However, note that the pro-
grammabl e filter implements the transposed system of equation (5.5) and forces ¢ to be one.

Thus, in fact, the following system is realized.
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A= 0.98361 0 -1.2307 0
0 1.2307 -1.8805 0.4563

Jd=[{0 0 1] d=0
For this specific example, Alfl, Alf2, and Alf3 were set to 0.394, 0.493 and 0.766 volts, respec-

0 09831 0 1.5779
b= (5.10)

tively while Bl, B2, and B3 were set t0 0.627, 0, and 0.181 volts, respectively. Aswell, external
capacitors of value 2.7 nF were placed on the outputs XI, X2, and X3 to create the necessary
integration so that the passband edge was located at 1 KHz. The experimental spectrum response
of the programmablefilter for thisexampleisshowninfigure 5.19(a) wheresignal levelswere
approximately 100 mV peak. Note that although the ideal transfer function has a zero on the
imaginary axis, the experimental spectrum response shows that the zero has moved off the axis.
It is believed that this effect is due to the finite output impedance of the transconductance
amplifiers causing theintegratorsto belossy. To demonstrate that thisisindeed the case, con-

sider the system in equation (5.10) where the DC gain of the integratorsis only 100. For this
situation, the system in equation (5.10) ismod& d by subtracting 0.01 off each of the diagonal

elementsinthe A matrix, resulting in the following system

001 -0.98361 15779
0 0 (5.11)
A={ 098361 1817 -1.8903+« b=l 04563

=[00 1] d=0
For thislossy integrator system, the poles and zeros are shifted left 0.01 in the s-plane from the

equivalent roots in the ideal integrator case and thus the lossy case zeros move off the imaginary
axis. To placethe polesand zeros back at their desired locations, one could pie-shift the poles

and zeros by the amount that they are expected to shift. However, rather than perform this com-
plicated procedure, it was found that by adding a negative term tob, the zeros could be shifted
right and therefore back on the imaginary axis. Specificaly, for the above lossy system, if b, is

set t0 —0.0074 the zeros fall on the imaginary axis once again. Although this ssmple method does
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() (b)

Figure 5.19: Lowpass transfer function response for programmable filter.
Vertical scale = 10 dB/div Horizontal scale = 500 Hz/div
(a) Response when b, is set to zero.
(b) Response after b, is adjusted to place zeros
on theimaginary axis.

not correct the pole locations, the transfer functions tested in this section appear to be insensitive
enough that the final function is close to the desired response. The spectrum response for the
programmablefilter with b, adjusted to create zeros on the imaginary axisis showninfigure

5.19(b) where b, was measured to be about -0.05 volts after adjustment.

Finaly, to demonstrate that the programmable filter can realize different transfer functions,
two spectrum responses for the programmable filter are shown in figure 5.20 where the different

responses are created by changing the voltage into the transconductance control inputs. Note
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Figure 5.20: Two different lowpass filter responses obtained with the
programmable filter.
Vertical scale =10 dB/div Horizontal scale = 1 KHz/div

that both transfer functions have the same passband yet quite different stopbands and this could
only be accomplished by changing both the poles and zeros of the filter. For both of these filters,

b, was adjusted to place the transmission zeros on the imaginary axis.

5.6. Summary

This chapter has shown experimental and design details for a discrete prototype analog
adaptive filter demonstrating that the adaptive algorithms presented in chapter 4 can successfully
be transformed into the analog domain. As well, the design details and experimental results for a
fabricated monolithic programmable filter were presented. Work is presently being done on

adapting the programmable filter and realizing a fully integrated analog adaptive filter.



Chapter 6

The Effects of DC Offsetsin Analog | mplementations

6.1. Introduction

During experimentation with the discrete prototype analog adaptive IR filter described in
chapter 5, it was found that the system was sensitive to DC offsets present at the integrators used
to implement the coefficient update formula. In fact, DC offsets appear to be one of the most
severe problemsin realizing anal og adaptivefilters. In the discrete prototype, to  overcome the
effects of the DC offsets, alarge gain was required in the realization of the error signal. Chapter
5 shows the implementation of the large gain on the error signal while this chapter explains how
this gain reduces the DC offset effects. Unfortunately, in some applications, realizing this large
gain may be difficult to achieve and thus one would like to determine the minimum gain neces-
sary. Thus, it isimportant to determine the effect of these offsets and develop analytical results
that one can useto ensurethat practical designswill meet the desired specifications. For these
reasons, this chapter investigates the effect of constant offset terms present in the coefficient
update formulae. General formulae will be derived giving the excess mean squared error result-
ing from these offsets for the LM S and sign-data algorithms. This general formula will show that

ahigh correlation between gradient signals increases the excess error due to DC offsets.

