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Abstract
The use of analog adaptive filters in modern integrated systems is limited by the com-

plexity of the analog adaptation hardware and by dc offset effects which limit the adapta-

tion accuracy.  Both problems can be addressed by using an analog filter with a digital

adaptation algorithm.

The design of digitally programmable analog filters suitable for adaptive applications

is examined.  Novel Gm-C circuits are described and implemented in a CMOS prototype

5th order integrated filter with digitally programmable poles and zeros.  However, the

greatest challenge associated with performing digital adaptation of an analog filter is

obtaining the gradient information without overcomplicating the analog design.  Three

main approaches to overcoming this challenge are described.  First, the gradient informa-

tion is obtained by correlating changes in the output squared error to independent dither

on the adapted parameters.  Second, the internal state signals (and, hence, the gradient

signals) are calculated from a time delayed input vector using a co-ordinate transforma-

tion.  Third, time delayed estimates of the filter input are obtained digitally from the filter

output and used to calculate the required gradient signals.  All three techniques use digital
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signal processing to obtain the gradient information and require little, if any, additional

analog hardware.  The performance of the new adaptive algorithms are discussed and

several variations are proposed to simplify integrated implementations.  The prototype

integrated analog filter was used as a testbed to verify two of the novel algorithms.  Gra-

dient descent optimization of analog filter parameters was successfully performed with-

out access to any of the filter’s internal state signals, which was not previously possible.

As a result, designers of analog adaptive filters are now free to perform the filter design

without being restricted by the requirements of the adaptation algorithm.
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Chapter 1

Introduction

1.1  Motivation

Filters are general signal processing blocks used in virtually every modern electronic

system.  Whenever a filter’s parameters must track poorly controlled or time varying con-

ditions, adaptive filters are an attractive option.  At low speeds, adaptive filtering is easily

and efficiently performed using digital circuits.   Presently, the vast majority of adaptive

filters are implemented digitally and a wealth of literature has been published on the topic

[1].  On the other hand, analog filters are preferable at high speeds when low power con-

sumption, small integrated area, and moderate linearity are required.  As digital logic con-

tinues to shrink and increase in speed, the minimum speed at which analog signal

processing becomes beneficial increases.  Therefore, this work focuses on high-speed

applications where analog adaptive filters will continue to be an important part of sys-

tems for years to come.

The most popular adaptive algorithm for high-speed integrated filters today is the

LMS algorithm, due primarily to its straightforward and robust digital hardware imple-

mentation.  However, in analog adaptive filters, implementation of the LMS algorithm is

neither straightforward nor robust.  The hardware required to generate gradient informa-

tion is cumbersome and power-hungry [2].  The LMS algorithm’s accuracy is also hin-

dered by the presence of dc offsets on the state and error signals [3].  These

considerations are the primary factors which presently limit the use of analog adaptive fil-
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ters.  This thesis seeks to combine the advantages of digital adaptation algorithms with a

high-speed analog signal path.  The aim is to perform digital adaptation of analog filters.

In the next section, several potential applications for digitally adaptive analog filters are

presented.  All are mixed-signal digital communications systems often including consid-

erable dedicated digital signal processing hardware, usually integrated on the same die as

the analog front end.  In such systems analog circuit design is particularly challenging, so

it is especially desirable to implement the adaptation algorithm digitally.

1.2  Applications and the State of the Art

An adaptive equalizer for digital communications was first proposed by Lucky in 1965

[4].  Since then, data rates over digital communication channels have increased by several

orders of magnitude.  Although the adaptive functions in some digital communications

applications can be efficiently performed digitally, analog adaptive filters play a critical

role when high speed and low power are required, as in the applications discussed below.

In digital magnetic storage read channels and ethernet receivers, analog adaptive filters

(usually digitally programmable) have already been used in practical systems.  High speed

serial links represent a burgeoning application for analog adaptive filters, and speculative

research has begun on analog adaptive filters for optical and smart antenna applications.

1.2.1  Digital Magnetic Storage
Digital magnetic storage channels emerged as the primary application area for analog

adaptive filters in the 1990’s.  The signals received from the read head in a magnetic stor-

age channel are baseband pulses for which some forward equalization is required prior to

detection.  Adaptive equalization is desired because the characteristics of the read signal

will depend upon the particular zone of the magnetic medium being accessed.  High

bandwidth in the analog front end is desirable to enable high storage densities and fast

access times.  The adaptive filter should also have a small integrated area and consume

little power to facilitate the implementation of an entire read channel on a single chip.
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Fortunately, only moderate linearity is required (approximately 40 dB) to obtain satisfac-

tory bit-error-rates.

Fig. 1.1 shows three possible architectures for a digital magnetic storage read channel.

The adaptive equalization can be implemented using either digital (Fig. 1.1A), analog dis-

crete time (Fig. 1.1B), or analog continuous time (Fig. 1.1C) filters.  In all-digital systems

(Fig. 1.1A) some partial equalization is still performed in the analog domain in combina-

tion with the fixed lowpass anti-aliasing filter [5].  This is done to reduce the dynamic

range and resolution required in the A/D converter and to shorten the length of the dig-

ital equalizer required.  By making the analog filter adaptive, the digital circuitry and A/D

converter complexity are reduced.  In some systems, this approach is combined with an

analog Viterbi detector to eliminate the A/D converter all together [6], [7].

Analog discrete time transversal filters with 5 to 10 taps are common in current com-

mercial systems.  The delay lines are generally implemented using S/Hs.  However, in [8]

a cascade of continuous time Bessel allpass filters implemented with MOSFET-C circuits

Figure 1.1 System architectures for digital magnetic recording read channels.
The adaptive feedforward equalizer can be realized using (A) digital, (B) discrete time 
analog, or (C) continuous time analog circuitry.
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was used.  An indirect tuning scheme locked the delay time of each MOSFET-C circuit

to the system’s sampling frequency.

Tap weighting in the transversal filters can be implemented using either switched-

capacitor MDACs [9], programmable transconductors [10], or, in a BiCMOS process,

Gilbert multipliers [11].  If either of the latter two techniques is used, a current output is

obtained and the output summer is easily realized by connecting together all output

nodes.  In general, digitally programmable tap weights are useful since the optimal filter

coefficients for each zone of the magnetic medium can be stored in a RAM.  The stored

values are then used to initialize the adaptation algorithm at the start of each read opera-

tion, thereby ensuring rapid convergence.  In this case, the adaptation algorithm must be

implemented digitally.  The SS-LMS [11], [12] or SD-LMS [13] algorithms are popular

because of their simple hardware implementations.

More recently, continuous time adaptive analog equalizers have been examined for

the magnetic storage channel.  These offer several distinct advantages over both digital

and discrete time analog adaptive equalizers.  First, since a continuous time lowpass anti-

aliasing filter is required prior to sampling when digital or discrete time filters are used, it

would save power and area if the equalization and anti-aliasing functions could be com-

bined and implemented in a single circuit.  Second, a continuous time IIR filter with just

a few adapted parameters can provide performance comparable to that of a higher order

FIR filter.  Third, when the equalizer is inside the system’s timing recovery loop, as is the

case with a discrete time or digital equalizer, the delay around the loop can cause slow

convergence at start-up.  A 7th order adaptive continuous time equalizer with 4 adapted

zeros is described in [14].  Its performance is better than a fixed 7th order continuous

time filter combined with a 9-tap adaptive FIR filter [15].  In [16], a continuous time 7th

order orthonormal ladder filter implemented in a CMOS process using a Gm-C topology

serves as both a lowpass anti-aliasing filter and an adaptive equalizer.  Two parameters

are adapted using digital SD-LMS circuitry.  Although only one zero is adapted, the per-

formance is comparable to systems with 5-tap adaptive FIR filters.
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Based on the preceding discussion, it should be clear that continuous time filters with

digitally programmable parameters and a digital adaptation algorithm are very useful for

digital magnetic storage applications.

1.2.2  Ethernet Over Copper
Analog adaptive equalizers offer essentially the same advantages in ethernet receivers

as they do in magnetic storage applications: smaller circuit area and power consumption

at high speeds, largely due to the reduced A/D converter specifications.  Again, analog

continuous time equalization can also eliminate the start-up problems associated with

having an adaptive equalizer inside of a timing recovery loop.  However, a key difference

between ethernet and magnetic storage applications is that the channel’s impulse

responses may be very long, so a transversal filter of great length would be required to

perform equalization.  Therefore, IIR adaptive filters may be preferred over FIR trans-

versal structures.  Several examples of continuous time analog adaptive equalizers for 100

Mb/s ethernet integrated transceivers have been reported [17], [18], [19].  Analog adap-

tive equalizers for next-generation gigabit ethernet over copper are also under research

[20].  In all but [17], the equalizers are digitally adapted.

Analog adaptive filters can also be used for echo cancellation in full-duplex systems.

Fig. 1.2 shows a full-duplex system with (A) digital, (B) mixed signal, and (C) analog

adaptive echo cancellation.   Note that the entire echo path in Fig. 1.2A including the

transmit D/A, line driver, receive filter, and A/D must be highly linear to allow for linear

echo cancellation in the digital domain.  The analog adaptive echo canceller eases the

D/A, line driver, and A/D specifications.  The mixed signal equalizer offers a compro-

mise where only the A/D converter specifications are relaxed.  Historically, the advan-

tages of analog echo cancellation have been particularly significant in applications using

standard telephone lines where the echo signal can be as much as 30 dB louder than the

far-end signal.  (e.g. voiceband modems [21], ISDN [22], [23], and digital subscriber lines

[24])  However, more recently a discrete time mixed signal echo canceller has been

applied to gigabit ethernet over copper [25].
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1.2.3  High Speed Serial Links
For very high speed applications, an A/D and digital equalizer may be impractical so

analog equalization is the only option.  One such application is high speed serial links

over coaxial cable.  In [26] a continuous time digitally programmable CMOS analog

equalizer was used for 155 Mb/s SONET over co-ax.  In [27] and [28] bipolar continu-

ous time analog circuits were used for adaptive equalization of a coaxial cable up to 400

Mb/s and 2.5 Gb/s respectively.  A 4-PAM 8 Gb/s signal was equalized for co-ax using

a discrete time analog filter in [29].

Considerable effort has also been aimed at equalizing chip-to-chip interfaces operat-

ing at several Gb/s.  So far, most of the effort has been directed at pre-equalization using

a discrete time mixed signal transmitter [30], [31].  However, in [31] a bondwire induc-

Figure 1.2 Adaptive echo cancellation in a full-duplex wired digital 
communication transceiver: (A) digital, (B) mixed signal, (C) analog.
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tance was used to provide high frequency peaking in a continuous time received signal at

8 Gb/s.

Although digital circuits in new process technologies will eventually reach these

speeds, there will remain a frequency limit beyond which analog adaptive signal process-

ing is more efficient.  In order to keep the analog circuit design as simple as possible, the

equalizers usually have only one or two adapted parameters, usually adjusting the amount

of high-frequency peaking in the filter’s transfer function.  Since the connections are

fixed, fast adaptation is generally not required so the adaptive algorithm need not be

implemented with high speed analog circuits.  The best compromise is often to use ana-

log circuits for the high speed signal path only, and slower digital circuits for the adapta-

tion.

1.2.4  Optical and Wireless
As digital CMOS circuits increase in speed and decrease in power consumption,

research on analog adaptive filters will continue to move towards higher speed applica-

tions.  Optical and RF signals operate at frequencies still far beyond the practical limits of

integrated adaptive digital signal processing.  Researchers are already beginning to con-

sider the possibility of analog adaptive signal processing for these applications.  Inte-

grated analog equalizers have already been tested in experimental optical systems

operating at 10 Gb/s [32].  However, the equalizer parameters were manually optimized.

In [33], the control voltages on an array of varactors were adapted (in simulations) to

direct the radiation pattern of an antenna array.  In both cases, practical hardware-effi-

cient adaptation algorithms are lacking.

1.3  Background

As mentioned earlier, the LMS algorithm is the most popular algorithm for the adap-

tation of integrated filters today.  Although several other algorithms with superior con-

vergence properties exist, the LMS algorithm remains popular because of its robust and
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straightforward digital implementation.  This section provides some background on the

LMS algorithm and the dc offset effects which limit its use in analog adaptive filters [34].

1.3.1  The Least Mean-Square (LMS) Algorithm
A general LMS adaptive filter is shown in Fig. 1.3.  It has two inputs (the filter input ,

and a “desired” or reference output, ) and two outputs (the filter output , and an

error signal ).  These may be either continuous or discrete time random pro-

cesses whose statistics will depend upon the particular application.  For all of the applica-

tions considered here, the signals  and  are either jointly stationary, or their joint

probability distributions vary slowly compared to their bandwidth.

The performance criterion used for LMS adaptation is the mean-squared error (MSE),

(1.1)

where the operator  denotes expectation and discrete time signals have been

assumed.  In an adaptive system, the parameter vector  and, hence, the MSE 

are functions of time.  The LMS algorithm is a gradient descent optimizer, which means

that it seeks the parameter vector which minimizes  by updating  iteratively

in a direction opposite the gradient .  In discrete time, the update rule is

(1.2)

where µ is a constant which determines the rate of adaptation.

Figure 1.3 An LMS analog adaptive filter as a 2-input, 2-output system.
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The simple yet brilliant idea put forward by Widrow and Hoff in [35] was to drop the

expectation operator when substituting Eqn. (1.1) into Eqn. (1.2).  In doing so, they are

taking the instantaneous value of the squared-error to be a noisy estimate of its expected

value, .  The resulting update rule is

(1.3)

where  is an instantaneous estimate of the gradient .  Eqn. (1.3) is the

parameter update equation for the LMS algorithm.1  The parameter  determines the

rate of adaptation.  In digital filters, the gradient signals  are usually readily available

in digital form [3].  In analog filters, additional analog circuitry if often required to gener-

ate the gradient signals from the filter’s internal state signals.  Furthermore, if the adapta-

tion algorithm is implemented digitally the gradient signals must be digitized, which is an

area- and power-hungry task.

Alternately, the LMS algorithm can operate directly on analog gradient signals using

analog circuitry.  In this case, a continuous time formulation of Eqn. (1.3) is used [36]:

(1.4)

Unfortunately, under these circumstances the LMS algorithm is sensitive to dc offsets on

the state and error signals.

1.3.2  DC Offset Effects in Analog LMS
A block diagram of the LMS parameter update rule appears in Fig. 1.4.  If the param-

eter updates are being performed using analog circuitry, dc offsets will appear at the

inputs to the multiplier ( , ) and integrator ( ).  These offsets prevent the LMS

1. For a more rigorous treatment of the LMS algorithm, the reader is referred to [1].
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algorithm from adapting to the optimal filter parameter values [3], [37], [38].  The excess

steady state MSE is related to  and to the product .

Dc offsets represent a significant performance limitation in many analog adaptive fil-

ters [2], [39], [40].  Much research has been done to minimize the negative influence of dc

offsets on analog adaptive filters.  It was shown in [41] that the SE-LMS and SS-LMS

algorithms are somewhat more robust than full-LMS with respect to dc offsets.  An algo-

rithmic approach to combatting dc offset effects in transversal filters was proposed in

[37] requiring another set of N adapted coefficients.  Circuit-level techniques for offset-

compensation in analog adaptive filters have also been used with varying degrees of suc-

cess in, for instance, [38], [42], and [43].

A relatively simple way to eliminate dc offsets on the error signal  is to add a dc off-

set cancellation tap to the filter output.  Shown in Fig. 1.5, this tap can be included in any

filter structure and essentially forces  to have zero dc content.  As a result,

.  In [44], the SS-LMS algorithm was used to adapt the dc offset

cancellation tap resulting in a median-based offset compensation scheme.  A hardware-

meφ me mφ⋅

e

φi

pi2µ∫

Figure 1.4 Analog implementation of the LMS parameter update equation.

me

mφ

meφ

y

d

e
 -

Adaptive
Filter
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k∫

Figure 1.5 DC tap for adaptive offset cancellation.

u

e

e

me 0≈ me mφ⋅ 0≈⇒
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efficient realization is shown in Fig. 1.6.  Unfortunately, it does not eliminate excess MSE

entirely since dc offsets introduced by  persist.