Section 6.2 will present a model illustrating the locations of the DC offsets that will be con-
sidered in this chapter. In section 6.3, asecond-order FIR examplewill be presented to obtain
some insight as to why gradient signals with a high degree of correlation result in alarge offset-

induced excesserror. A general formulafor offset-induced excesserror will bederivedin  sec-
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tion 6.4 for the case of FIR adaptive filters and in section 6.5, it will be shown that this same for-
mulacan be used to give approximate resultsfor the [ IR case. Throughout sections 6.2 t0 6.5,
simulation results using digital adaptive filters will be given to verify the formulae derived, how-
ever, to feel confident that the derived formulae are useful in anal og implementations, acom-
parison with experimental results is necessary. To accomplish this comparison, section 6.6
presents a modification of the excess error formulato account for use of the sign-data algorithm
that is utilized in the prototype analog adaptive filter. Finally, experimental results are given in
section 6.7 showing that the presented formulae agree with results from the discrete prototype.
Also presented in section 6.7 is an explanation as to why the large gain on the error signa

reduces DC offset effects.
It should be pointed out that the DC offset formulae for the FIR case using theLMS algo-

rithm (the sign-data algorithm was not analyzed) has previously been presented’ [ Compton,
1988]. However, this previous derivation of the formulae does not easily show that these same
formulae apply to the IR case and thus, a different derivation of these formulae is given in this

chapter.

6.2. Coefficient update DC offset modeling

The LM S update formula for the coefficient p; applied to analog realizations was givenin

chapter 2 as

t
pit) =20 {e (r)éﬂ]dr 6.1
0 dp;
A block diagram of this analog coefficient update formula is shown in figure 6.1. At first glance,

this diagram may appear unusual since it appears that the coefficient p; is obtained as the output

!t should be mentioned that this reference was found after the theoretical work in this chapter was performed.
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dy ()
op;

e(t) Di

Figure 6.1: Block diagram of coefficient update formula.

of an integrator with no apparent feedback to keep the output signal from saturating. In fact,
thereis negative feedback present in that the error signal isafunction of the parameter p; (the
gradient signal is also afunction of p; but to alesser extent). At steady state, if the signal p;
startsto drift upwards, the error signal correlateswiththe gradient signal in such away asto
bring p; back down. This is the same mechanism which allows the adaptive filter to find a
minimum in the performance surface or, equivalently, a |ocation where the error signa is

uncorrelated with the gradient signal.

Now consider the effect of aDC offset applied to the integrator used  in determining the

coefficient p;. Thei'th coefficient update formulawith a DC offset becomes

t
- dy(®)

Pi(t)—zllﬂe (T)—api— +deT (6.2)
where m; isthe DC offset for the i’ th update formula. The block diagram for this case is shown
infigure6.2where the DC offset isinjected as a separate signal so that the integrator may be
considered ideal.

Note that with the model in figure 6.2, the DC signal need not come from only the DC
offset of the integrator but can also include the DC offsets of both the error and gradient signals.

It is easily shown that if both the error and gradient signals have DC offsets, then these DC
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signals will correlate with each other resulting in an additional DC offset. Therefore, by defining
m; 10 aso include this offset signal, we may consider both the error and gradient signalsto be

ideal with respect to DC offsats.

When an adaptive filter is at steady state, the expected value of the coefficient signal p; isa
constant value implying that the expected value of the signal into the integrator must be zero.

Thus at steady state, the following equation holds

o . ._
Efe(r) i +m;1=0 (6.3)
where E [o] denotes expectation. Since the expected value of aDC signd isthe DC level, we can

write

ay(@) ., _
Ele(r) ; I=-m; (6.4)
Recall from chapter 2 that the inside of the expectation operator in equation (6.4) is the instan-
taneous estimate of the derivative of the mean squared error with respect to the parameter p;, or

in mathematical terms,

dy (1) _ -1 de(r)
e(f) v 2 o (6.5)
dy(t) mi
aPi
e(r) pi

Figure 6.2: Block diagram of coefficient update formula with DC offsetm;.
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Substituting equation (6.5) in equation (6.4) above and swapping the expectation and derivative

operators, we aso have the following condition at steady state.

OE[e*(1)] _
op;
Thisformulaimpliesthat when no DC offset is present in thei’ th update formula (m; = 0), the

2m; (6.6)

adaptive filter settles at a point where the partial derivative of the performance surface with
respect to the i’ th coefficient is zero. Thisis precisely the condition for finding a minimum.
However, inthe case of a non-zero DC offset, the adaptivefilter settles at a point where the same
partial derivativeisat avalue equal to twice the DC offset. In other words, the filter settles at a
position where the error is slightly correlated with the gradient signal in order to cancel the
effect of the DC offset, as seen from equation (6.4). Note that a DC offset forces the filter
coefficients to be incorrect which implies an error in the programmable filter’s transfer function

at al frequencies (not just at DC).

6.3. Second order example

To obtain some insight into the effects of DC offsets, we will develop aformulagiving the
excess mean squared error due to offsets for a simple second order FIR example. For this exam-
ple, we change to the digital domain because of the ssimplicity of the simulations in that domain
with which we can verify our results. This example isdesigned to illustrate the effect of non-

orthogonal gradients on offset-induced error.

The second order example chosen to investigate is shown in figure 6.3. The reference sig-
nal is obtained as the output of asimple FIR filter corresponding to adding the present input sig-
nal to the previous input signal. Note that the signalsv ; () and v,(n) are orthonormal while the
signalsx;(n) and x,(n) both have norms equal to one but are correlated with each other by the

factor h. When h equals zero, the pair x(n) and x,(n) form an orthonormal set whereas when h
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21+

e(n)

white

noise +
(var=1) vi(n) x1(n)

pi(n)

p1(n+l)=p1(n)+2ufe (n)x(n)+m]
p2(n+1)=p,(n) +2ule(n)xy(n)y+m-]

Figure 6.3: Second order FIR example for DC offset analysis.

equals one, the same pair are adependent set. The output of the programmablefilter, y(n), is
seen to be a weighted sum of the signals x;(n) and x,(n) and the update equations for

coefficients p; and p , with DC offsets are found from
p.-(n+1)=pi(n)+2u[e (n)x(n)+m,-1 (6.7)
wherem; is the DC offset for the i’th update formula.
From adaptive filter theory, it is easily shown that the performance surface for this example

issimply [Widrow and Stearns, 1985]

Ele?] =E[e’lmn +[p-p 'RIp-p’] (6.8)
where E [e 2] iSthe minimum mean squared error (zero for thisexample), p isthe vector of
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coefficients, {p;},
_|P1
oo [pl’] (6.9)

andp’ is the vector of coefficients corresponding to the minimum mean squared error which for

this example is easily found to be

P = (6.10)
The input correlation matrix, R, for this example is smply
R=|; 6.11
A1 (6.11)
Setting the minimum mean squared error to zero and making the change of variables,
q=p-p’ (6.12)
results in the following expression for the mean squared error.
Efe?1=q"'Rq (6.13)
Expanding this equation results in
Ele*] =qi + 43 + 2hq192 (6.14)

wheregq, and ¢ , are the elements of g.

By setting the mean squared error to constant values, one can immediately see that this
example haselliptical contoursfor the performance surface. In the case where the correlation

number, h, is zero, the contours become circles, as expected.

To find the point where the adaptive filter settles, we take the partial derivatives of this
mean squared error formula and set them equal to the respective DC offsets as in equation (6.6).
Taking these derivatives results in the following equations that must both be satisfied at steady

state.
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q1+hg2=m, (6.15)

q2+hq1=my (6.16)
Using agraphical approach to solve these two equations, we can plot two lines corresponding to

equations (6.15) and (6.16) on the performance surface contour plot. These two lines are lines of
constant partial derivative of the error performance surface with respect to the coefficients ¢,

and ¢,. The intersection of the two lines will be the steady state point of the system.

For the case of h equal to 0.7 and m; and m 4 both equal to zero, figure 6.4 isacontour plot

of the performance surface together with the constant partial derivativelines plotted as thick

0.04

0.02

q2
0.00

-0.02

.-0.04 —
-0.04 -0.02 0.00 0.02 0.04

q1

Figure 6.4: Contour plot of performance surface for second order example withh = 0.7. Also
plotted are the constant derivative linesfor my=m,=0.
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lines. In this case, one sees that the intersection of the two constant partial derivativelinesis at

the minimum of the performance surface, as expected. As well, note from equations (6.15) and

(6.16) that the slopes of these two lines are -h and lhl- inthisdiagram. Thus, asthe correlation

number h approaches unity, the two lines become parallél.

Now consider the case where m;=0.01, m; = 0and hisonce again 0.7. Figure 6.5isa
plot of the performance surface and the constant partial derivativelinesfor thissituation. Itis
seen from figure 6.5 that at steady state, the rms value of the error is certainly not at the

minimum in the performance surface. In this case, the steady state rms value of the error is seen

0.04y.028

0.02

Q2
0.00

-0.02

-0.04 -
-0.04 -0.02 0.00 0.02 0.04

q1

Figure 6.5: Contour plot of performance surface for second order examplewith h= 0.7 Also
plotted are the constant derivative linesfor my=0.01 andm, = 0.
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to be 0.014. It isinteresting to note that as the correlation number, h, approaches unity and the

lines become parallel, the excess mean squared error due to offsets will approach infinity.

We can also perform some mathematical manipulationsto get aformulagiving the rms
error for this particular second order example. Solving for thevaluesof ¢ and ¢z using equa-

tions (6.15) and (6.16), we have at steady state

ml—hm2
=— 6.17
q1 (1—h2) ( )

mz—hml
=—= 6.18
q> (1‘-h2) ( )

Substituting these values for g, and g, into the root mean square error formula gives the follow-
ing result for the excess mean squared error due to DC offsats.

m% +m% —2hmym,

1-h?
This formula verifies the graphical realization that the excess mean squared error will go to

lel} = (6.19)

infinity as the states become more correl ated.

The above second order example was simulated and root mean squared values estimated by
using 5000 samples after steady state was attained. Table 6.1 lists the ssmulated excess root
mean squared error (rmse) for different correlation numbers and DC offsets as well as the calcu-
lated rmse. Any differences between the simulated and derived values are believed to be the
result of using afinite number of samplesto approximate the rmsvalue of asignal aswell as

using non-zero step sizes to adapt.