Digital implementations of the LMS update equation are advantageous because per-

forming the multiplication  digitally introduces no dc offset.  Hence, .  By

combining a digital implementation of the LMS algorithm with offset compensation at

the filter output, one can perform LMS adaptation of an analog filter with no dc offset

effects.  Therefore, it is highly desirable to use digital adaptation for analog adaptive fil-

ters.

1.4  Outline

In order to perform digital adaptation of an analog filter, one requires both a digitally

programmable analog filter, and an algorithm which can digitally adapt analog filter

parameters.  The next chapter of this dissertation addresses the first requirement, and the

remainder tackles the second.

Chapter 2 describes circuit techniques for implementing a digitally programmable

integrated analog filter.  A submicron CMOS technology is targeted to ensure that the

techniques are compatible with integrated mixed signal systems.  The design of a 5th

order continuous time filter is described and test results from a prototype are presented.

The circuits are presented at the start of this dissertation because the prototype is used as

a test vehicle for adaptive algorithms in later chapters.

In Chapter 3 a simple yet robust algorithm, called the “dithered linear search”, is

described which adapts filter parameters by correlating changes in the output squared

meφ

Up/Down
CounterD/A

Figure 1.6 Median-based DC offset compensation scheme.

e + DC offset

sgn(e) (no DC offset)

e φ⋅ meφ 0=
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error to independent dither simultaneously applied to each of the filter parameters.  The

algorithm has a straightforward hardware implementation requiring only a few gates of

digital circuitry and no additional analog hardware.  Theoretical analysis, simulations, and

experimental results are used to verify the algorithm’s robustness.  Implementation issues

such as quantization and dc offsets are also considered.

Chapter 4 describes a novel technique for performing LMS adaptation.  The tech-

nique obviates the LMS algorithm’s need to have access to the internal state signals of a

filter.  Instead, gradient information is obtained by performing simple digital signal pro-

cessing on the digitized filter input.  The resulting algorithm performs identically to the

LMS algorithm, yet is much more practical for mixed signal systems.  Again, theoretical,

simulated, and experimental results are used to verify the algorithm.

In Chapter 5, another algorithm is described which generates gradient information

without access to the filter’s internal states.  Although the implementation is somewhat

more complicated than the approach in Chapter 4, this time only the filter’s output must

be digitized.

In the conclusion (Chapter 6) the work is summarized, the various algorithms are

compared, and future directions are surmised.
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Chapter 2

Digitally Programmable Gm-C Filters

2.1  Introduction

As digital CMOS processes continue to advance, the size and power consumption of

digital circuitry decreases dramatically.  At the same time, lower supply voltages make the

design of high resolution analog-to-digital converters increasingly difficult.  Therefore,

there is great motivation to implement some of the signal processing in the analog

domain in order to reduce A/D converter resolution.  Analog adaptive filters can be very

useful in this regard.  A major problem limiting the use of analog adaptive filters today is

that analog adaptation circuitry is difficult to design and suffers from dc offset effects [1],

[2].  In order to obviate the need for analog adaptation circuitry, it is desirable to have a

digitally programmable analog filter, which is the focus of this chapter.

Most analog adaptive filters in use today tune only one or two parameters, such as the

ω0 and Q of a biquad [3] or one zero in a higher order filter [4].  However, it is well

known that in many applications the ability to adapt several parameters, particularly filter

poles, can significantly reduce the complexity of the remainder of the analog front end

and/or DSP [5], [6].  This is usually not attempted in practice to ensure stability of both

the filter and the adaptation algorithm.  However, more sophisticated digital adaptation

algorithms are capable of dealing with these problems (see, for instance, [7]).  Therefore,

analog filters with several digitally programmable parameters are examined here.



CHAPTER 2: DIGITALLY PROGRAMMABLE GM-C FILTERS

18

Discrete time integrated filters generally require opamps with a unity-gain bandwidth

several times greater than the bandwidth of the signal being filtered in order to achieve

reasonable settling times.  Therefore, for high bandwidth applications continuous time

filters are preferred.  Log-domain continuous time filters make use of bipolar devices to

produce a logarithmic conversion between current and voltage [8].  Unfortunately, bipo-

lar devices are poorly characterized and relatively slow in digital CMOS processes.  MOS-

FET-C integrators require high-speed output stages capable of driving resistive loads

which also makes them difficult to implement in digital CMOS processes. Gm-C filters

are currently the most popular technique for the realization of high-speed integrated fil-

ters in CMOS.  Gm-Opamp-C circuits are discussed here.  The addition of an opamp

increases the integrators’ output impedance by the gain of the opamp - an important

consideration in deep submicron processes since short channel effects degrade MOS-

FET output impedances.  Furthermore, linearity may be improved since the topology is

less sensitive to nonlinear parasitic capacitances at the transconductors’ outputs.

Since the time constant of a Gm-Opamp-C integrator is determined by the ratio Gm/

C, a programmable filter must have programmable transconductances, Gm, and/or pro-

grammable capacitances, C.  In this work capacitances are held constant and the time

constants are controlled via digitally programmable transconductances.  It has been

shown that programmable filters based upon constant capacitances are optimal with

respect to noise and dynamic range [9].

This chapter describes a 5th order digitally programmable orthonormal ladder filter in

a 0.25 µm CMOS process intended for analog adaptive filtering applications.  All poles

and zeros are digitally programmable so that the adaptation algorithm can be imple-

mented digitally.  The orthonormal ladder structure has the advantage of maintaining

near-optimum dynamic range scaling for any stable pole and zero locations [10], thus

making it particularly well suited to highly programmable analog filters.  A digital process

technology was used (no double-poly or thick oxide transistors) to facilitate low cost inte-

gration on mixed-signal systems.
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2.2  Circuit Description

2.2.1  A CMOS Transconductor
CMOS transconductors based upon the transconductance of a differential pair must

have small input signal swings to ensure their voltage-current relationship remains linear.

In order to allow for larger input signals (and hence improved dynamic range) a triode

transistor can be used to source-degenerate the differential pair.  Linearity can be further

improved by using feedback to fix the drain-source voltage of the input transistors.

In the transconductor of Fig. 2.1A [11], M3 provides a triode-region transconduc-

tance and the source-followers at M6 and M7  provide a feedback path to increase linear-

ity by maintaining constant gate-source voltages in transistors M1 and M2.  However,

this circuit is not well suited to low supply voltages because the gate-source voltages of

two active devices are cascaded (Vgs,4 and Vgs,6).  The circuit in Fig. 2.1B [3] is suitable

for lower supply voltages, however its speed is hindered by the use of p-channel devices

at M1, M2, and M3.

The transconductor shown in Fig. 2.1C was used in this design.  Negative feedback is

provided by directly connecting the gate of M4 (M5) to the drain of M1 (M2).  By elimi-

nating the source follower from Fig. 2.1A, lower supply voltages can be used and a para-

sitic pole is eliminated from the transconductor’s frequency response.  Unlike Fig. 2.1B,

the signal path consists entirely of n-channel transistors; p-channel devices are used only

for biasing.

The dc small-signal transconductance of the circuit in Fig. 2.1C is approximately given

by the following expression (derived in the Appendix, Section 2.7)

(2.1)

In Eqn. (2.1), M is the gain of the output current mirror formed by M4/M5 and M6/M7,

 is the drain-source conductance of M3 in triode,  is the drain-source conduc-

tance of transistor M4 in saturation, and  is due to the body effect of M1.  The values

of M and  are controlled digitally, but the values of  and  are parasitic con-

ductances which are not easily controlled.

Iout
    + Iout

     -–

Vin
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   -–
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2.2.2  Digitally Programmable Gain
Transistor M3 in Fig. 2.1C is realized as a binary-weighted array of unit transistors.

The gate voltage of each can be set to either VSS which turns it off, or Vcntrl which puts

Figure 2.1 Three transconductors based upon triode-region MOS devices (M3).
All use feedback to improve linearity: (A) [11] (B) [3] (C) this work.
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it in triode [12].  The array in Fig. 2.2 provides 5 bits of control (g2-g-2) for the value of

,

(2.2)

An additional degree of programmability is provided at the output current mirrors

formed by M5 & M7 and M4 & M6.  Output stages are tuned on and off by two control

bits, d1 - d0 (Fig. 2.3).  As a result, the output current mirror gain can be set to M = 1,

0.25, or 0.  When M < 1, parallel dc current sources are activated to sink the same bias

current through the miller integrator input stage.  In some transconductors, the positive

and negative signal paths were cross-coupled using switches to provide digital control of

the output polarity via a sign bit.

2.2.3  Miller Integrator
It is possible to realize an integrator simply by placing capacitors at the outputs of a

transconductor (Fig. 2.4A).  However, in order to reduce the effects of non-linear junc-

Figure 2.2 A five-bit programmable triode conductance.
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tion capacitances and the finite output impedance of the transconductor, a Miller integra-

tor was used as shown in Fig. 2.4B.

In order to maintain high-speed operation it is desirable to use a simple opamp design

with as few internal nodes as possible.  In [13] a PMOS common-source stage provides

high gain with common-gate current-mode inputs (Fig. 2.5A).  The bandwidth of this cir-

cuit is limited by the high-impedance nodes at the gates of the common-source transis-

tors M3 and M4.  In order to provide sufficient gain, these devices must be relatively

large.  An NMOS cascode gain stage can be used instead as shown in Fig. 2.5B to pro-

vide the same gain with smaller transistor sizes and, hence, less capacitance at the speed-

critical nodes.

Again, the entire signal path consists of NMOS transistors; PMOS transistors are used

only for biasing.  Two bits, c1-c0, provide ±20% control of the value of the integrating

capacitors.  These controls are only intended to compensate for variations in oxide thick-

ness and will remain fixed during the operation of the filter.  The bottom plates of all

Figure 2.3 Digital control of the output current mirror gain.

Figure 2.4 Differential integrators: (A) Gm-C (B) Gm-Opamp-C.
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capacitors are connected to the integrator inputs which remain at a fixed potential mak-

ing them insensitive to parasitics.  Transistor MC is biased in the triode region with a

drain-source resistance of approximately 715 Ω to provide lead compensation.

2.2.4  Common Mode Feedback
Although a continuous time CMFB obviates the need for clock generation circuitry

and avoids clock feed through glitches at the filter output, a continuous time design is

complicated by the low supply voltage (2.5 V).  The CMFB circuit must be stable and rel-

atively fast to eliminate as much high-frequency common mode noise as possible.  Fur-

thermore, in this application it is also important that the common mode potential of the

output accurately matches the common mode reference, Vcmref.  Since the control volt-

age Vcntrl is referenced to Vcmref, a change in the output common mode level will affect

the gain of a subsequent transconductor stage.

Figure 2.5 Current input CMOS active integrators.
(A) [13] (B) this work
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A block diagram of the design appears in Fig. 2.6.  The transconductors are scaled-

down copies of the signal-path transconductors with the outputs taken single-ended.  By

matching the common mode path to the signal path as closely as possible, systematic off-

sets between Vcmref and Vout are minimized.  The diode-connected load serves as an I-V

converter to drive current sources in the integrator.

A more detailed schematic of the original CMFB design appears in Fig. 2.7.  The

transconductors are scaled by one-half compared to the signal path transconductors

except for triode transistors M3 which were sized to provide a drain-source conductance

of 35 µA/V.  The output currents of both transconductors are summed to reject differ-

ential signals.  Transistor M10 is used to match the level shift introduced by M1 & M2 in

Fig. 2.5B while M11 is matched to switches MS1 - MS4 in Fig. 2.3.  An opamp fixes the

drain of M7 to the same potential as the drain of M9 in Fig. 2.5B.

Figure 2.6 Block diagram of the continuous time CMFB circuit.

Figure 2.7 Schematic diagram of the continuous time CMFB.
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Compensation of the loop is complicated by the presence of high-impedance nodes at

the integrator outputs, Vout
+ and Vout

-.  In a simple Gm-C topology, it would be possible

to compensate the loop by adding capacitance to the output nodes.  However, because

the integrating capacitors in this design are not grounded, they cannot be used to stabi-

lize the CMFB loop.  Instead, miller compensation was applied at the output of the

CMFB circuit via CC.

Another difficulty in designing the common mode feedback circuit is that it must fix

the common mode level of both the first and second stages of the Miller integrator.

Therefore, the feedback control voltage Vcmfb is applied to the first stage current source.

As a result, there will be a large dc gain from Vcmfb to the filter outputs, Vout
+ and Vout

-.

To maintain stability of the feedback loop, a very small dc gain is realized in the CMFB

circuit.  Fig. 2.8 shows a block diagram of the entire CMFB loop with typical simulated

dc gains.

Figure 2.8 CMFB loop block diagram.

Figure 2.9 Redesigned CMFB loop block diagram.
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As you can see, the dc gain around the loop is 60 dB which is reasonable and easily

stabilized.  However, if an offset is introduced at Vcmfb, it will be amplified by 30 dB at

the output.  Offsets can be introduced by variations in supply voltage across the chip and

threshold voltage mismatches.  In this case, 50 mV of mismatch between the CMFB cir-

cuit and the Miller integrator is sufficient to cause the integrator outputs to saturate.  Sat-

uration of the common mode output levels was observed in the first integrated

prototypes.  Therefore, the CMFB was modified to redistribute dc gain more evenly

around the loop (Fig. 2.9).  The transconductor gain was increased by replacing M3 in

Fig. 2.7 with 1.5 kΩ polysilicon resistors.  At the same time, the gain of the first com-

mon-source stage was reduced by connecting Vcmfb to only two of 18 fingers in the first

stage current source as shown in Fig. 2.10.  The result is a much more robust CMFB.

2.2.5  Prototype
A prototype was fabricated in a standard digital 0.25 µm CMOS process.  The 5th

order orthonormal ladder filter structure is shown in Fig. 2.11.  All of the summations are

performed by tying together the output currents of transconductors.  Where a summa-

tion node has fewer than three inputs, fixed dc current sources were added to properly

bias the input stage of the subsequent miller integrator.

A die photo of the prototype is shown in Fig. 2.12.  The total area of test chip is 2.5

mm × 1.7 mm.  Of that, only 1.25 mm × 0.38 mm ≈ 0.5 mm2 is occupied by the actual

filter.  The rest includes test circuitry, probe pads, and digital logic to store the filter coef-

Figure 2.10 Redesigned Miller integrator to reduce common mode loop gain.
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ficients.  (A description of the digital interface is provided in an Appendix, Section 2.8)

The chip also included a first order lowpass filter section as a test circuit to help charac-

Figure 2.11 5th order orthonormal ladder filter structure with multiple feed-ins.

Figure 2.12 Die photo of the prototype.

Figure 2.13 First order Gm-C filter with programmable pole and dc gain.
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terize the transconductor and integrator blocks (Fig. 2.13).  Most of the filter area is

occupied by metal-metal capacitors on layers 4 and 5.  The capacitance per unit area

could have been increased by using all of the metal layers in a stacked capacitor structure

resulting in a 40% decrease in the analog filter layout area to 0.3 mm2.  This was not done

to allow for proper extraction of the capacitors using an existing design flow.

2.3  Experimental Measurements

2.3.1  Programmable Transconductors
The programmable transconductors were tested using the first order filter in Figure

2.13.  A sinusoid was input at 8 MHz with a constant small-signal amplitude of -30 dBm.

The feedback gain Gm2 was held constant while the control bits g2-g-2 for Gm1 were

stepped through all 32 possible combinations.  Fig. 2.14  shows the gain as a function of

the 5-bit control word.  Note that the top curve in Fig. 2.14 does not pass through the

origin because even when all of the triode transistors are turned off, the transconductor

in Fig. 2.1C has a nonzero gain due to parasitic conductances between the drain/source

of M3 and ground.  Reprogramming the transconductor’s output current mirror gain to

 results in the lower curve in Figure 2.14 which can be used to realize smaller

gains.  However, many transfer functions require feed-in gains of exactly zero.  In these

cases, the output current mirror gain can be set to zero.

2.3.2  Frequency Response
In order to measure the frequency response of the filter, a reference path was pro-

vided through the prototype including packaging, bondwires of the same length as the

signal path, the same pad drivers, and the same PCB traces.  The frequency response of

both the reference path, , and the signal path, , are measured using the

test setup shown in Fig. 2.15.  The frequency response of the filter alone is then given by,

(2.3)

M 0.25=

Href s( ) Htotal s( )

H s( )
Htotal s( )
Href s( )
------------------=
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The magnitude response of the reference filter path is plotted in Fig. 2.16.  The insertion

loss at dc is 10 dB and remains between 10 dB - 11 dB up to 250 MHz.  The ringing

above 300 MHz appears because the output buffer termination is off-chip and is not

matched to the 50 Ω test equipment.  Most of the low frequency loss is due to the output

buffers which are simply differential pairs with external resistive loads.  Larger load resis-

tors could have been used to increase the gain, but matching and linearity would have

suffered.

To demonstrate the programmability of the filter, the orthonormal ladder was config-

ured as a 5th order lowpass filter and reprogrammed with different cutoff frequencies

and dc gains.  The resulting magnitude responses are plotted in Fig. 2.17.  Unfortunately,

the cutoff is not as sharp as one would expect from a 5th order filter.  This is partly due

to the unpredictability of the exact feed-in and feedback gains.  Unknown dc offsets and

mismatches between stages effect the gains making it difficult to predict the transfer

function which results from a given set of digital parameter values.

Another serious problem is that peaking in the magnitude response is observed

around 500 MHz (Fig. 2.18).  The peaking also occurs in simulations with the same pro-

Figure 2.14 Gain of the first order filter as a function of the Gm1 control word.
The output current mirror gain is  for the top curve (×) and  for 
the lower curve (O).

M 1= M 1 4⁄=
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grammed coefficient values (Fig. 2.19A).  Unfortunately, the prototypes have this peak-

ing because the compensation network was changed after complete chip simulations

were complete.  (The changes were verified by simulating only one integrator.)  If the

unit capacitors, Cu in Fig. 2.5, were increased from 50 fF to 70 fF and the triode resis-

tance of Mc was decreased from 715 Ω to 400 Ω, the filter’s maximum frequency of

operation is decreased but stability of the integrators is improved.  The resulting overall

simulated magnitude response is shown in Fig. 2.19B.  The peaking at 500 MHz is elimi-

nated, the cutoff is much sharper, and a 2nd notch appears in the magnitude response

Figure 2.15 Test setup used to isolate the frequency response of the filter.

Figure 2.16 Magnitude response of the reference filter path, Href(s).
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Buffers

Filter
H(s)

Spectrum
Analyzer

Href s( )

Htotal s( ) H s( ) Href s( )⋅=



CHAPTER 2: DIGITALLY PROGRAMMABLE GM-C FILTERS

31

which was not present in Fig. 2.19A due to phase errors caused by the poor compensa-

tion.

2.3.3  Linearity
First, the linearity of the first order filter (Fig. 2.13) was tested using an 8 MHz input

tone at 200 mVpp.  The output spectrum is shown in Fig. 2.20.  The total harmonic dis-

Figure 2.17 Measured frequency responses of the orthonormal ladder.
The filter was configured as a lowpass filter with (A) varying cutoff frequency and (B) 
varying dc gain.

Figure 2.18 Measured frequency response of the lowpass orthonormal ladder 
showing ringing around 500 MHz.

(A) (B)
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tortion is 41 dB limited by the 3rd harmonic, as one would expect in a fully-differential

circuit.

The linearity measurements for the 5th order structure, however, are limited by the

2nd order harmonics (Fig. 2.21).  Total harmonic distortion (THD) was measured at dif-

Figure 2.19 Simulated magnitude response of the 5th order lowpass filter.
(A) peaking in the stopband with Cu = 50 fF and RC = 715 Ω
(B) with the compensation network redesigned, Cu = 70 fF and RC = 400 Ω.

Figure 2.20 Output spectrum of the 1st order filter with an input tone at 8 MHz.

(A)
(B)
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ferent signal amplitudes (Fig. 2.22) and frequencies (Fig. 2.23) using the medium band-

width setting from Fig. 2.17A.  In Fig. 2.23, the linearity is worst at mid-range

frequencies as one would expect since, at higher frequencies, the harmonics are attenu-

ated by the filter itself.

The linearity of the analog building blocks appears to be moderate, as indicated by the

41 dB THD measured for the first order filer, which would be sufficient for applications

with 6-8 bit front ends such as magnetic storage, fast ethernet over copper, and high-

Figure 2.21 Spectrum analyzer screen shot of the 5th order filter output THD.
Testing done with a 125 mVpp input sinusoid at 18 MHz.

Figure 2.22 THD of the 5th order lowpass filter vs. output amplitude.
Testing done with a 18 MHz input tone, chosen so that the 2nd harmonic coincides with 
the filter’s -3dB frequency.
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speed wired serial links.  However, the linearity of the 5th order filter was poor (25-30

dB).  There are numerous sources of nonlinearity in the signal path including the nonlin-

ear V-I characteristic of triode transistor M3 in Fig. 2.1C, the body effect of transistors

M1 and M2 in Fig. 2.1C, and active devices in the transconductor or miller integrator that

may enter triode for large signal swings.  However, the presence of large 2nd order har-

monics, which should be cancelled by the fully differential topology, indicates that imbal-

ances between the positive and negative signal paths limit linearity.  This was further

evidenced by the different dc voltages observed on each side of the differential output.

Simulations revealed that the filter’s linearity is particularly sensitive to mismatches in

the transconductor’s current mirror transistors M4 - M7 (Fig. 2.1C).  Fig. 2.24 shows

simulation results for the same lowpass filter as in Fig. 2.21, Fig. 2.22, and Fig. 2.23, again

with a 125 mVpp differential input at 18 MHz.  The threshold voltages of transistors M4

- M7 were made independent gaussian random variables in each transconductor.  As the

3σ deviation of the threshold voltages is increased from 0 mV to 20 mV, the 2nd har-

monic goes from being non-existent to being dominant.  With a 3σ deviation of 20 mV

(equivalent to a standard deviation of 7 mV) the THD was simulated at -26 dB, which is

comparable to the measured results.  Unfortunately, to simplify the routing of the digital

control lines in the transconductors, transistors M4 - M7 were not interdigitated in the

Figure 2.23 THD of 5th order lowpass filter vs. input frequency.
Testing done with a -14 dBm (125 mVpp) sinusoidal input.
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layout.  This likely limited the matching between the positive and negative signal paths

and, hence, the filter’s linearity.  If the 3σ spread is decreased to 5 mV (an achievable

value with more careful layout), the THD improves to -44 dB.

2.3.4  Noise
The noise spectrum of the reference and filter paths were both measured using a

spectrum analyzer (Fig. 2.25) with the filter again programmed to the medium bandwidth

setting in Fig. 2.17A.  Integrating the noise spectrum over the frequency range of interest

(1 - 250 MHz), the noise power can be computed for each path.

(2.4)

(2.5)

Figure 2.24 Linearity simulations of the 5th order lowpass filter.
With a 125 mVpp differential output at 18 MHz, the threshold voltages of 
transconductor transistors M4 - M7 were made gaussian random variables with a 3σ 
spread of (A) 0 mV (THD = -48 dB), (B) 5 mV (THD = -44 dB), (C) 10 mV 
(THD = -40 dB), (D) 20 mV (THD = -26 dB).

Nref 3.55 10 6–⋅  mW=

Ntotal 9.03 10 6–⋅  mW=
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The noise in the filter path, , includes the noise introduced by the filter, the output

buffers, and the test equipment.  Assuming the noise generated by the filter is indepen-

dent of the noise introduced elsewhere in the system, the filter noise can be computed as

follows,

(2.6)

This is the noise power at the spectrum analyzer, but assuming all of the attenuation in

the reference signal path occurs at the output buffer, it can be referred to the filter output

as 5.48·10-5 mW or 1.656 mVrms.  This is the same as the power in the harmonic distor-

tion in Fig. 2.21.  For this measurement, the filter was programmed for a dc gain of 5 dB.

The noise power would likely be less for transfer functions with 0 dB dc gain.  These

measurements correspond to an input referred noise density of approximately 120

 in the passband.

2.3.5  Spurious-Free Dynamic Range
Fig. 2.26 plots the total harmonic distortion at the filter output as the signal amplitude

increases.  At an output power of -12.6 dBm, the combined power of the output har-

monics is the same as the total noise power, -42.6 dBm.  Therefore, the spurious-free

dynamic range (SFDR) of the filter is -12.6 dBm - 42.6 dBm = 30.0 dB.

Figure 2.25 Noise spectrum of (A) the reference and (B) the signal paths.

(A)

(B)
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2.4  Fine Tuning the Transconductances

In many applications, 5 bits of control for the transconductors is sufficient.  However,

if more resolution is required in setting the filter coefficients, it is possible to exercise fine

control over the transconductances via the gate voltage, Vcntrl.  Vcntrl is proportional to

the conductance of each triode transistor in the binary-weighted array of Figure 2.2 and,

hence, the overall transconductance.  Therefore, a 4-bit DAC with inputs b0-b3 is used to

set this voltage in each transconductor separately.

Although the voltage Vcntrl is useful for fine tuning, it can not be used to vary Gm

over more than about one octave.  The voltage Vcntrl must be kept high enough to pre-

vent M3 from entering the active region and introducing nonlinearities.  On the other

hand, switching binary-weighted transistors can not be used for fine control since that

would require a very large transistor array and the associated parasitic drain and source

junction capacitances would limit speed.

Figure 2.26 Total harmonic distortion power of the 5th order filter referenced to 
the filter output.
Testing done with a 18 MHz input

Noise Floor = -42.6 dBm
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2.4.1  4-Bit Vcntrl DAC

A 4-bit DAC is used to generate Vcntrl as shown in Fig. 2.27.  Transistor Mt is oper-

ated in triode and is a scaled version of triode transistor M3 in Fig. 2.1C.  Opamps O1

and O2 maintain a constant drain-source voltage ∆V ≈ 100 mV across Mt.  Meanwhile a

dc current, Ia, and the 4-bit DAC output current, IDAC, are summed and forced through

Mt.  As a result, triode transistor Mt has a drain-source conductance of,

(2.7)

A more detailed schematic is shown in Figure 2.28.  The test voltage ∆V  is the prod-

uct of a reference current Iref and a resistor R1.  (On this chip, R1 is a triode transistor

with the gate voltage set externally for tuning.)  The DAC is an R-2R ladder with unit cur-

rent sources, Ib.  As the DAC input bits b0-b3 are swept over the range 0000 to 1111,

IDAC varies over the range 0 to 1.875⋅Ib.  When IDAC = 0,  resulting in

the minimum possible value of Vcntrl.  Since the transconductor linearity is worst for

small values of Vcntrl, the current Ia must be chosen large enough to provide acceptable

linearity performance.

The opamps used are simple low-speed 2-stage p-channel input opamps with a nomi-

nal current consumption of 300 µA.  Opamp O2 has a source-follower output stage

which consumes an additional 250 µA.

Figure 2.27 Using a four-bit DAC to program the gate control voltage, Vcntrl.
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Opamp O1 keeps the source of Mt at Vsrcref.  If the source voltage of M3 is also Vsr-

cref, then its drain-source conductance will be a scaled duplicate of Gds,t.  If, on the other

hand, the dc voltage at the source of M3 differs from Vsrcref, there will be an offset

between Gds,t and Gds,3.  Vsrcref is produced by a bias circuit which is a scaled copy of a

transconductor half-circuit (Figure 2.29).  The bias circuit uses the common mode refer-

ence voltage, Vcmref, to produce Vsrcref.  Therefore, all common mode levels must be

accurately set to Vcmref.  Any offset in the common mode feedback loop would affect the

value of Vgs,3 and, hence, the filter time constants.

Figure 2.28 Details of the 4-bit DAC.

Figure 2.29 A systematic offset error in the CMFB.
 effects the gate-source voltage of M3, , 

which changes the degeneration conductance,  and, hence, the cell’s 
transconductance.
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2.4.2  Hysteresis
Whenever separate mechanisms are used for coarse discrete control and fine tuning of

the same adaptive parameter, it is desirable to introduce hysteresis at transitions of the

coarse control word in order to ensure that such transitions occur infrequently in steady

state [14].  In this design, b3 - b0 are used for fine tuning via Vcntrl while g2 - g-2 provide

coarse discrete control via the binary weighted transistor array.  Hysteresis is introduced

by insuring that the fine tuning range is always greater than one LSB of the coarse con-

trol.

Unfortunately, hysteresis also creates some redundancy over the tuning range.  When

there is too much hysteresis, fine control is lost.  Therefore, Ib was made a function of

the coarse control signals g2 - g0 as shown in Fig. 2.30.

Figure 2.30 Implementation of DAC current sources in terms of unit current 
sources.
Each unit current source Iu is a 0.3/1.6 µm NMOS device.
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2.4.3  Results
The fine control DAC was tested in two ways:

• by probing the dc voltage Vcntrl directly (Fig. 2.31).

• by measuring the low-frequency gain of the first order filter test structure (Fig. 2.32).

Figure 2.31 Probed DAC output voltage vs. 4-bit input word for different coarse 
control words.

Figure 2.32 Normalized gain of the 1st order test structure vs. 4-bit input word for 
different coarse control words.
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Both tests indicated a strong discontinuity in the D/A characteristic when the MSB is

activated.  Another significant discontinuity appears whenever the 2nd MSB is toggled.

In order for the D/A characteristic of the DAC in Fig. 2.28 to be linear, all of the cur-

rent sources must have the same output current:  I0 = I1 = I2 = I3.  However, this was

not the case because the NMOS transistors in current sources I0 - I3 were not operating

in the active mode.  Therefore, the current sources had a low output impedance and volt-

age drops along the R-2R ladder caused the currents to vary:  Ib0 < Ib1 < Ib2 < Ib3.

Three possible solutions to this problem are:

1. Use PMOS current sources instead of NMOS current sources.  The PMOS transistors 

would remain active ensuring high output impedances for all of the current sources.  

This would require a significant redesign of the entire DAC.

2. Increase the potential at Vsrcref.  This would also require the common mode reference 

potential, Vcmref, to be increased everywhere in the chip to avoid the offset problem 

described in Fig. 2.29.

3. Decrease the value of all resistors in the R-2R ladder.  This would decrease the IR 

drops in the resistor ladder, thereby putting all internal nodes at roughly the same 

potential and mitigating the effect of the current sources’ finite output impedance.

Solutions #2 and #3 were verified using simulations in Fig. 2.33.  The problem was not

noticed during design of the DAC because the value of Vsrcref was decreased after the

DAC design was complete.

Figure 2.33 Simulation results of the DAC subcircuit.
(A) design as in prototype (B) with Vsrcref increased by 350 mV (C) with R decreased 
from 7 kΩ to 0.5 kΩ.
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2.5  Power Consumption

Programmability is generally accompanied by increased power consumption since

some overdesign is necessary to insure proper operation over a wide range of conditions.

This design was no exception.  The total power consumption for the entire prototype IC

was simulated at 60 deg. C to be 93.1 mA from a 2.5 V supply or 233 mW.  A current

consumption of 100 mA for the entire prototype IC was measured in the lab, providing

reasonable agreement with the simulations.  Much of the current was consumed by test

structures and output buffers (Fig. 2.34).  The current consumed by the 5th order filter

alone, including ten fine control DACs, bias circuitry, etc., is 52.3 mA or 130 mW.  How-

ever, some obvious avenues for improvement exist.

The fine control DACs could be eliminated.  This would provide a power savings of

17.1 mA resulting in a 5th order filter consuming 35.2 mA or 88 mW with 5-bit program-

mable coefficients, still sufficient programmability for most applications.  This requires

no redesign other than connecting the control voltage nodes, Vcntrl, to a fixed potential.

In fact, for most of the testing, only 5 bits of programmability were used and the DAC

input was held constant at b3b2b1b0 = 0000.  Other improvements in power consump-

tion would require more significant redesign.  The biggest improvement would be

obtained by replacing the miller integrators with simple capacitor integrators, which

Figure 2.34 Current consumption of the prototype IC by functional block.
These results were simulated at 60 deg. C.  A current consumption of 100 mA was 
measured in the lab.
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might also simplify the CMFB loop and enable higher speed operation.  In this case, the

power savings would be approximately an additional 20 mA or 50 mW.

2.6  Conclusions

Techniques for implementing a 5th order digitally programmable filter in a 0.25 µm

CMOS process were described for analog adaptive filtering applications.  The measured

results from a prototype implementation of the filter are summarized in Table 2.1.