6.4. Offset-induced error for the FIR case

In this section, aformulawill be derived giving the excess mean squared error dueto DC

offsets for an N’ th order adaptive linear combiner. In the next section, it will be shown that this
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m, my h simulated rmse | calculated rmse
001 | 0.0 0 0.010 0.01

001 | 0.0 0.5 0.012 0.0115
001 | 0.0 0.7 0.014 0.0140
001 | 0.0 0.9 0.023 0.0229
001 | 0.0 0.99 0.073 0.0709
001 | 0.02 | 0.0 0.022 0.0224
001 | 002 | 05 0.020 0.0199
001 { 0.02 | 09 0.027 0.0271
001 | 0.02 | 099 0.072 0.0723

Table 6.1: The ssimulated and calculated root mean squared error (rmse) with varying correlation
vaues, h and DC offsets, m; and m 5.

same formula gives approximate results for the general case of an adaptive lIR filter with DC

offsets.

Consider the general adaptivelinear combiner described in chapter 2 and shown againin
figure 6.6. The gradient signals are simply the input statesinto the linear combiner and can be

written as a vector

kl(n
x2(n
x(n)=| . (6.20)
xN.(n
Aswell, the correlation matrix, R, is defined as
R = E[x(n)x! (n)] (6.21)

Referring to figure 6.6 and assuming a small step size, at steady state the coefficients,p, are

no longer functions of the iteration number and therefore the error signal can be written as

e(n) =8(n )~x" (n)p (6.22)
Using the same definitions as the last section where p* is the vector of coefficients
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Linear :
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um) —— | gijger

xn(n)

Figure 6.6: A linear combiner adaptive filter

corresponding to the minimum mean squared error and q is the difference between p and p*, we
can write the error as

e (n)=8(n)x"(n)p" X' (n)q (6.23)
Recal that we are interested in finding the excess mean squared error that results from DC
offsets, therefore we make the assumption that the mean squared error equals zero if al the DC
offsets are zero. Making this assumption implies that when g =0, the error signal is always zero
and therefore

8(n) =x"(n)p’ (6.24)
Thus, the excess error signal can be reduced to simply

e(n)= -x"(n)q (6.25)
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Now writing the DC offsets as a vector m, we can apply equation (6.4) above for the set of
DC offsets to obtain

E [x(n)e(n)]= -m (6.26)
Combining equations (6.25) and (6.26) resultsin

E [x(m)x' (n)q]=m (6.27)
and using the definition of the correlation matrix,R, we obtain the following formula

q=R'm (6.28)
This equation gives the error in coefficient values due to DC offsets. To obtain the excess mean

squared error due to DC offsets, we use the definition for the mean squared error and perform the

following manipulations,

lel? = E e (n)e (n)] (6.29)
= E [q"x(n)x" (n)q] (6.30)
=m!R7E [x(n)x" (n)]R"I m (6.31)
=m'R™!m (6.32)

Equation (6.32) above is the formula which gives the excess mean squared error due to DC
offsets. Note that in the case where al the gradient signals are orthonormal (ie. R equals the
identity matrix), the excess mean squared error is simply the sum of the squares of the DC
offsets. Also notethat thelevel of theinput signal affectsthe excesserror through the correla
tion matrix R. Finally, notethat in the FIR case, this correlation matrix, R, isnotafunction of
the adaptive coefficients, p;, since it only depends on the outputs from afixed filter. For this
reason, the offset-induced excess error val ue obtained through the use of equation (6.32) does
not depend on the final transfer function of the adaptive filter. It will be seen that thisis not the

case for the IR situation to be described in the next section.
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Asatest for thiserror formula, one can apply it to the second order example described in
the last section and obtain the same result that was derived there. Asan additional test, athird
order adaptive linear combiner with DC offsets was simulated where the reference transfer func-

tionwasz™2+z7! + 1. Theinput correlation matrix R for the simulation was chosen to be

1 08 09
R=({08 1 072 (6.33)
09 072 1
and the DC offset vector m was arbitrarily set to
0.01
m=| 0.02 (6.34)
—-0.03

For this example, the calculated excess rmse using equation (6.32) is 0.0922 and the simulated

rmse was 0.092.
6.5. Offset-induced error for thellR case

Notethat equation (6.32) was derived for adaptive linear combinersand does not strictly
apply in the case of adaptive IR filters. Fortunately, by redefining the gradient vector x to
include all gradientsfor the | IR case and assuming the DC offsets cause small changesin the
coefficients{pi}, equation (6.32) can be used to approximate the excess mean squared error.

Specifically, the elements of the gradient vector, x(n), for the | IR case are defined as

n(n = 20 (635)

The correlation matrix, R, is defined, as before, to be

R = E[x(n)x! (n)] (6.36)
Note, that in the case where white noise is applied to the system input, the correlation matrix R
can be obtained by using impulse responses as described in chapter 2. Specifically, the element

R;; can be found from the following equation
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i dy(n) dy(n)

6.37
dp; Op; )

dy(n) and 22
o

Pi Dj

where arethe gradient responses when an impulseis applied to the system

input and the coefficients are fixed at their final values. If continuous-time rather thandiscrete-
time circuits are being used then the summation function in equation (6.37) above is changed to
an integration. Finally, the DC offset vector, m, is defined, as before, to be the DC offsetsintro-

duced in each coefficient update formula.

Toillustrate that this equation appliesto the IR case, one can follow the same analysis as
in the adaptive linear combiner situation except that writing the error as equation (6.25) must be
justified. This equation can be justified, if small coefficient changes are assumed since with this

assumption, the error can be written as

() =80 -y'( - T AL ‘"’ 1) pp, (6.39)
where y*(n) is defined as the output y (n) obtai ned W|th the optimum coefficients causing
minimum mean squared error and Ap; is defined to be the change in coefficients due to DC
offsets. As before, since we are interested in excess MSE due to DC offsets, we can assume the
minimum MSE is zero and write

e(n)=x"(n)q (6.39)
wherethe elements of q are Ap;. Thissmall coefficient change assumption justifies the use of
equation (6.39) above and therefore one can use equation (6.32) to approximate the excess error

due to DC offsets in adaptive lIR filters.

Note that in the IIR case, the correlation matrix, R, is a function of the adapting
coefficients, p;, and is therefore a function of the adaptive filter’ s transfer function. Thisimplies

that in the IIR case, one requires knowledge of the final transfer function for the adaptive filter in
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order to apply the offset-induced excess error formula. Since this exact transfer function is usu-
aly not known, one can only hope to obtain approximate results with this method by estimating

the final transfer function.

To check the validity of this formula for the IIR case, a second order model matching
examplewith DC offsets present was simulated. In this simulation, only the bottom row of the
A matrix was adapted while all other parameters remained equal to the optimum values. The

reference filter had the state-space describing equations:

_[ o 1 [ o [o1,_
A‘[—o.s 1.7] b‘[ 0.125] c‘[ 1]“-0 (6.40)
Defining x(n) to be the vector of gradient signals required to adapt the bottom row of A, and

assuming the final transfer function of the adaptive filter equals the transfer function described in

equation (6.40), for the white noise input case, the correlation matrix, R, was found to be

R= [ oz 019(?3’5’] (6.41)
With offsets equal t0 0.01, the simulated and calculated rms errorswere 0.1 and 0.07, respec-
tively. The bottom row of the A matrix settled at the coefficient values -0.75 and 1.65. This
example shows a reasonabl e agreement between the calculated and simulated values. However,
by decreasing the offset, the accuracy of the small change approximation in equation (6.38) is
improved and therefore an even closer agreement should be obtained. Decreasing the offsets to
0.001, the simulated and cal culated rms errors were 0.007 and 0.00704, respectively, whichis
certainly aclose agreement. For this simulation, the bottom row of the A matrix settled at the

coefficient values -0.797 and 1.697.

Finally, note from equation (6.32) that the value of the excess error dueto DC offsetsis
proportional to the inverse of the correlation matrix, R. Thisfact implies that the excess error

will increase as the states become more con-elated since the matrix R will become more ill-
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conditioned. Thisincreased excess error isanother reason to look for structureswith orthonor-

mal gradients.

6.6. Offset-induced error for the sign-data algorithm

Recall from chapter 5 that the sign-dataalgorithm mutiplies the error signal by the sign of
the gradient signal rather than the gradient signal itself for reduced hardware complexity. There-
fore, for the many practical applications that use the sign-data algorithm, the offset-induced

excess error formula needs be adjusted to account for this different adaptive algorithm.

In accounting for the use of the sign-data algorithm, we make use of the  signum function,
sgn [x 1, defined in the following equation.
sgnix]=1if x>0 (6.42)
=-1 ifx<0
With thissignum function, equation (6.26), above, is replaced by
E[sgn[x(n)]e (n)] = -m (6.43)
where the signum of avector is defined as applying the signum function to each of the vector
elements. Asbefore, we can write the error signal asafunction of ¢ and x(») using equation
(6.25) and therefore can write

E{sgn [x(n)}" (n)]lg =m (6.44)
Thisleads to the following equation for Q.

-~

q=R'm (6.45)
where the signum correlation matrix, R, is defined as

R = E [sgn [x(n)Ixf (n)] (6.46)
or, equivalently, the elementR;; is defined as

Rij = Elsgn [x;(n)]x;(n)] (6.47)
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Now, we can use equation (6.30) and substitute in the new expression for q to obtain the follow-
ing offset-induced excess error formula for the sign-data case.

lel} = m"R"RR'm (6.48)
Note, that in the above equation, the matrices R and R need to be obtained. For white noise
inputs, the matrix R can be obtained as has been shown above. Unfortunately, it is not clear how
to obtain the matrix R except by applying the defining equation (6.47). However, in the special
case where the input has aGaussian white noise zero mean characteristic one can find a closed
form expression for the elementsof R in terms of the elements of R. Specifically, if theinput

signal has a zero mean Gaussian distribution, the joint probability density function, @, (x;.x;),

. _1 xl
Xa (6.49)

1
1 -1 R;; R;
D, (x;,x;) = exp| —{x1x21}p R
p [4752[R“R”—R%]J [ 2 ! R‘J RJJ

Using thisjoint probability function, the term 1'7%,-1- can be found by integrating the weighted pro-

between the signal's x; and x; can be written as [Papoulis, 1984, p. 186]

bability density function over both variables or mathematically,

Riy= [ [ sgnix:beo®ss (xix)dx dx (650)

—CO——00

Performing thisintegration (whichisnot atrivial process!) leadsto thefollowing closed form

expression for the elements of R.