An orthonormal structure was chosen to provide a high degree of programmability

while maintaining good dynamic range scaling.  The mechanism provided for coarse dig-

ital gain control suffers from a finite transconductance even when the control word is all

zeros.  However, this can be overcome by turning off the output current mirror.  The

fine tuning mechanism described in Section 2.4 could be useful when accurate gain con-

trol is required, but its repeated use caused a dramatic increase in circuit size, complexity,

and power consumption.

Traditional transconductor and miller integrator circuits were redesigned with only

NMOS devices in the signal path to take advantage of their superior speed.  A major lim-

itation of transconductor circuits which rely on differential pairs that are source-degener-

ated by a triode MOS device is that their transconductance and linearity depend upon the

input common mode level.  Therefore, strongly inverted triode devices should be used to

reduce this dependence, or the MOS devices should be replaced by passive resistors.

Also, although feedback can reduce nonlinearity in a CMOS transconductor by maintain-

ing a constant current through the input differential pair, the feedback can also cause the

input devices to go into triode for large input swings.  Whether the net effect of the feed-

back is to improve or worsen linearity will depend upon the particular application and

process technology used.

Although the use of miller integrators offers the potential for better linearity, at low

supply voltages it is difficult to get better than 40-50 dB of linearity anyway.  Further-

more, the use of a Miller stage can limit speed compared with a passive capacitor integra-

tor.  Generally, in mixed-signal systems, low-speed high-accuracy filtering can be easily
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performed digitally and the extra analog complexity and current consumption which

Miller integrators imply are undesirable.

Although many useful circuit techniques have been demonstrated, such as the all-

NMOS transconductor and Miller integrator and the use of multiple transconductance

control mechanisms with hysteresis, the poor linearity measurements limited the design’s

Entire Prototype Gm-C Filter IC

Technology 0.25 µm CMOS

Supply Voltage 2.5 V

Integrated Area 2.5 mm × 1.7 mm
= 4.25 mm2

Power
233 mW (Simulated)
250 mW (Measured)

First Order Filter Test Structure

Integrated Area 0.25 mm × 0.38 mm
= 0.094 mm2

Power 29.7 mWa

THD with 200 mVpp input, 120 mVpp output tone at 
8 MHz -41 dB

5th Order Lowpass Orthonormal Ladder Filter

Integrated Area 1.25 mm × 0.38 mm
= 0.469 mm2

Power with 9-Bit Programmable Coefficients 130 mW (Simulated)a

Power with 5-Bit Programmable Coefficients 87.5 mW (Simulated)a

Input-referred Noise Power over 250 MHz BW 1.656 mVrms

Input-referred Noise Spectral Density in the passband 120 

THD with 125 mVpp input, 170 mVpp output tone at -27.7 dBb

SFDR with input tone at 30 dBc

Table 2.1 Summary of prototype filter IC measurements.
a. Includes shared bias circuitry.
b. Corresponds to measurement made in Fig. 2.21.  Measurements for different trans-

fer functions varied between -20 dB to -30 dB.
c. Corresponds to input amplitude of 105 mVpp and output amplitude of 145 mVpp.

nV Hz( )⁄

f3 dB 2⁄

f3 dB 2⁄
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relevance to real applications.  It was useful primarily as a test vehicle for exploring digital

adaptation algorithms for analog filters.  For comparison, the design of a 4th order digi-

tally programmable Gm-C filter in a similar process technology (0.25 µm CMOS) was

described in [15].  Four bits of programmability were provided for each transconductor

by switching binary-scaled differential pair transconductors on and off.  Passive capaci-

tors were used as integrators.  This approach provided a much simpler and higher speed

design, although the circuit used a higher supply voltage (3.3 V) and was limited to but-

terworth lowpass transfer functions.  In [16], an 8th order lowpass Gm-C filter was

described in 0.25 µm CMOS with a 2.5 V supply.   The transconductors were weakly

degenerated differential pairs.  Digital programmability was provided using a combina-

tion of tail current DACs, binary-ratioed degeneration resistors, and binary-scaled paral-

lel-connected transconductors.  In both [15] and [16], no Miller integrators were used yet

the linearity was far superior to that reported here (40 - 50 dB THD).  However, the fil-

ters were restricted to fixed lowpass transfer functions with programmable cutoff fre-

quencies and (in [16]) programmable high-frequency boost.  An analog filter with all

poles and zeros digitally programmable has only been reported at much lower speeds (up

to 8 MHz) in a BiCMOS process [8].

2.7  Appendix - Derivation of Eqn. (2.1)

The low frequency small signal equivalent half-circuit of the transconductor in Fig.

2.1C is shown in Fig. 2.35.  The PMOS current sources were cascoded so their output

impedance is far greater than all others in the circuit.  Therefore, infinite output imped-

ance is assumed to simplify the small signal analysis.

A node equation at  gives,

(2.8)

(2.9)

A node equation at  gives,

vs1

gm4vd1 gds4 2gds3 gs1+ +( )vs1+ 0=

vs1⇒
gm4

gds4 2gds3 gs1+ +
-------------------------------------------vd1–=

vd1
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(2.10)

Substituting Eqn. (2.9) into Eqn. (2.10) gives,

(2.11)

Making the following approximation,

(2.12)

one can now write, from Eqn. (2.11),

(2.13)

Assuming the subsequent stage has a relatively low input resistance (i.e. )

the output current is simply given by,

(2.14)

This is the result presented in Eqn. (2.1).

Figure 2.35 Small-signal equivalent half-circuit of the transconductor.

Rout of I1 = ∞ 
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M 2gds3 gds4 gs1+ +( )Vin=



CHAPTER 2: DIGITALLY PROGRAMMABLE GM-C FILTERS

48

2.8  Appendix - Digital Circuitry

Simple digital circuitry was included on the prototype to program the filter coeffi-

cients.  The circuitry includes a register file for storing the following data:

• 11 bits (b3-b0, g2-g-2, and d1-d0) for each of the 5 filter feedback parameters: 55 bits 

total

• 12 bits (b3-b0, g2-g-2, d1-d0, plus one sign bit) for each of the 5 filter feed-in parame-

ters: 60 bits total

• 2 bits (c1-c0) for tuning the integrating capacitors

The result is a total of 117 bits.  The register file was organized as 16 words x 12 bits

per word, so each write operation requires 4 address bits plus 12 data bits.  Because a 24-

pin package was used, only 6 pins were allocated to the digital circuitry, two of which

were used for digital power supplies.  The remaining 4 signals provide a serial interface

through which an address and 12 bits of data can be written.  No facility for reading from

the register file (other than probe pads) was provided.

The 4 serial interface signals are:

• Clock - (rising edge triggered) a clock is required to serially shift data into the chip

• Reset - (active low) this signal clears the contents of all flip-flops in the register file

• Start - (active high) a write operation is initiated by activating the Start signal for one 

clock cycle

• Data - provides the address and data to be written into the register file

After a write operation is initiated by the “Start” signal, the next bit clocked into the

“Data” pin must be a 1.  The proceeding 4 bits are used as the address in the register file

(a3 - a0) and the remaining 12 bits are the data (r11 - r0).  A sample timing diagram is pro-

vided in Fig. 2.36.  Table 2.2 is an address map for the register file.

The serial interface was implemented using standard cells which were manually placed

and routed.  Since the interface was not speed-critical, no effort was made to optimize

the netlist or layout.  A schematic of the digital circuitry is provided in Fig. 2.37.
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Binary Address(es) Register Contents (r11 - r0)

0000 - 0100 Filter feed-in coefficients.

r0: sign bit
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Table 2.2 Digital register file address map.

Start

Clock

Data a0 a3 r0 r11

1st bit after Start is always “high”

r1a1 a2 ...
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Chapter 3

The Dithered Linear Search Algorithm

3.1  Introduction

At low speeds, adaptive filtering is easily and efficiently performed using digital cir-

cuits.  Analog filters are preferable at high speeds when low power consumption, small

integrated area, and moderate linearity are required.  The LMS algorithm is currently the

most popular technique for digital filter adaptation.  Unfortunately, implementation of

the LMS algorithm in analog adaptive filters is challenging.  Dc offsets on the analog sig-

nals can prevent accurate convergence of the LMS algorithm [1], [2].  Also, significant

additional analog hardware may be required to obtain the gradient signals required by the

LMS algorithm [3].

As a result, numerous heuristic algorithms have been developed for specific applica-

tions based upon adjusting analog filter parameters to satisfy some desirable and easily

observed condition [4], [5], [6].  Although relatively simple, both conceptually and in

terms of their hardware implementation, these approaches are tailored to specific appli-

cations and filter structures.  Therefore, they are not easily generalized to new applica-

tions, particularly those requiring high order filters with several adapted parameters.

In this chapter, a technique for analog filter adaptation is discussed which is general,

has a straightforward hardware implementation, and is robust with respect to dc offsets.

The dithered linear search (DLS) technique does not require access to the filter’s internal
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states and little additional analog hardware is required.  All filter parameters may be

adapted simultaneously and independently of one another.

In Section 3.2 of this chapter, a theoretical framework for the problem of filter adap-

tation is established and two gradient descent adaptation algorithms are presented.  In

Section 3.3, the DLS algorithm is introduced.  Theoretical results for the misadjustment

and convergence rates are derived in Section 3.4.  Behavioral simulation results are then

presented in Section 3.5 for both a tapped delay line and a continuous time filter.  Differ-

ent possible dither signals are considered in Section 3.6, and dc offset effects are dis-

cussed in Section 3.7.  In Section 3.8, subsampling of the output error signal is discussed,

and in Section 3.9 the effect of quantization of the filter parameters is analyzed.  Finally,

in Section 3.10, experimental results of the algorithm applied to a continuous time inte-

grated analog filter are presented.

3.2  Background

Using the general framework for filter adaptation established in Section 1.3.1, recall

that gradient descent optimizers proceed by updating the filter’s parameters iteratively in

a direction opposite the gradient .  The iterative update rule is repeated here,

(3.1)

where µ is a parameter controlling the rate of adaptation.  The only problem is how to

obtain the gradient , or  for short.  Generally the exact value of  can

not be determined, so an unbiased estimate of the gradient is used instead,

(3.2)

This estimate is substituted into Eqn. (3.1) resulting in,

(3.3)

Different approaches to obtaining the gradient estimates define different gradient

descent algorithms.  The remainder of this section will describe how gradient estimates

are obtained for the LMS and differential steepest descent (DSD) algorithms.

ε p k( )( )p k( )∇

p k 1+( ) p k( ) µ ε p k( )( )p k( )∇⋅–=

ε p k( )( )p k( )∇ εp∇ εp∇
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--------
ˆ ε∂
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---------
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3.2.1  The Least Mean Square (LMS) Algorithm
The LMS algorithm uses the gradient of the instantaneous squared error, , as an

unbiased noisy estimate of the actual gradient,

(3.4)

where  is defined as the gradient .  The LMS update rule is then derived by

substituting Eqn. (3.4) into Eqn. (3.3),

(3.5)

Unfortunately, obtaining the gradient signals  for analog filters can require consider-

able additional hardware.

3.2.2  The Differential Steepest Descent Algorithm
The differential steepest descent (DSD) algorithm makes a direct measurement of

each gradient component by perturbing the parameters one at a time symmetrically

around their current values and measuring the resulting change in the error function.

The derivative is approximated by a finite difference expression,1

(3.6)

In order to use Eqn. (3.6),  is estimated first by operating the filter with

 and averaging  over  data samples, then setting

 and averaging  over the following  data samples,

(3.7)

1. The approximation in Eqn. (3.6) becomes exact in the limit  or in the case of a 
parabolic performance surface such as adaptive linear combiners with an MSE error 
function [7].
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An advantage of the DSD algorithm over LMS adaptation is that it does not require

access to the filter’s internal states.  It is simple and intuitive.  However, its hardware

implementation is somewhat complicated by the fact that the gradient components must

be estimated one at a time.  During their discussion of the DSD algorithm, the authors of

[8] point out that, “All weights can be simultaneously dithered at individual frequencies

and the gradient components obtained by cross correlation.”  That idea is the basis of the

“dithered linear search” algorithm described below.

3.3  The Dithered Linear Search

The dithered linear search (DLS) algorithm1 is also a gradient descent optimizer.  The

term “dither” refers to a signal with small amplitude and zero mean that is intentionally

injected into a system,

(3.8)

(3.9)

In Eqn. (3.8),  is the algorithm’s current estimate of an optimal parameter value

whereas  is the parameter value actually applied to the filter including the dither .

Each gradient component is then inferred by correlating changes in the corresponding

dither signal to changes in ,

(3.10)

In Eqn. (3.10), the gradient estimate is given by .  The product

 correlates changes in the output error with the parameter dither to give

the sign of the gradient.  The product is divided by σ2 (the variance of ) to normal-

ize the gradient estimate with respect to the dither signal’s magnitude.  Again, instanta-

neous estimates can be substituted for  in which case Eqn. (3.10) becomes,

1. The name “dithered linear search” was chosen in reference to the other linear search adaptation 
algorithms (i.e. sequential linear search, random linear search) to which the DLS bears a strong 
resemblance.
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(3.11)

The gradient estimate is given by,

(3.12)

Multiple filter parameters can be adapted simultaneously by applying independent (i.e.

uncorrelated) dither signals to all of the parameters.

(3.13)

(3.14)

The adaptation of any one parameter, , will not be affected by the dither on the others

since, over time, only those changes in ε which are correlated with  will influence the

parameter .

The DLS algorithm has a straightforward hardware implementation.  A block diagram

is shown in Fig. 3.1 for one parameter.  The filter input , output , reference signal ,

and error signal  all have their usual characteristics, as described in Section 1.3.1.  The

algorithm is easily scaled to adapt more parameters using more copies of the same hard-

ware.  If the dither signals are binary, the hardware is even simpler.  The correlator

becomes trivial and the dither signal can be directly connected to the LSB of the parame-

ter control word.  Uncorrelated binary dither signals are also easy to generate.  Several

different possibilities are discussed in Section 3.6.

3.3.1  The Block DLS Algorithm
Rather than continuously updating the parameters via Eqn. (3.11), one may keep them

fixed (except for dither) for a block of L consecutive data samples.  During this period,

derivative estimates are constructed by cross-correlating the dither and squared error sig-

nals,
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(3.15)

After every L samples, the gradient estimates are used to update the parameters via Eqn.

(3.3).  The standard DLS algorithm corresponds to the limiting case of the block DLS

algorithm where .  Although the complexity and theoretical performance of the

block DLS algorithm is the same as the DLS algorithm, the block adaptation can offer

better stability and performance in practice, as we shall see in Section 3.6.

3.4  Theoretical Analysis

3.4.1  Preliminaries
In order to simplify the theoretical analysis of the DLS algorithm and to cast it in a

form similar to that used in [8], only adaptive linear combiners are considered.  This is

common practice in the analysis of adaptive algorithms and the results are also applicable

whenever the performance surface is approximately quadratic near its minimum.  Also,

only binary dither signals are analyzed in detail.

As with all gradient descent optimizers, a necessary condition for stability of the DLS

algorithm is,

(3.16)

Figure 3.1 Block diagram of the dithered linear search algorithm.
No knowledge of the filter’s internal states is required.
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where λmax is the largest eigenvalue of the state correlation matrix, , defined below in

terms of the filter’s state variables ,

(3.17)

The MSE performance surface of an adaptive linear combiner can be shown to be

quadratic,

(3.18)

where .  A co-ordinate transformation can be used to separate the indepen-

dent modes of the adaptive process, .  A gradient descent algorithm causes

the th component of  to converge towards its optimal value exponentially with a time

constant of,

(3.19)

The MSE will decay with a th mode time constant of,

(3.20)

Eqn. (3.20) is written in terms of iterations of the DLS algorithm.  For the block DLS

algorithm, each iteration corresponds to  data samples.  Therefore, in terms of data

samples the th mode time constant is,

(3.21)

3.4.2  Convergence
In order to ensure that the DLS algorithms converge, it is desirable to show that the

gradient estimates in Eqn. (3.12) and Eqn. (3.15) provide unbiased estimates of the true

gradient.
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(3.22)

(3.23)

A proof of Eqn. (3.23) for the DLS with binary dither follows.

For a binary dither signal,

(3.24)

Hence,

(3.25)

Taking the expectation of both sides of Eqn. (3.12),

(3.26)

Also, a dither signal has zero mean.