TR;;
Therefore, in the case of zero mean Gaussian white noise inputs, equation (6.51) can beused to

. 2R}, %
Rij=| —= (6.51)

obtainR and equation (6.48) can be used to give the offset-induced excesserror in adaptive FIR
filters using the sign-data algorithm. The same formulae can be used to give approximate results

for adaptiveIIR filters also using the sign-data algorithm.
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6.7. Experimental Results

In this section, DC offset experimental results using the discrete prototype will be com-
pared to the theoretical results using the offset-induced excess error formul ae above. Sincethe
discrete prototype uses the sign-data algorithm, equation (6.48) will be the formula used for

comparison.

Figure 6.7 shows the method of applying aknown DC offset signal to thei’th coefficient
update integrator. First, notein figure 6.7, that the sign of the gradient signal ismultiplied by
ke (t) where k is an amplification constant for the error signal to reduce the offset effects. In
chapter 5, it was seen that k ‘was arbitrarily chosen to be 82 for the discrete prototype. It is easily
seen that this reduces the offset effects since adding this gain factor implies that Jke|3 will
replacelel? in equation (6.48) above. Since, the right hand side of equation (6.48) is unaffected
by the addition of the gain factor, k, the resulting offset-induced excess rms error is reduced by
the factor k. Experimentation confirms the reduction in offset-induced excess error when increas-
ing the gain factor, k. It should be pointed out that this gain factor will be difficult to realize at
high frequencies since high frequency gain circuits are not atrivial task to implement. This
difficulty in implementation is one of the major reasons for developing these DC offset related
formulae. With these formulae avail able and aknown tolerance on DC offsets, adesigner can

choose the minimum error gain factor,k, necessary to meet specifications.

Referring again to figure 6.7, an equivalent DC offset voltage was applied to the i’th
coefficient update integrator by adding the resistor network shown in figure 6.7(a) to the virtual
ground terminal. This method of applying the DC offset was chosen so that the connectionsto
the discrete prototype could be ssimply added onin parallel rather than having to “ cut” into the

circuit. As shown in figure 6.7(b), the magnitude of the applied equivalent DC offset was



EFFECTS OF DC OFFSETS

132

Offset resistor circuit

+7.5V

IM

330K § l Lg=+1.49uA
1 1uF
....................... oI " ‘
82K
sgn[agp(l_‘) ke(t) N\ -_— J; pi
‘ i
+
= (a)
1uF
—|
82K
son| 290y ap L TN
L % | > Di
-
Vo =1122mV

Figure 6.7: Injecting a DC offset into the coefficient update integrator.
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(an arbitrary number dependent on resistor values) where the sign of the offset is determined by
the sign of the supply voltage that is applied to the offset resistor network. With this approach,
two offset-induced excess rmserror voltages are measured, fkel, and lkel,, which correspond to
using a positive and negative voltage supply, respectively. If no other offset voltages are present
inthecircuit, then the above theory predictsthat [kel, should equal lkel,.. However, thisis not
observed due to the fact that there already exists unknown equivalent offsets resulting from the
non-idealities of the circuit realization. If we call the vector of unknown offsets m; and the
measured rms error with no external offsets applied, lkeln, , then we can write

Ikel%, = m{Hm, (6.52)
whereH is defined to be R7RR™!. Now letti ng the known vector of positive applied offsets be

my, we can Write equationsfor jkel, and Jkel,.

Ikel? = (m; + my) H(my + my, (6.53)
= m{Hml + m%Hmz +m]Hm, + m}Hm, (6.54)
and
kel = (my — my) H(m; — my, (6.55)
=m]Hm, + m%Hmz - m{Hm, - m{Hm, (6.56)

L etting Ikelm, be the offset-induced excess error dueto m; only, from eguations (6.52), (6.54)

and (6.56), it is not difficult to show the following equality.

Ielim, = ilkel; + Vilkel — kel (6.57)

Finally, we can now compare experimental results with theoretical ones. For the DC offset
experimentation, the reference filter was set to the same as that used in the first experimental
results presented in chapter 5. Specifically, thereferencefilter corresponded to equation (5.5)

and the adaptive filter cotresponded to equation (5.4). For this case, the R and R matricesare

found to be:
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-1.0000 0 0 02483 04986 0.3246
0 1.0000 0 -0.4986 -0.1579  0.0032
R= 0 0 10000 03246 -0.0032 0.0966 (6.58)
02483 -0.4986 03246  0.8187 0 0.2171
0498 -0.1579 -0.0032 0 0.5470 0
| 03246 0.0032 0.0966 02171 0 0.2284
-0.7979 0 0 0.1981  0.3978 0.259
- 0 0.7979 0 -0.3978 -0.1260 0.0026
R= 0 0 0.7979 0259  -00026 00771 (6.59)
02189 -04397 02863  0.7219 0 0.1915
05379 -0.17/04 -0.0035 0 0.5901 0
05420 00053 01614  0.3625 0 0.3813

Table 6.2 shows acomparison of theoretical vs. experimental excess error voltagesdueto DC
offsets. For this comparison, white noise was applied to the system input and with no applied
offsets, the rms voltage of the error voltage was measured giving lkeln, - Then, apositive and
negative offset voltage was applied to the i’ th coefficient integrator so that |kel, and lkel, could

be measured. With these three measurements, the experimental value forjkeln, can be derived

using equation (6.57). Finally, this experimental value of Jkely, is compared against the

i | Corresponding Experimental | Theoretical | Percentage
Coefficient lkel, | lkel, lkeln, kelm, Error
1 ci 1.1 0.7 0.9 0.77 17
2 Ca 0.31 0.36 0.27 0.281 -4
3 c3 0.33 | 0.26 0.22 0.22 0
4 A 0.4 0.34 0.31 0.275 13
5 A3 0.7 0.51 0.58 0.575 1
6 A3 0.7 0.46 0.56 0.538 4

Table 6.2: A comparison of theoretical and experimental results for injected DC offsets. When
no DC offsets applied, [kelny, equals 0.2 Vrms. Thei’th row correspondsto DC offsets on the

I’th integrator.
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theoretical value obtained using equation (6.48). This corresponds to each row in table 6.2 relat-
ing to aDC offset vector of +0.122v; applied where v; isabasisvector with avalue of unity in
thei’th row. To measure the rms voltages of the amplified error, Jkel, adigital-readout true rms
meter was used. Unfortunately, it was not a simple matter to read the rms value of the output
error signa since low frequency components were present and thus successive meter readings
varied considerably. The value used was an estimate of the average of afew successive readings.
Note that lkely, Was measured to be 0.2 Vrms. Also, note that in table 6.2, the same notation
for the adapting coefficients is used as that in equation (5.4). We see from table 6.2 that all
measurements agree within 20 percent of the theoretical predictions. This degree of accuracy is
reasonable considering that all circuit non-idealities other than integrator DC offsets have been
ignored and that noi se rms measurements were made. This degree of accuracy should be close

enough for design purposes when one considers the variability of DC offsets in a given technol-
ogy.
6.8. Summary

Through the use of experimentation with a discrete prototype, it was observed that DC
offsets on the coefficient integrators appears to be the most severe non-ideal effect of analog
adaptivefilters. To reduce the effect of these DC offsets, ahigh gain was used to amplify the
error signal. (A explanation of how thisgain reduces DC offsetswas presented in section 6.7.)
However, at high frequencies, this gain may be difficult to implement and thus, a designer needs
some guidance in choosing a minimum gain that guarantees that the system will meet

specifications.

Towards choosing this minimum gain, this chapter has devel oped formulae which give the

expected excess error and the coefficient deviations due to the DC offsets of these integrators. It
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was shown that the derived formulae are exact for the adaptive linear combiner case (FIR),
whereas for the IIR case, the formulae are an approximation using first order sensitivities. These
formulae were also modified for the sign-data LM S algorithm so that realizations using this algo-
rithm could be analyzed. Finally, experimental results were compared to theoretical values

showing a close agreement between the two sets.



Chapter 7

Summary and Conclusions

7.1. Introduction

The main purpose of thisthesiswasto investigate the feasibility of analog adaptive recur-
sive filters. The author believes that using the approach developed in this thesis, analog recursive
filters arc certainly feasible. However, along the way of this feasibility investigation, ideas have
been developed which should be useful in more areas than justanalog adaptive recursive filters.
In particular, the orthonormal ladder filter appears to be a viable aternate structure to a cascade
of biguads. Aswell, the adaptive algorithms presented in chapter 4 seem to be of some usein

the digital domain.

Section 7.2 will summarize the material presented in this thesis and outline the main contri-

butions made. Suggestions for further research will be presented in section 7.3.

7.2. Summary

In chapter 2, necessary background material was presented including notation usage and the
definition of some commonly used terms; expectation, correlation and norms. Aswell, some
adaptive filter theory was presented where it was shown that orthonormal signals are useful
when using the LM S adaptive algorithm. Also presented in this chapter was a brief introduction
to state-space filter theory. Of particular importance were the definitions of the correlation
matrices K and W and the idea of atransposed system such that the intermediate-functions, F(s)

and G(s), are exchanged.
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Thefirst contribution madein thisthesis was the presentation in chapter 3 of anew filter
structure resulting in circuits referred to as “orthonormal ladder filters". Through the use of
examples, it was shown that orthonormal ladder filter realizations have a sensitivity and dynamic
range performance comparabl e to acascade of biquads. However, other interesting properties
make this new filter structure useful in the design of adaptive filters. Specifically, it was shown
that the inherent structure of orthonormal ladder filters guarantees that the resulting realizations
are L, scaled for optimum dynamic range. Aswell, it was shown that the set of integrator out-
puts in these filters form an orthonormal set when white noise is applied at the filter input.
Finally, it was shown that the sign of only one coefficient determines the stability of the system

and thus provides a simple stability check.