(3.27)

(3.28)

Combining Eqn. (3.28) with Eqn. (3.26) yields,

(3.29)

It can be shown (see Appendix) that the MSE estimates have the following bias,

(3.30)

Substituting Eqn. (3.30) into Eqn. (3.29) gives,
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(3.31)

In order to complete the proof of Eqn. (3.23), it is required that,

(3.32)

Eqn. (3.32) is true by definition of the gradient in the limit .  Eqn. (3.32) is also

true for any value of  when the error function  is a quadratic function of , as is the

case here since an adaptive linear combiner is assumed.  Therefore, the DLS algorithm

provides unbiased gradient estimates.

The proof for the block DLS algorithm is similar.  If one assumes that  

for L/2 samples and  for L/2 samples within each block, then take the

expectation of Eqn. (3.15),

(3.33)

E ε∂
pi∂

-------
ˆ 1

2∆
------- ε

p1

p2

…
pi+∆

… 
 
 
 
 
 
 
 
 

∆2+ tr R( ) rii–( )

 
 
 
 
 
 
 
 
 

ε

p1

p2

…
pi ∆–

… 
 
 
 
 
 
 
 
 

∆2+ tr R( ) rii–( )

 
 
 
 
 
 
 
 
 

–=

ε p1 p2 … pi ∆+ …
T

( ) ε p1 p2 … pi ∆– …
T

( )–

2∆
--------------------------------------------------------------------------------------------------------------------------------=

ε p1 p2 … pi ∆+ …
T( ) ε p1 p2 … pi ∆– …

T( )–

2∆
-------------------------------------------------------------------------------------------------------------------------------- ε∂

pi∂
-------=

∆ 0→

∆ ε p

δi k( ) +∆=

δi k( ) ∆–=

E ε∂
pi∂

-------
ˆ

E 1
L
---

δi k( ) e2 k( )⋅

σ2
---------------------------

 
 
 

k l=

l L+

∑=

1
L∆2
--------- E δi k( ) e2 k( )⋅

k l=
δi +∆=

l L+

∑
 
 
 
 
 

δi k( ) e2 k( )⋅
k l=

δi ∆–=

l L+

∑
 
 
 
 
 

+

 
 
 
 
 

=

1
L∆2
--------- +∆( ) L

2
---⋅ E e2 k( )[ ]

δi +∆=
∆–( ) L

2
---⋅ E e2 k( )[ ]

δi ∆–=
+ 

 =

1
2∆
------- E e2 k( )[ ]

δi +∆=
E e2 k( )[ ]

δi ∆–=
–( )=



CHAPTER 3: THE DITHERED LINEAR SEARCH ALGORITHM

61

This result is the same as Eqn. (3.29).  From here, the proof is identical to the proof for

the standard DLS algorithm.

Eqn. (3.31) is a finite difference gradient estimate, just like the one used for the DSD

algorithm in Eqn. (3.6).  The similarity is not surprising since the DSD algorithm can be

considered a special case of the DLS algorithm where the parameters are dithered one at

a time.

Since the gradient estimates are unbiased, as they are averaged over a longer time they

approach the true value of the gradient resulting in a perfect gradient descent optimizer.

This limit is approached by decreasing .  So, the DLS is guaranteed stable as long as 

is taken “small enough”.  The bounds imposed by Eqn. (3.16) apply to any gradient

descent optimizer, so they are necessary but not sufficient conditions on  to ensure that

the DLS algorithm converges to a minimum in .  In general, the range of stable

values for  will depend upon the filter structure, the type of dither signal, and the statis-

tics of the input data (which may not be precisely known a priori).  Therefore, stability of

the adaptive process must be verified via simulation.

3.4.3  Perturbation
Even when the DLS algorithm is in steady state and all parameters have converged to

their optimal values, the MSE will be somewhat greater than the minimum MSE because

the additive dither causes the filter to operate with sub-optimal parameter values.  The

excess MSE caused by the dither in steady state is referred to as “perturbation”.  Pertur-

bation is a phenomenon which occurs in the DLS and DSD algorithms, but not the LMS

algorithm where no dither is used.  In this section, theoretical expressions for the pertur-

bation will be derived.

The mean squared error, including the effect of dither, is obtained by using  in

place of  in Eqn. (3.18),

(3.34)

After convergence, neglecting misadjustment or any other sources of error such as dc

offset effects, .  Substituting this into Eqn. (3.34),

µ µ

µ

ε p t( )( )

µ

p' k( )

p k( )

ε εmin p' k( ) p∗–( )TR p' k( ) p∗–( )+=
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(3.35)

Taking the expected value of both sides over time gives the steady-state MSE,

(3.36)

The second line of Eqn. (3.36) was obtained by cancelling all of the other terms in the

product  due to the independence of the dither signals:  ,

.  For binary dither where ,

(3.37)

The perturbation, , is defined as the ratio of the excess MSE over the minimum MSE.

(3.38)

Using the fact that the trace of a matrix is equal to the sum of its eigenvalues, Eqn. (3.38)

can be rewritten in terms of the average eigenvalue of the state correlation matrix, .

(3.39)

Eqn. (3.39) indicates that the perturbation is larger using the DLS algorithm than

using the DSD algorithm by a factor of .  As shown in Fig. 3.2, this is because all 

parameters are dithered simultaneously in the DLS algorithm, instead of one at a time as

in the DSD algorithm.

3.4.4  Noise in the Gradient Estimates
As with all gradient descent optimizers, the DLS algorithm relies upon noisy estimates

of the gradient to perform adaptation.  The difference between the estimated gradient

and actual gradient is a vector random variable, .

(3.40)

The variance of  measures the accuracy of the gradient estimates for different gradient

descent algorithms.
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Since , it is known that  and,

(3.41)

Using Eqn. (3.25),

(3.42)

Figure 3.2 Perturbation in a 2-dimensional parameter space using (A) the DSD 
algorithm (B) the DLS algorithm.
The figure illustrates the points p’ where the filter is operated when the nominal 
parameter values are p = [p1 p2].  (A) Using the DSD, the filter operates one-quarter 
of the time at each of p’ = [p1+∆  p2], [p1−∆  p2], [p1  p2+∆], and [p1  p2−∆].  
(B) The DLS operates one-quarter of the time at each of p’ =  [p1+∆  p2+∆], [p1+∆  
p2−∆], [p1−∆  p2+∆], and [p1−∆  p2−∆].  Note that the total perturbation is 
larger in (B) because both parameters are simultaneously dithered.
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As in [8], assume that  is normally distributed with zero mean.1  Therefore,

(3.43)

In steady state with the filter parameters near their optimal values and assuming the per-

turbation is small,

(3.44)

Substituting Eqn. (3.44) into Eqn. (3.42),

(3.45)

For the block DLS, take the variance of both sides of Eqn. (3.15),

(3.46)

In Eqn. (3.46), each MSE estimate is made by averaging  over  data samples.

Again assuming that in steady state, , the variance of the estimates are reduced

by a factor of  compared with the regular DLS algorithm.

(3.47)

Substituting Eqn. (3.47) into Eqn. (3.46) gives the variance of the block DLS gradient

estimates,

1. The assumption of zero mean can be guaranteed by using an adaptive dc tap weight.  In [7] it was 

shown that probability distributions for  other than gaussian result in a smaller misadjustment.
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(3.48)

By taking a block length of , Eqn. (3.48) becomes the same as Eqn. (3.45) for

the regular DLS algorithm.

3.4.5  Misadjustment
Perturbation is not the only source of excess MSE in steady state.  The filter parame-

ter values will persistently bounce around and away from their optimal values because the

gradient estimates are noisy.  This effect is called “misadjustment” and the excess MSE it

causes will be quantified presently.

The noise in the gradient estimates given by Eqn. (3.48) for the DLS algorithm is the

same as for the DSD algorithm [8].  The rest of the analysis follows exactly as in [8].  The

misadjustment (i.e. the excess MSE excluding perturbation in steady state divided by the

minimum MSE) using the DLS algorithm is,

(3.49)

In order to write the misadjustment in terms of the algorithm’s settling time and pertur-

bation, an expression for  is required.  Eqn. (3.21) can be rewritten as follows,

(3.50)

(3.51)

Finally, Eqn. (3.39), Eqn. (3.49), and Eqn. (3.51) can be combined to yield,

(3.52)

3.4.6  Total Excess MSE
In steady state the total excess MSE is the actual MSE minus the minimum MSE,
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(3.53)

The ratio of this quantity to the minimum MSE is given by the sum of the perturbation

and the misadjustment,

(3.54)

In order to minimize the relative excess MSE, , it was shown in [8] that for the DSD

algorithm one must make the perturbation term, , one-half of the total .  Since the

DLS misadjustment in Eqn. (3.52) is exactly the same as for the DSD algorithm, the

same analysis applies here,

(3.55)

The resulting minimum relative excess MSE is,

(3.56)

3.4.7  Comparison of the LMS, DSD, and DLS Algorithms
Table 3.1 shows a comparison of key performance measures for the LMS, DSD, and

DLS adaptive algorithms.  Block lengths of  data samples are used for the DSD and

DLS algorithms.  Taking  results in the regular DLS algorithm.  The DSD algo-

rithm requires  data samples to generate one estimate of all  gradient components.

The DLS algorithm can measure all  gradient components simultaneously in just 

data samples thereby providing a factor of  improvement in settling time.  On the

other hand, since all  parameters are being dithered simultaneously its perturbation is

-times larger than for the DSD algorithm.  So, in order to achieve the same perfor-

mance with the DLS algorithm one must reduce both  and  by a factor of  com-

pared with the DSD algorithm.

The performance of the DSD and DLS algorithms does not compare favorably with

the LMS algorithm.  Generally, the LMS algorithm will converge much faster when used

in the same application.  For example, a 10-tap adaptive FIR filter with white noise

inputs which must converge with 1% excess MSE in steady state ( ) will con-
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verge 2,000× faster using the LMS algorithm than with the DLS algorithm.  Further-

more, it is generally possible to be more aggressive in choosing  with the LMS

algorithm resulting in even faster convergence.  Clearly the DLS algorithm would only be

used when it is difficult or impossible to access the internal states of the adapted filter.

As noted in the introduction, this is frequently the case when attempting to digitally

adapt an analog filter.  Typically, an analog filter would only be used if the signal band-

width were high.  So, even if the adaptation algorithm requires a large number of itera-

tions to converge, the sampling rate is so high that the process converges quickly in

absolute terms.  In these situations, the DLS algorithm’s straightforward hardware imple-

mentation is an attractive alternative to the LMS algorithm.  The main advantage of the

DLS algorithm over the DSD algorithm is its simpler hardware implementation.  There

are also performance trade-offs when one takes into account quantization of the filter

parameters, which will be discussed in Section 3.9.

LMS DSD DLS

Gradient info req’d? Yes No No

MSE decay time 
constant, 

Perturbation, None

Misadjustment, 

Minimum relative 
excess MSE in 

steady state, 

Table 3.1 Performance measures for gradient descent adaptive algorithms.
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3.5  Behavioral Simulations

Behavioral simulations were performed using two filter structures: a 5-tap transversal

filter and a 3rd order continuous time orthonormal ladder filter.  A block diagram of the

model matching system used is shown in Fig. 3.3.

3.5.1  5-Tap FIR Filter
An adaptive transversal filter is an adaptive linear combiner whose state signals are

time delayed samples of the input.

(3.57)

The filter order is  and a finite minimum MSE is introduced via the zero mean

gaussian additive noise, .  For all of the simulations in this section,

(3.58)

The input sequence  is white (uncorrelated) with zero-mean and unit power.  There-

fore, the state correlation matrix is equal to the identity matrix, , and all eigenval-

ues are unity: .  The equations in Table 3.1 were used to design LMS,

DSD, DLS and block DLS adaptive processes with the same total excess MSE,

.  The resulting values for ,  and  are tabulated in Table 3.2.  Pseudoran-

Figure 3.3 Model matching simulations block diagram.
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dom binary sequences of length (224 - 1) were used as dither for the DLS and block DLS

algorithms.

Simulation results are plotted in Fig. 3.4.  The DSD, DLS and block DLS algorithms

all converge at the exact same rate, as predicted by the analytical results.  The conver-

gence rate of the LMS algorithm is far superior, but it is also the only algorithm which

requires a knowledge of the state signals, .

3.5.2  3rd Order Continuous Time Orthonormal Ladder Filter
The structure for a 3rd order orthonormal ladder with programmable feed-ins is pre-

sented in Fig. 3.5 [10].

With the feedback parameters  fixed and the feed-in terms  adapted, the filter is

an adaptive linear combiner.  However, the state signals are not available at any internal

nodes in the structure of Fig. 3.5, so the gradient signals required for LMS adaptation

would be very difficult to obtain.  Specifically, it would be necessary to operate a second

3rd order continuous time filter in parallel just to generate the gradient signals,  [11].

Therefore, the DSD, DLS and block DLS algorithms are particularly desirable for this

structure and simulation data for the LMS algorithm is not even presented.

  Again, a model matching experiment was performed with .  The input

signal is white with a power of 10.  The reference filter is a 3rd order orthonormal ladder

filter.  The gain parameters were designed for an elliptic lowpass transfer function with

0.5 dB ripple in the passband extending to a frequency of 10 (normalized with respect to

LMS DSD DLS Block DLS

-

- 100 - 100

(data samples)
125 125,000 125,000 125,000

0.01 0.01 0.01 0.01

Table 3.2 Summary of adaptive algorithms for the 5-tap transversal filter 
simulations.
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the sampling frequency) and 40 dB of stopband attenuation.  The same feedback param-

eters, , were used in the adaptive filter, but the feed-in parameters, , were adapted.

The resulting inputs to the adaptive linear combiner are orthogonal with power

Figure 3.4 Simulation results for a 5-tap adaptive transversal filter.
(A) LMS (B) DLS, Block DLS, and DSD algorithms.  Each plotted MSE point is 
computed by taking the mean of  over an ensemble of 100 simulation runs and 
100 consecutive data samples.
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.  The values of , , and  were again computed using Table 3.1 to yield

a total relative excess error of  and are tabulated in Table 3.3.

Results from an ensemble of 25 simulation runs are plotted in Fig. 3.6.  Again,   pseu-

dorandom binary sequences of length (224 - 1) were used as dither for the DLS and block

DLS algorithms.  All three algorithms converge at the same rate.

3.6  Different Dither Signals

Until now, all simulations have used independent pseudorandom binary sequences

(PRBSs) for the dither.  These signals are practical because,

Figure 3.5 A 3rd order orthonormal ladder filter using multiple feed-ins of the 
input signal.

DSD DLS Block DLS

0.083333 0.027778 0.027778

2.7500 0.0092593 0.92593

100 - 100

(data samples)
45,000 45,000 45,000

, theoretical 0.01 0.01 0.01

Table 3.3 Summary of adaptive algorithm simulations for the 3rd order 
orthonormal ladder filter.

⌠⌡

-α3

-α2

-α1

α1

α2

u

β3

y

β1

β2

⌠⌡

⌠ ⌡
λ 6 10 4–×≅ ∆ µ L

ζ 0.01=

∆2

µ

L

TMSE

ζ



CHAPTER 3: THE DITHERED LINEAR SEARCH ALGORITHM

72

• Binary signals are amenable to exact convergence and misadjustment analyses.

• PRBSs are easily generated with simple digital hardware.  Delayed versions of the 

same sequence are uncorrelated so only one pseudorandom bit generator is required, 

as shown in Fig. 3.7.

• PRBSs have a flat spectrum so even if the dither is fast, it will not introduce spurious 

tones in the filter output spectrum.

One disadvantage of PRBSs is that they occasionally contain long strings of consecu-

tive ones or zeros.  When the expectation is taken over a long time interval, .

However, over a shorter time interval PRBSs can have significant dc content.  On each

iteration, the DLS update equation Eqn. (3.11) moves the parameters in the same direc-

tion as the dither signal’s sign.  Therefore, a long string of ones will cause the filter

Figure 3.6 Simulation results for a 3rd order continuous time adaptive 
orthonormal ladder with variable feed-ins using the DLS, Block DLS, 
and DSD algorithms.
Each plotted MSE point is computed by taking the mean of  over an ensemble of 
25 simulation runs and 100 consecutive data samples.
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parameter to drift upward, even if this means climbing the performance surface.  During

convergence, this can cause the learning curves to bounce unpredictably or even go

unstable.  For instance, Fig. 3.8 shows a parameter learning curve for the same DLS

adaptive filter simulated in Section 3.5.2 except that one of the pseudorandom binary

dither sources is initialized to all zeros.  The resulting string of consecutive zeros causes

the algorithm to quickly diverge.

Even when the algorithm does converge, the theoretical analysis performed in Section

3.4 is not valid because it assumes that the parameters remain near their optimal values in

steady state.  Since a long string of ones or zeros can cause the parameters to drift away

from their optimal values, the steady state misadjustment will be somewhat greater than

predicted by Eqn. (3.52).  For instance, the steady state excess MSE observed in Fig. 3.6

for the DLS and block DLS algorithms are 31% and 24% higher than predicted, respec-

tively.  Parameter drift is less likely using a long block length, , since the parameters are

only updated after the gradient estimates are averaged over a long period of time thereby

filtering out the effect of any long strings of ones or zeros.

To avoid these problems, it is desirable to combine the block DLS algorithm with a

dither signal that is dc-free within each block.  The DSD algorithm is a special case of the

block DLS algorithm which does exactly that.  The dither signals are independent

Figure 3.7 Dithered linear search using pseudorandom binary dither.
One pseudorandom bit generator is used to generate all of the dither signals.
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because they are separated in time, and they are dc-free over each block of length , as

shown in Fig. 3.9.  As a result, there is no parameter drift.  The simulation results in Fig.

3.6 indicate a lower steady state misadjustment for the DSD algorithm than the DLS

algorithm with pseudorandom dither.

The dither signals for the DSD algorithm are 3-level signals, which complicates the

hardware implementation somewhat.  Instead, balanced binary sequences can be

Figure 3.8 Divergent learning curve of the DLS with a long string of consecutive 
zeros in the binary dither.

Figure 3.9 The dither signals used for the DSD algorithm with 3 parameters.
Note that within the time interval for each iteration, all of the dither signals have zero dc 
content.
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repeated over and over to produce a periodic dither which is dc-free over a fixed time

interval.  For instance, two clock signals with periods of  and  are uncorrelated

and dc-free over a block of length .

Hadamard sequences are finite length, independent, binary-valued vectors derived

from the rows of Hadamard matrices [12].  For example, the Hadamard sequences of

length 4 are , ,  and .  The fourth sequence is

not balanced, but the other three can be repeated as independent periodic 2-level dither

signals (Fig. 3.10) which are dc-free over a block of length 4.

The 3rd order orthonormal ladder model matching simulation from Section 3.5.2 was

repeated using Hadamard sequences for the dither.  Again,  and  were chosen for a

relative excess MSE of 0.01.  The results are plotted in Fig. 3.11 and indicate the exact

same rate of convergence as was obtained with the pseudorandom dither.  The steady

state excess MSE observed during simulations with different algorithms and dither sig-

nals are tabulated in Table 3.4.  As expected, there is less excess MSE with Hadamard

sequence dither than with pseudorandom dither.  The block DLS and DSD algorithms

provide a further improvement in misadjustment because the gradient estimates for each

parameter update are averaged over many data samples and, hence, more accurate so the

parameters are less likely to drift away from their optimal values.

Hadamard sequences are easily generated by a few gates of digital hardware.  As long

as the dither source is clocked slowly, Hadamard sequences are a desirable alternative to

pseudorandom sequences.  However, the problem with any periodic dither is that it

introduces spurious tones at the filter output when applied quickly.

3.7  Dc Offset Effects

It is well known that dc offsets can limit the performance of the LMS algorithm for

analog filters [1], [2], [3].  Offsets on the state and error signals cause excess MSE at

steady state.  Therefore, dc offsets represent a significant performance limitation for ana-

log adaptive filters and much research has been done to reduce the effect of dc offsets on

LMS adaptation.  Offsets on the error signal,  are usually eliminated using an adap-

L 2⁄ L

L

1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1

µ ∆

e k( )
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tive dc tap at the filter output as described in Section 1.3.2.  Furthermore, since the DLS

and DSD algorithms estimate the gradient from observations of the squared error,

, they are not susceptible to dc offsets on the state signals.

Figure 3.10 Dither signals generated from Hadamard sequences suitable for 3 
parameters.

Figure 3.11 Simulation results for a 3rd order continuous time adaptive 
orthonormal ladder with variable feed-ins using the DLS algorithm 
with Hadamard dither.
Each plotted MSE point is the mean of  taken over an ensemble of 25 simulation 
runs and 100 consecutive data samples.
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In order to highlight the effect of dc offsets, behavioral simulations were performed

for the same model matching 3rd order orthonormal ladder filter described in Section

3.5.2, this time with dc offsets introduced on each of the filter’s internal state nodes and

on the error signal.  The dc offsets have a mean squared value 1/10th that of the state

and error signals respectively.   No steady state error is introduced at .  Using LMS

adaptation (Fig. 3.12A) a residual error of approximately -15 dB relative to the reference

signal persists due to the dc offsets.  Using the same dc offsets and the DLS algorithm

with an adaptive dc tap at the filter output (Fig. 3.12B) the only residual steady state error

is due to the perturbation caused by the dither itself, in this case approximately -45 dB

relative to the reference signal.

Improved performance in the presence of dc offsets is a feature of digital implemen-

tations of gradient descent algorithms generally, not the DLS algorithm specifically.  As

mentioned in Section 1.3.2, it is possible to combine an adaptive dc tap with a digital

LMS algorithms to eliminate the excess MSE due to dc offsets.  It is also possible to use

an adaptive dc tap in a filter with analog LMS adaptation; however, implementation of

the dc tap would be much more complicated in this case.  Furthermore, dc offsets in the

adaptation hardware would persist, and since these offsets usually dominate, any perfor-

mance improvement obtained would be marginal.

DLS Block DLS DSD

PRBS Hadamard PRBS Hadamard

0.0131 0.0119 0.0124 0.0090 0.0094

Table 3.4 Comparison of relative excess MSE in steady state observed in 
simulations using different algorithms and dither signals.
In all cases, the values of  and  were chosen optimally to yield a theoretical excess 
MSE of 0.01 (1%).  For the BDLS and DSD algorithms, a block size of 100 was 
used.  Each value is the mean of 200,000 consecutive data samples and 25 independent 
simulation runs.  The simulation conditions are identical to those described in Section 
3.5.2.

∆ µ

n
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3.8  Subsampling

In digital communications receivers, analog adaptive filters are generally followed by

an A/D converter operating at or above the input’s Nyquist rate to allow for digital

demodulation.  In such cases, a digital error signal can be generated from the A/D out-

put and used for DLS or DSD adaptation (Fig. 3.13).  However, if the adaptive filter is

followed by more analog signal processing, an extra A/D converter must be built just to

obtain the error signal for adaptation (Fig. 3.14).  Fortunately, there is no reason why the

update equation must iterate at the Nyquist rate.  In fact, it is possible to subsample the

error signal and iterate the update equations as slowly as desired.  This would allow the

DLS algorithm to proceed using just one subsampled A/D converter, as shown in Fig.

3.14, compared with up to  A/D converters required to perform the LMS algo-

rithm digitally.

Interestingly, when programmable feed-ins are being adapted, it is actually required that

the error signal be subsampled.  The feed-ins must be held constant long enough for the

filter’s output to settle prior to sampling the output error signal.  If the feed-in gains are

Figure 3.12 Mean squared error simulated with dc offsets on the state and error 
signals.
(A) the LMS algorithm (B) the DLS algorithm with an adaptive dc tap.

(A) (B)

N 1+( )
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dithered faster than the filter bandwidth, the filter output (and, hence, the error signal)

will not be able to track the dither and the DLS algorithm will not work.

An example of subsampled DLS adaptation was already provided in Section 3.5.2

since the 3rd order orthonormal ladder had programmable feed-ins.  In that example, the

filter and input signal had a bandwidth 10× greater than the sampling rate of the adapta-

tion algorithm.  This allowed the filter’s output to settle before each new error signal

sample was taken.  In Fig. 3.15 the simulation was repeated with the sampling rate

increased beyond the filter’s Nyquist rate.  As expected, the algorithm diverges.

Figure 3.13 Implementing the DLS algorithm digitally when the adaptive filter is 
followed by a Nyquist-rate A/D converter.

Figure 3.14 Implementing the DLS algorithm digitally with a subsampled A/D 
converter.

u(t) Analog
Adaptive

Filter

y(t) y(k)

d(k)

e(k)DLS or DSD
Algorithm

Nyquist-Rate
A/D

DSP

u(t) Analog
Adaptive

Filter

y(t)

y(k)

d(k)

e(k) Subsampled
A/D

Analog
Signal

Processing

Subsampled
DLS or DSD

Algorithm



CHAPTER 3: THE DITHERED LINEAR SEARCH ALGORITHM

80

3.9  Quantization

So far, it has been assumed that the amplitude of the perturbation, , can be chosen

with arbitrary accuracy.  In practice, this is not the case since the dither is introduced on

digitally programmable filter parameters with finite resolution.  This section will consider

how quantization of the filter parameters affects the choice of a dither signal.

As described in Section 3.4, the excess steady state MSE has two components:  misad-

justment and perturbation.  As long as a slow rate of convergence can be tolerated, mis-

adjustment can be made arbitrarily small by decreasing .  (If fast convergence is

required, the DLS algorithm is probably not a good choice anyway.)  Unfortunately, the

only way to decrease the perturbation is to decrease the dither amplitude.  The minimum

dither amplitude will be limited by the resolution of the parameters’ digital control since

the dither must be sufficient to toggle at least 1 LSB of the parameters.  In many analog

adaptive filters, the parameters will have a wide tuning range but only modest resolution

Figure 3.15 Oversampled DLS adaptation of programmable feed-ins.
The parameters were initialized to their optimal values, yet the algorithm diverges because 
the filter output cannot track the dither signal fast enough.

∆
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(5 to 8 bits is typical).  Therefore, the excess steady state MSE will be dominated by the

perturbation.

In some applications, after initial convergence, the adaptation can be frozen and the

dithers turned off to eliminate perturbation errors.  If this is not possible, the dither

amplitude has to be minimized.  In general, this means using a binary dither signal con-

nected to the parameters’ LSB leading to a straightforward hardware implementation.

However, in some circumstances, multi-level dither can actually reduce the perturbation.

For instance, the DSD algorithm uses a 3-level dither signal: .  Assuming

,  the perturbation is

(3.59)

Using the DLS algorithm with binary dither, the dither will be two-level:  +1 LSB or 0.

Therefore,  and the resulting perturbation is,

(3.60)

If 3 or fewer parameters are being adapted ( ) the DLS algorithm introduces less

perturbation ( ) and, hence, a smaller excess MSE in steady state.  However,

when 5 or more parameters are adapted, the DSD provides less perturbation.

Other multi-level dither signals with low duty cycles, like the DSD dither signals,

could provide similar advantages in certain situations.  Of course, the slight improvement

in performance would have to be weighed against the accompanying increase in com-

plexity.

3.10  Experimental Results

Model matching experiments were performed using the DLS algorithm and continu-

ous time analog integrated filters on the test chip described in Chapter 2.  Only the digi-

tally programmable analog signal path was integrated.  The adaptation algorithm was

implemented in software to provide greater flexibility.  Model matching experiments
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were performed using both the 1st order lowpass filter and the 5th orthonormal ladder

filter.

3.10.1  1st Order Lowpass Filter
The first order CMOS Gm-C filter has a digitally programmable pole and dc gain (Fig.

2.13).  The transfer function is,

(3.61)

Both transconductances  and  are 5-bits programmable, but  has an addi-

tional sign bit.  The sign of  is fixed positive to ensure stability of the filter.  A dither

of 1 LSB was applied to both transconductors simultaneously.

The use of a gradient descent algorithm to adapt filter poles can be somewhat prob-

lematic since the MSE performance surface is not necessarily quadratic.  However, as

Figure 3.16 Contour plot of MSE for the 2-parameter adaptive filter in Fig. 2.13 in 
a model matching experiment.
The reference filter is a first order lowpass filter with 0 dB dc gain, a -3dB frequency of 
80 MHz and C = 500 fF.

gm1 gm2⁄
1 sC gm2⁄–
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long as no local minima exist in the vicinity of the optimal parameter values, gradient

descent algorithms do converge to the optimal parameter values.  This is verified in Fig.

3.16 which shows a contour plot of the performance surface.

A block diagram of the experimental setup is shown in Fig. 3.17.  The input signal is

bandlimited noise.  When triggered by the PC, the oscilloscope stores 8000 samples of

the filter’s input and output at a rate of 1 GSample/second.  The waveform data is then

transferred to the PC via a GPIB interface.  The digitized input signal is passed through a

first order digital reference filter in software.  The first 1000 data samples are discarded

to eliminate any transient effects, and an estimate of the squared error is obtained by

averaging the remaining 7000 data samples.  This estimate is then used to update the fil-

ter parameters via the DLS algorithm.  Both oscilloscope inputs are ac coupled, so there

is no dc offset in the error signal.

Figure 3.17 A Block diagram of the 1st order 2 parameter model matching 
experiment.
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The digital filter used for the reference signal path was designed by taking the bilinear

transform of a first order continuous time filter with a 3dB frequency of 80 MHz, a dc

gain of 3 dB and a sampling rate of 1 GS/sec. Pseudorandom binary dither signals were

Figure 3.18 Parameter evolution in the first order, two parameter hardware model 
matching experiment.
The additive dither is not shown on this plot.
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used.  The filter parameters are plotted over time in Fig. 3.18 and the MSE estimates in

Fig. 3.19.

3.10.2  5th Order Orthonormal Ladder Filter
 Experiments were also performed on the 5th order orthonormal ladder CMOS pro-

totype filter.  The filter was configured as shown in Fig. 3.20.  Each of the three feed-in

Figure 3.19 Mean squared error estimates over time in the first order, two 
parameter hardware model matching experiment.

Figure 3.20 5th order orthonormal ladder filter structure with programmable 
feed-ins.

∫

∫

α– 3

α3

α– 5

α4

α– 4

α2

α1 α– 2

α– 1

y

u

∫ ∫

∫

β1 β2 β3



CHAPTER 3: THE DITHERED LINEAR SEARCH ALGORITHM

86

taps is digitally programmable with 5-bits of resolution.  The shape of the frequency

response was fixed, but the cutoff frequency was made programmable up to around 70

MHz by scaling the feedback gains  (Fig. 3.21A) and the dc gain was programmable by

scaling the feed-in parameters,  (Fig. 3.21B).  These two scaling factors were used as

the adapted parameters for another model matching experiment.  The block diagram for

the experiment is somewhat different than the simulations; for convenience in testing,

the integrated filter was used as both the reference and adapted signal path (Fig. 3.22).

This time Hadamard sequences were used for the dither, specifically signals  and 

from Fig. 3.10.

The filter parameters are plotted over time in Fig. 3.23, and the relative mean squared

error in Fig. 3.24.  The non-zero MSE observed in steady state is due to measurement

noise.  The adapted parameters are unquantized scaling factors, unlike the quantized con-

trol words which were the parameters in Section 3.10.1.  As a result, the real parameter

values bounce slightly around the optimal values in steady state.

Figure 3.21 Magnitude responses of the adapted 5th order filter.
The measurements were made while varying (A) the cutoff frequency and (B) the gain.
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3.11  Conclusions

A generalization of the differential steepest descent (DSD) algorithm, here called the

dithered linear search (DLS), was described and analyzed.  Its performance was shown to

be the same as the DSD algorithm, however its hardware implementation can be some-

what simpler since only the parameters’ LSB must be dithered during adaptation.  When

compared with the popular LMS algorithm, the DLS algorithm is much slower because it

does not make use of the filter’s internal state signals.  However, the LMS algorithm has

a number of serious drawbacks, particularly for analog continuous time integrated filters.

If implemented digitally, the state signals required for LMS adaptation are difficult to

obtain or completely unavailable.  If implemented with analog circuits, the LMS algo-

rithm is susceptible to dc offsets.  The DLS algorithm does not require access to any

internal state signals and, by introducing an adaptive dc tap, the DLS algorithm is robust

Figure 3.22 A Block diagram of the 5th order 2 parameter model matching 
experiment.
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with respect to dc offsets.  Furthermore, the rate of convergence is not a limiting factor

in many digital communications applications where analog adaptive filters are often used.