The next main contribution was presented in chapter 4 where new adaptive agorithms for
state-space recursive systems were given which could be applied in either the digital or analog
domain. A general algorithm for adapting all the coefficients of astate-space system was first
presented but, unfortunately, requires an excessive amount of computations. To reduce the
amount of computations, single-row and single-column adaptive structures were presented.
Although these adaptive filters have no restrictions on their polelocations, it isfelt that these
new filters are best suited to applications where an estimate of fina pole locations is known. For
these types of applications, it was shown that these new adaptive filters have significant perfor-
mance improvements over the traditional direct-form implementations, especialy in the practi-
cal case of oversampled systems. It should be pointed out that the adaptive agorithms presented
in thisthesis are all based on the LM S steepest descent approach and would have to be modified

to ensure global rather than local convergence.
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In chapter 5, it was demonstrated that the algorithms of chapter 4 could successfully be
converted to the analog domain and that fully integrated analog adaptive recursivefilters are
possi ble. Towards demonstrating the successful conversion of the adaptive algorithms, design
details and experimental resultswere presented for adiscrete prototype of athird-order  single-
row analog adaptivefilter. The results are very encouraging. With respect to fully integrating
an analog adaptive recursive system, design details and experimental results were given for a
monolithic CMOS programmable filter. The results for this programmable filter show that only
asmall amount of silicon is required and that the programmablefilter’ s performance indicates
good programmability. Thus, though an extrafilter is required to create gradient signals to adapt
the programmabl e filter, it should be possible to fully integrate an analog adaptive recursive

filter.

Finally, chapter 6 addressed the important issue of the effects of DC offsets present in ana-
log adaptive recursive filter realizations. Formulae giving the excess error and coefficient devia-
tion dueto DC offsets were devel oped for both the LM S and sign-data algorithm for both FIR
and IR filters. The formulae for the LM S case were verified using simulations, and experimen-
tal results showed a close agreement between predicted and measured resultsfor the sign-data
case. Aswell, it was shown that by increasing the gain of the error signal, the effects of DC

offsets could be reduced.

7.3. Suggestions for further work

The orthonormal filter structure developed in chapter 3 has non-zero elementsin each row
and each column. Therefore, to continuously adapt a programmable filter with this structure, one
requires N extra gradient filters where N is the order of the programmable filter. One way to

reduce this computational burden would be to find an orthonormal structure with arbitrary pole
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locations but with the varying elements al in only one column and one row. If such a structure
could be found, then one would require only 2 extra gradient filters for an N’th order filter. The
advantage of such a structure might be that performance improvements similar to single row and
single column adaptive filter would be attained without the need for final pole location estimates.
The reason for believing that such an improvement would be obtained is that this type of
improvement was observed during adaptive filter simulations with the orthonormal structure
where N extra gradient filters were used to obtain gradients. Of course, it is entirely possible

that such a column and row structure does not exist.

Another area of research to investigate isto modify the Lyapunov formula given in chapter
3 to account for input signals with non-white statistics and thus obtain orthonormal structures for
arbitrary inputs. Thiswould be useful where the input signal’ s statistics can be estimated and
they vary significantly from white noise. Along the same thought would be to look for some sort

of self-orthogonalizing structure for analog circuits similar to digital adaptive lattice structures.

With regard to the adaptive algorithms presented in chapter 4, it would be very useful if
these algorithms could be modified to ensure global convergence. Although, this may be quite a
theoretical challenge, the fina algorithm could be quite ssimple. For example, the SHARF ago-
rithm [Larimore et al, 1980] is different from the approximate gradient approach [Feintuch,
1976] in that the SHARF agorithm merely requires afilter on the error signal and the a strictly

positive real condition must be satisfied.

With respect to analog implementations, the effects of adapting coefficients clipping should
be investigated. This clipping effect could cause local minimato be created depending on the

performance surface.
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Also on atheoretical level, much work could be done to improve the adaptation speed of
convergence such as using different step size constants for different coefficients and varying the
step size during adaptation.

With respect to the more practical aspects of future research, the next logical step inthis
research isto adapt the programmable | C filter using external circuitry and then build afully
integrated analog adaptive recursive filter. Since the structure of the programmable filter is that
of an orthonormal ladder filter and only one gradient filter isavailable, the gradient filter will
have to be multiplexed to adapt a single column at atime. Although this will reduce the adapta-
tion speed, the system should perform well without an estimate of final pole locations. Aswell,
afully integrated single row or column adaptive filter should be constructed with some applica-

tion in mind.

Notethat since al gradients are obtained as outputs of filters using a state-space system
description, one could construct adaptivefilterswith arbitrary operators, for example, damped
integrators. Thiswould involve replacing the"s" or "z" operator with some other type of opera-
tor. In particular, operators in switched-capacitor filters could be used to adapt SC filters. It

would be interesting to see if this type of approach led to any advantages.

Along the lines of the DC offset results, more effort could be applied to reducing the effects

of DC offsets without the need for such a high gain on the error signal.

Of course, the analog adaptive recursive filter approach developed here should be applied

to some practical applications.

Finally, it should be pointed out that adapting continuous-time integrated filtersto match
desired transfer functions appears to be quite similar to the problem of self-tuning “fixed”

continuous-timeintegrated filters[Tsividiset a, 1986]. With thisin mind, interesting research
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might involve applying many of the anal og adaptive conceptsin thisthesistoward the imple-

mentation of high quality continuous-time integrated filters.
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