Figure 3.23 Adapted parameters of a 5th order analog integrated filter using the 
DLS algorithm.

Figure 3.24 MSE relative to filter output for the DLS algorithm applied to a 5th 
order analog filter.

Optimal = 20
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The error signal required can be subsampled below the Nyquist rate to simplify the sam-

pling circuitry.  The effect of quantization of the filter parameters was also discussed.

The adaptive algorithm was tested using both simulations and in hardware.  In the hard-

ware tests, the DLS algorithm successfully adapted the poles and zeros of a continuous

time 5th order analog filter.

3.12  Appendix - Proof of Eqn. (3.30)

Eqn. (3.30) is restated here for the case .  (The proof for  is identi-

cal.)

(3.62)

The left-hand side of Eqn. (3.62) is the expected value of the squared error including

only those times when .  So,  takes on all of these values:

(3.63)

Since the perturbations have no dc content and are independent, all of the  val-

ues in Eqn. (3.63) occur with equal frequency.  Therefore,

(3.64)

The summation in Eqn. (3.64) is taken over all  possible choices of the ± signs.

The right-hand side of Eqn. (3.64) can be rewritten in terms of the translated parameter

vector, ,

(3.65)

Let,

(3.66)

(3.67)

(3.68)

δi ∆–= δi ∆=

E e2 k( )[ ]
δi ∆–=
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T( ) ∆+
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tr R( ) rii–( )=
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T
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2 N 1–( )

E e2 k( )[ ]
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1
2 N 1–( )
--------------------- ε p1 ∆± p2 ∆± … pi ∆– … pN ∆±
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( )∑=
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There are  possible values of  corresponding to the  terms in the

summation of Eqn. (3.65).  Substituting Eqn. (3.68) into Eqn. (3.65),

(3.69)

Using the quadratic MSE relationship from Eqn. (3.18),

(3.70)

The summation in the second term of Eqn. (3.70) cancels out.

(3.71)

Expanding the expression  in the third term of Eqn. (3.70),

(3.72)

The “cross terms” in Eqn. (3.72) cancel each other over the summation in the third term

of Eqn. (3.70).  Using this fact, and substituting Eqn. (3.71) into Eqn. (3.72) gives the

desired result,

(3.73)
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Chapter 4

Filter Adaptation Using Co-Ordinate
Transformations

4.1  Introduction

The LMS algorithm is a popular technique for adapting digital filters in an unknown

or time varying environment.  Although algorithms with faster convergence properties

exist, the LMS algorithm has remained popular because it offers reasonable performance

with a straightforward hardware implementation.  Unfortunately, the LMS algorithm has

practical problems in the analog domain due to dc offset effects [1], [2].  Digital imple-

mentations of the algorithm are possible, but they require access to digital gradient sig-

nals which in turn must be produced by additional high-speed A/D converters.  This

chapter describes techniques for obtaining the digital gradient signals required for LMS

adaptation without access to the filter’s internal state signals.  Emphasis is placed upon

reducing the adaptation hardware requirements.  Also, since adapting the poles of a con-

tinuous time filter can cause instability in the signal path and in the adaptation algorithm,

this chapter considers the more practical case of an adaptive linear combiner where only

the filter zeros are adapted.

In Section 4.2, two main approaches are described for FIR filters, both based on the

LMS algorithm with a co-ordinate transformation applied to the adapted parameters’

vector space.  Both require A/D converters operating only on the input signal and error

signal.  The digitized input samples are stored in a shift register and multiplied by a con-

stant matrix to obtain the gradient vector.  Once the gradient signals are obtained, adap-
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tation proceeds exactly as in the LMS algorithm.  Analysis of the algorithms in Section

4.3 reveals that their performance is identical to the traditional LMS algorithm in terms

of misadjustment and convergence rate.  Section 4.4 extends the results to IIR and con-

tinuous time filters and Section 4.5 verifies the theoretical results with behavioral simula-

tions.  In Section 4.6, techniques for reducing the complexity of a practical

implementation are presented.  Although in many applications an A/D converter will be

operating on the filter output or error signal anyway, an additional high-speed A/D con-

verter at the filter input is very undesirable.  Signed algorithms are presented which allow

the A/D converters to be replaced by comparators.  Then, it is shown that the digitizers

and digital circuitry can be subsampled at a slower rate.  Both changes result in slower

convergence of the adapted parameters but greatly simplified circuit design.  Finally,

experimental results from an integrated analog filter are presented in Section 4.7.

4.2  FIR Filter Adaptation Using Co-Ordinate Transformations

4.2.1  The LMS Algorithm with a Co-ordinate Transform
The adaptive linear combiner (ALC) is a popular structure because it has a unimodal

mean squared error performance surface  (where the error is with respect to a reference

signal, , as before) which guarantees convergence to a global minimum using the LMS

algorithm.  An ALC with N parameters, , is shown in Fig. 4.1.

Figure 4.1 An FIR N-Parameter Adaptive Linear Combiner

d

pi

x1

p2

g1

g2

gN

p1

pN

x2

xN

Σ

u

y

d

e



CHAPTER 4: FILTER ADAPTATION USING CO-ORDINATE TRANSFORMATIONS

94

For now, assume the impulse responses  are discrete time and finite in duration (i.e.

 for  and ).  Therefore, the ALC in Fig. 4.1 is equivalent to the -

parameter transversal filter shown in Fig. 4.2.  The vector of transversal filter parameters,

, is related to the ALC parameters, , via equation Eqn. (4.1).

(4.1)

The LMS algorithm for an ALC is described by the following iterative equation,

(4.2)

The gradient signals  for the ALC in Fig. 4.1 are equal to the filter’s state signals,

(4.3)

Substituting Eqn. (4.3) into Eqn. (4.2), the LMS update equation for an ALC is,

(4.4)

As shown in Fig. 4.1, the state signals are the outputs of FIR filters whose impulse

responses are the columns of .  So,

(4.5)

where  is the vector of time delayed input samples,

Figure 4.2 An M-Parameter Transversal Filter
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(4.6)

and  is the vector of ALC state signals,

(4.7)

Substituting Eqn. (4.5) into Eqn. (4.4) yields the following,

(4.8)

Eqn. (4.8) can be used to iteratively adapt the parameters of an ALC.  The resulting algo-

rithm will be called the LMS algorithm with a co-ordinate transform (LMS-CT) since the

input vector  is transformed to the state vector  by the matrix .

The LMS-CT algorithm allows one to adapt an ALC without access to the filter’s

internal state signals.  Only the filter input and the error signal must be sampled.  This

can be accomplished with two A/D converters operating at or above the input’s Nyquist

rate.  The matrix multiplication expressed in Eqn. (4.5) is equivalent to estimating the

state signals by operating  digital FIR filters in parallel with the signal path filter, as

shown in Fig. 4.3.  The adaptation hardware required is similar to that required by the

basic LMS algorithm, except that a  matrix multiplication must be performed on

the input sample vector.  The matrix entries are the impulse responses  which

remain constant throughout adaptation.

4.2.2  The LMS Algorithm with an Inverse Co-ordinate Transform
In Eqn. (4.1) the matrix  maps the space of all possible ALC parameter vectors,

, to the space of equivalent FIR filters, .  A direct inverse mapping is

impossible when M > N, which is likely for any practical filter.  However, an approximate

inverse mapping which minimizes the squared error is given by Eqn. (4.9) and Eqn.

(4.10).

(4.9)

(4.10)

u k( ) u1 … uM
T

=

u k( ) u k 1–( ) … u k M– 1+( )
T=
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T=

p k 1+( ) p k( ) 2µe k( )GTu k( )+=

u k( ) x k( ) GT

N

N M×

gi k( )
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p ℜN∈ q ℜM∈
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The matrix  is the “pseudoinverse” of  [3].  It will be used to map gradient estimates

for a FIR filter (which are easily obtained from samples of the input) to gradient esti-

mates for the ALC.

The LMS algorithm for an adaptive transversal filter is described by the following

update equation:

(4.11)

Left-multiplying both sides of Eqn. (4.11) by  and dropping the hats for convenience

results in the following update rule:

(4.12)

The algorithm defined by Eqn. (4.12) will be referred to as the LMS algorithm with an

inverse co-ordinate transform (LMS-ICT).  Like the LMS-CT algorithm, only the filter

input and error signal must be sampled.  The computational complexity is identical for

Figure 4.3 LMS-CT algorithm for a 2-parameter ALC.
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the LMS-CT and LMS-ICT algorithms.  However, the LMS-ICT algorithm has a signifi-

cant advantages when it comes to implementation as we shall see in Section 4.6.2.

4.3  Convergence and Misadjustment Analysis

Since the state estimates obtained by the LMS-CT algorithm are exact, it will perform

exactly the same as the full LMS algorithm.  Therefore, it can be guaranteed stable under

all of the same conditions as the full LMS algorithm.

An analysis of the LMS-ICT algorithm, however, is not so simple.  Basically, the algo-

rithm assumes that the adapted filter has a transversal structure and uses  as an unbi-

ased estimate of the gradient , .  However, the ALC impulse

response is restricted to a -dimensional subspace of , namely .  In order

to update the parameter vector ,  must be mapped from  back into .

The mapping which performs this with the smallest squared error is .  The

expected value of the resulting gradient estimate is

(4.13)

In Eqn. (4.13) we have used the fact that  since  is the unbiased gra-

dient estimate in an LMS adaptive transversal filter.  Unfortunately,  is not nec-

essarily parallel to  causing gradient misalignment.

Nevertheless, it can be shown that the expected value of the ALC parameter vector

converges to the optimal value, , as .  Taking the expectation of both sides of

Eqn. (4.12) yields,

(4.14)

The term  can be rewritten in terms of the optimal transversal filter parame-

ters , the input autocorrelation matrix , and  using the Wiener-

Hopf equation and assuming  is independent of 1,

1. The independence assumption is often invoked in statistical analyses of the LMS algorithm [4], [5], 
[6] and leads to reliable theoretical predictions of performance, even when there is some depen-
dence between  and .
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(4.15)

Substituting Eqn. (4.15) into Eqn. (4.14) yields,

(4.16)

Using the Wiener-Hopf equation again allows us to relate  and ,

(4.17)

Substituting Eqn. (4.17) into Eqn. (4.16) gives

(4.18)

After performing a co-ordinate transformation to a principal axis system [5], Eqn. (4.18)

can be rewritten in terms of a transformed weight-error vector, 

where  is the eigenvector matrix of .

(4.19)

In Eqn. (4.19),  is the diagonal eigenvalue matrix of .  Eqn. (4.19) also describes

the convergence of the LMS algorithm, except that  becomes the diagonal eigenvalue

matrix of .  Therefore, much of the analysis on LMS adaptive transversal filters can

also be applied here by replacing the autocorrelation matrix  with .  Specifically,

if

, (4.20)

where  is the largest eigenvalue of the matrix , then  as

.  Hence,  and .  Furthermore, the time constant of
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decay of the MSE (in terms of the sampling time) and the steady state misadjustment can

be shown to be [5],

(4.21)

(4.22)

4.4  Extension to IIR and Continuous Time Filters

In this section, we will consider the ALC shown in Fig. 4.4 where the  are IIR or

continuous time filters.

If the  have infinite duration discrete time impulse responses, they can be approxi-

mated by truncated impulse responses ,

(4.23)

For continuous time filters the approximation is similar except that the continuous time

impulse responses  are sampled and scaled to obtain approximately equivalent FIR

filters.

Figure 4.4 An N-parameter IIR adaptive linear combiner with independent 
impulse responses, hi.
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(4.24)

The matrix  is created from the  as in Eqn. (4.1) and adaptation proceeds exactly as

before for either the LMS-CT or LMS-ICT algorithm.

In order to avoid aliasing in the continuous time case, the following conditions must

be met:

• The sampling rate, , must be greater than twice the bandwidth of the filter’s 

input signal in order to avoid aliasing.

• The frequency responses of the filters  must be bandlimited below .

• The impulse responses must be zero outside the range .

Of course, in practice it is impossible to meet all of these conditions simultaneously.

Instead, the sampling rate is chosen so that aliasing is minimal and  is taken large

enough so that most of the energy in the impulse responses  lie within the time inter-

val .  Therefore, for IIR or continuous time filters, Eqn. (4.5) is only approx-

imate, as are the theoretical results for convergence and misadjustment derived in Section

4.3.  Fortunately, behavioral simulations indicate that this is not a major concern since

the LMS-CT and LMS-ICT algorithms are robust with respect to these approximation

errors.

In practice, a continuous time filter may have gains and time constants which are not

accurately known a priori.  In this case, it may be necessary to measure the impulse

responses  before determining the matrices  and .  Each impulse response

 can be measured by setting all of the ALC parameters to zero except for  

and observing the ALC output.  The matrix  or  would then be calculated and stored

in a memory which is accessed during adaptation.  If process variations are significant,

this procedure would have to be automated and repeated on each chip.
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4.5  Simulation Results

Model matching experiments were used to verify the LMS-CT and LMS-ICT algo-

rithms on continuous time filters.  All of the simulations described in this section use the

block diagram shown in Fig. 4.5.  An independent additive noise source  is introduced

to control the steady state error after convergence.  The time scale is normalized to a

sampling rate of .  The reference filter is a third order elliptic lowpass transfer

function with 0 dB dc gain, 0.5 dB of ripple in the passband extending to , and 40

dB of stopband attenuation.  The filter input is white noise bandlimited by an eighth

order elliptic filter with 0.1 dB of passband ripple to  and 60 dB of stopband atten-

uation beyond .

4.5.1  Orthonormal Ladder Filter
Interestingly, when the impulse responses  are orthonormal, the LMS-CT and

LMS-ICT algorithms become identical.  This can be seen by arranging the impulse

responses into column vectors, .  Since the vectors are

Figure 4.5 Model matching simulation for 3rd order orthonormal ladder filter.
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orthonormal,  for  and .  By substituting

 into Eqn. (4.10) it is easily verified that ,

(4.25)

Orthonormal ladder filters have this property [7].  A third order continuous time

orthonormal ladder structure is shown in Fig. 4.6.  By making the feed-in parameters 

adaptive, the structure becomes an adaptive linear combiner.  Filters with adaptive feed-

ins are particularly interesting examples because the state signals required for traditional

LMS adaptation are not available anywhere in the system.  In order to perform LMS

adaptation, it would be necessary to operate a second filter in parallel with the first just to

obtain the gradient signals [1].  In addition to the extra complexity and power consump-

tion which this implies, mismatches between the two filters result in dc offsets which

limit the accuracy of the adaptation.  Fortunately the LMS-CT and LMS-ICT algorithms

can be used without access to the filter’s internal states.

In order to achieve the desired pole locations, the feedback parameters for both the

adaptive filter and reference filter were fixed at .  The

Figure 4.6 A 3rd order orthonormal ladder filter using multiple feed-ins of the 
input signal.
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feed-in parameters for the reference filter were fixed at

.

The impulse responses ,  and  of the ALC were measured by setting

,  and .  The sampled impulse responses are plotted in

Fig. 4.7 which shows that  samples are sufficient to capture at least 99.8% of

the impulse response power.

The  matrix was then constructed as described in Section 4.4,

, (4.26)

and the pseudoinverse  is calculated from Eqn. (4.10),

. (4.27)

The rows of  are plotted in Fig. 4.8.  Except for a scaling factor for normalization, the

waveforms are similar to those plotted in Eqn. (4.7) for the columns of .  The wave-

forms would be identical if the columns of  were perfectly orthogonal.  However, the

frequency response of  extends beyond the Nyquist rate (only 12 dB of attenuation at

) which causes aliasing in .

First, simulations were performed with the noise source turned off ( ).  As can

be seen from Fig. 4.9, both the LMS-CT and the LMS-ICT converged to their optimal

Figure 4.7 Truncated and sampled impulse responses for the 3rd order 
orthonormal ladder.
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parameter values with zero steady state error.  The errors incurred by aliasing and trun-

cating the impulse responses had no effect on the result.

Next, some finite steady state error was introduced via  to examine the algorithms’

misadjustment.  A noise power of  was used, which is about 13.5 dB less

than the output power of the reference filter, .  The input autocorrelation matrix is

a 20×20 matrix, , which can be calculated from a knowledge of the input

statistics,

Figure 4.8 Rows of the matrix K plotted versus time.

Figure 4.9 Sample learning curves for the parameters in a 3rd order model 
matching experiment.
(A) the LMS-CT algorithm with  and (B) the LMS-ICT algorithm with 

 and no steady state error.
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(4.28)

The convergence properties of the LMS-ICT algorithm are determined by the eigen-

values of ,

. (4.29)

Designing for a misadjustment of 10% using Eqn. (4.22), the required value of  is

(4.30)

For the LMS and LMS-CT algorithms, the eigenvalues are all identically 

owing to the orthonormal filter structure.  For 10% misadjustment, the value of  is,

(4.31)

These values together with Eqn. (4.21) predict that the decay time constant of the MSE

should be approximately 8 iterations for all three algorithms.  The simulation results plot-

ted in Fig. 4.10 verify this result.  All three converge at the same rate with the same final

misadjustment.  Fig. 4.11 shows simulation results for a misadjustment of 1%.  Again,

the rate of decay is identical.

Of course, in general the autocorrelation matrix  will not be known a priori.  How-

ever, its knowledge was assumed here to demonstrate that the LMS, LMS-CT and LMS-

ICT algorithms all have the same performance, although different values of  may be

required for each.

4.5.2  Feed Forward Companion Form Filter
In this section, the same model matching experiments are performed using a different

filter structure.  The filter structure is shown in Fig. 4.12.  It is a third order continuous

time companion form filter with variable feed-in coefficients, .  Again, since the feed-

in parameters are adapted, the state signals required for traditional LMS adaptation are
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Figure 4.10 Simulation results for the 3rd order orthonormal ladder model 
matching experiment with an excess MSE of 10%.
The LMS-CT, LMS-ICT and full LMS algorithms were simulated.  The results are 
averaged over an ensemble of 1000 simulation runs.

Figure 4.11 Simulation results for the 3rd order orthonormal ladder model 
matching experiment with an excess MSE of 1%.
The LMS-CT, LMS-ICT and full LMS algorithms were simulated.  Each data point 
is averaged over 10 consecutive samples and 100 independent simulation runs.
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not available.  Unlike the orthonormal ladder filter, the impulse responses are not

orthogonal (Fig. 4.13).  As a result, the matrices  and  are quite different and there

is gradient misalignment in the LMS-ICT algorithm.

Figure 4.12 Third order feed forward companion form filter.

Figure 4.13 Sampled, truncated impulse responses of the 3rd order feed forward 
companion form filter.

Figure 4.14 Model matching learning curves for a feed forward companion form 
filter.
(A) The LMS-CT algorithm and (B) the LMS-ICT algorithm.
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Fig. 4.14 shows behavioral simulations with length  impulse responses and

zero excess error added (i.e. ) for both the LMS-CT and LMS-ICT algorithms.

Although both algorithms converge with zero steady state error, notice that they take dif-

ferent trajectories.  The trajectories are projected onto the  plane and plotted

along with error surface contours in Fig. 4.15.  In this plot, the gradient misalignment of

the LMS-ICT algorithm is evident.

4.6  Hardware Implementation Issues

Although the LMS-CT and LMS-ICT algorithms offer the same performance as the

LMS algorithm without access to the adapted filter’s internal states, both algorithms still

require two Nyquist-rate A/D converters: one on the filter input and one on the error

signal (or the filter output if the error signal is being generated digitally).  Many applica-

tions will have an A/D converter at the filter output anyway (for example, for demodula-

tion of a communication signal).  However, the extra power consumption of an

Figure 4.15 Learning trajectories of two model matching experiments on MSE 
contours.
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additional high-speed A/D converter at the filter input may be prohibitive.  This section

examines techniques for further reducing the hardware complexity of these algorithms.

First, the A/D converters are replaced by single-bit quantizers (comparators).  Then, the

possibility of subsampling the filter input and output at a slower rate is considered for the

LMS-ICT algorithm.

4.6.1  Signed Algorithms
It is possible to take the sign of the error signal or the gradient signal or both in Eqn.

(4.4) in order to simplify the implementation of the LMS algorithm [8].  Taking the sign

of both results in the “sign-sign LMS” (SS-LMS) algorithm,

(4.32)

The product  provides, on average, the correct sign of each gra-

dient component.  The SS-LMS algorithm proceeds by changing each parameter in fixed

steps of size  in a direction opposite the gradient.  The digital multiplication of the

error and state signals is performed by a single exclusive-OR gate,

, resulting in considerable hardware savings.

The same approach can be taken to try and simplify the hardware required for the

LMS-CT and LMS-ICT algorithms.  Taking the sign of the error and input data signals

results in the following update equations,

(4.33)

(4.34)

This allows the two A/D converters required at the filter input and error signal to be

replaced by comparators.  The result is a significant decrease in circuit complexity and

power consumption.  The digital signal processing required for adaptation is also simpli-

fied considerably, but the matrix entries are still multi-bit values which means that fast

arithmetic logic is still required.  The update equation can be further simplified by taking

the sign of each entry in the matrices  and ,

(4.35)

(4.36)

p k 1+( ) p k( ) 2µ e k( )( )sgn x k( )( )sgn⋅ ⋅+=

e k( )( )sgn x k( )( )sgn⋅–

2µ

e( )sgn x( )sgn⋅ e( )sgn x( )sgn⊕=

p k 1+( ) p k( ) 2µGT e k( )( )sgn u k( )( )sgn⋅ ⋅+=

p k 1+( ) p k( ) 2µK e k( )( )sgn u k( )( )sgn⋅ ⋅+=

GT K

p k 1+( ) p k( ) 2µ GT( )sgn e k( )( )sgn u k( )( )sgn⋅ ⋅+=

p k 1+( ) p k( ) 2µ K( )sgn e k( )( )sgn u k( )( )sgn⋅ ⋅+=
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Eqn. (4.35) will be used as the update rule for the “sign-sign LMS-CT” algorithm (SS-

LMS-CT) and Eqn. (4.36) for the “sign-sign LMS-ICT” algorithm (SS-LMS-ICT).  The

multiplication of the three signed quantities in both Eqn. (4.35) and Eqn. (4.36) can be

performed by 3-input XOR gates.

To verify these algorithms, behavioral simulations were performed using the same

model matching experiment as in Section 4.5.1.  Simulation results are plotted in Fig.

4.16, Fig. 4.17, and Fig. 4.18.  There is no noticeable difference between the performance

of the SS-LMS-CT and SS-LMS-ICT algorithms.  For the same misadjustment, the

signed algorithms converge slower than the full LMS-CT and LMS-ICT algorithms, but

this is not surprising since it is well known that the SS-LMS algorithm is slower than the

full LMS algorithm.  Of course, by taking a larger value of , the slower convergence can

be traded of for increased misadjustment.

Although it is true that the SS-LMS algorithm has demonstrated instability in certain

circumstances [9], its simplified hardware has proved useful in numerous applications.

Stability of the SS-LMS algorithm is usually verified for a particular application via exten-

sive simulations.  Similarly, it is not immediately obvious whether the SS-LMS-CT and

SS-LMS-ICT algorithms will always provide robust convergence in spite of the large

quantization errors introduced on the matrix entries, the input signal, and the error sig-

nal.  Therefore, extensive simulations should also be used to verify the SS-LMS-CT and

SS-LMS-ICT algorithms for a particular application.

4.6.2  Subsampling
Until now, there has been little practical difference between the LMS-CT and LMS-

ICT algorithms.  However, in this section we shall see that a significant advantage of the

LMS-ICT algorithm is that both digitizers (A/D converters for the LMS-ICT or compar-

ators for the SS-LMS-ICT) can be subsampled.  Both the input and error signal digitizer

can be clocked below the Nyquist rate, thereby reducing power consumption and simpli-

fying the analog circuit design.  Although subsampling increases the time required for

convergence, this is rarely a problem in high-speed applications.  Subsampling also gives

µ
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the adaptation circuitry more time to perform the  matrix multiplications required

in Eqn. (4.12) and Eqn. (4.36).

Figure 4.16 Sample learning curves for the parameters in a 3rd order model 
matching experiment using signed algorithms.
(A) The SS-LMS-CT algorithm and (B) the SS-LMS-ICT algorithm, both simulated 
with a steady state error variance of  and .

Figure 4.17 Simulation results for the 3rd order orthonormal ladder model 
matching experiment using signed algorithms with an excess MSE of 
10%.
Both simulations have a steady state error variance of  and 

.  Each data point is averaged over 100 consecutive data samples 
and 100 separate simulation runs
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The basic idea is first described for a transversal filter structure in Section 4.6.2.1.

Then, the technique is modified for use in analog adaptive linear combiners in Section

4.6.2.2.

4.6.2.1  Subsampling an LMS transversal filter
The update equation for a LMS adaptive transversal filter is given in Eqn. (4.11).

Generally, when the filter is implemented in the analog domain, just one digitizer operat-

ing at the Nyquist rate is used on the filter input, .  A digital shift register is used to

emulate the analog delay line as shown in Fig. 4.19 [10], [11].  At very high speeds it is

desirable to operate the digitizers and all digital circuitry slower than the Nyquist rate.

Since the gradient signals in Eqn. (4.11) are unbiased estimates of the true gradient at

all times, there is no reason why the LMS algorithm must iterate at each sampling instant.

For instance, it is possible to iterate only at  resulting in a system where

the error signal is subsampled by a factor of 2.  The adaptive process converges at one-

half the rate, but with the same accuracy and stability properties as the full rate system.

Unfortunately, this still requires a digitizer at the filter input capable of operating at the

Figure 4.18 Simulation results for the 3rd order orthonormal ladder model 
matching experiment using signed algorithms with µ = 10-5.
Both simulations have a steady state error variance of .  Each data 
point is averaged over 100 consecutive data samples and 30 separate simulation runs.
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Nyquist rate because -spaced samples are required at 

.  However, each gradient component depends upon only one input sam-

ple so all  parameters do not have to be updated simultaneously.  If each gradient sig-

nal  is obtained at a different time, , then the LMS update equation looks like this:

(4.37)

If the integers  are properly chosen both the filter input and error signal can be sub-

sampled while providing the same accuracy and stability as the full-rate LMS algorithm.

For a -tap filter, a convenient choice of the sampling instants is to subsample the

input by × and the output error and shift register by ×.  In this case, each

parameter is updated every  samples.  A block diagram of this approach is

Figure 4.19 Block diagram of an analog adaptive transversal filter with a digital 
LMS algorithm using just one digitizer to obtain the state vector.
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shown in Fig. 4.20 for .  At first, the signals  and  are sampled at the same

time and the product  provides the first transversal filter gradient estimate,

.  The next samples, taken  and  sampling intervals later, can be

used for the second gradient estimate, .  The next

samples are separated by two sampling intervals and are used to calculate .

The algorithm cycles through all of the required gradient estimates until, after

 sampling intervals, all of the parameters have been updated once and the

input and error signal samples are again coincident.

Model matching simulations were performed for the 5-tap example.  An additive

Gaussian disturbance of variance  was introduced to ensure a finite MSE in steady

state.  The average MSE over an ensemble of 100 simulation runs is plotted versus time

in Fig. 4.21 for both the full-rate and subsampled LMS algorithms.  Since iterations are

performed only every 30 sampling intervals, the subsampled algorithm converges at 1/

30th the original rate.  However, in high speed systems (where subsampling is most ben-

eficial) this is often not a problem.  Indeed, it is possible to sample the error and input

signals even more slowly if desired resulting in even slower convergence.

Figure 4.20 Block diagram of a 5-tap analog adaptive transversal filter with the 
subsampled digital LMS algorithm.
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4.6.2.2  Extension to adaptive linear combiners
The LMS-CT algorithm operates by generating estimates of the ALC’s internal state

signals using discrete time FIR filters as shown in Fig. 4.3.  Unfortunately, in order for

the state estimates to be accurate, the input signal must be sampled at or above its

Nyquist rate.  However, it is not necessary to perform iterations of the LMS-CT update

at every sampling instant.  Parameter updates can be performed less often resulting in

slower convergence but allowing more time to perform the matrix multiplication.  In this

case, the error signal could be subsampled but the input signal still must be sampled at

the Nyquist rate.

The LMS-ICT algorithm, on the other hand, operates by calculating the desired

change in the filter parameters as if it were a transversal filter, .  This change is then

mapped to a change in the ALC parameter vector, .  So, one may use the

techniques in Section 4.6.2.1 to generate the transversal filter change  from subsam-

pled error and input signals.  For example, in the 5-tap filter discussed above, the change

in the transversal parameter vector for each iteration is,

Figure 4.21 MSE convergence of the traditional LMS algorithm and the LMS 
algorithm with 5x subsampling of the filter input.
The data is averaged over an ensemble of 100 simulation runs.
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(4.38)

The LMS-ICT algorithm can be performed with  by simply mapping 

through  and updating the ALC parameters  every 30 sampling intervals,

(4.39)

The resulting algorithm would converge 30 times slower than the standard LMS-ICT

algorithm, but with the same final misadjustment.

As a more realistic example, the same system from Section 4.5.1 was simulated.  Since

, the input is subsampled by 20× and the error signal is subsampled by 21×.

The results for misadjustments of 0.1 and 0.01 are plotted in Fig. 4.22 and Fig. 4.23.

Comparing them with the simulation results in Fig. 4.10 and Fig. 4.11, the convergence is

420× slower, as expected, but the misadjustment is the same.

4.7  Experimental Results

To verify the practicality of the LMS-CT and LMS-ICT algorithms in a real integrated

system, model matching experiments were performed using the 5th order orthonormal

ladder prototype CMOS integrated filter.  The filter was configured as shown in Fig.

4.24.

First, the required impulse responses were obtained by differentiating the step

responses measured on an oscilloscope.  The results are plotted in Fig. 4.25.  The wave-

forms include errors due to noise and nonlinearities introduced by the filter and measure-
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Figure 4.22 Simulation results for the 3rd order orthonormal ladder model 
matching experiment using the subsampled LMS-ICT algorithm 
with an excess MSE of 10%.
Each data point is averaged over 420 consecutive data samples and 3 separate simulation 
runs.

Figure 4.23 Simulation results for the 3rd order orthonormal ladder model 
matching experiment using the subsampled LMS-ICT algorithm 
with an excess MSE of 1%.
Each data point is averaged over 420 consecutive data samples and 5 separate simulation 
runs.
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ment equipment.  Fortunately, the LMS-CT and LMS-ICT algorithms are robust with

respect to these errors.

The experimental setup is diagrammed in Fig. 4.26.  The same filter is used for the

adapted and reference signal paths to avoid any mismatch.  First, the oscilloscope digi-

tizes the filter output with the filter’s feed-in values programmed to their optimal values,

.  The digitized waveform is then stored by the PC for use as the desired signal, .

Then, the same input sequence is repeated with the feed-in parameters programmed to

the current adapted values, .  This time, the digitized waveform is used as the output

signal, .  The oscilloscope also digitizes the filter input, , on a second channel.  The

error signal  and the input  are then used to perform one iteration of the

adaptive algorithm’s parameter update equation in software.

Under these conditions, it would be impossible to use a traditional LMS algorithm

since the filter’s state signals are completely unavailable.  However, using the LMS-CT

Figure 4.24 5th order orthonormal ladder filter structure with programmable 
feed-ins.

Figure 4.25 Sampled, truncated impulse responses of the fifth order integrated 
analog filter.
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and LMS-ICT algorithms, the model matching experiment succeeds.  The 5-bit parame-

ter values and MSE are plotted over time in Fig. 4.27 and Fig. 4.28.  Approximately 2000

iterations are required to obtain convergence.  A steady state error of 1 LSB persists on

Figure 4.26 Experimental setup for testing the adaptive algorithms on an 
integrated analog filer.

Figure 4.27 Model matching learning curves and MSE relative to the desired 
output using the LMS-CT algorithm on integrated hardware.
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 and the resulting steady state MSE is 26 dB below the signal level for both algorithms.

These steady state errors are comparable in magnitude to the filter’s nonlinearities.

4.8  Conclusions

This chapter has described techniques for obtaining digital estimates of the gradient

signals required for LMS adaptation without access to a filter’s internal state signals.  The

techniques are particularly useful for digitally adapting high-speed analog filters with sev-

eral adapted parameters.  Using traditional LMS adaptation, a digitizer (A/D converter or

comparator) is required for each gradient signal as well as the filter output.  Furthermore,

in some filter structures, such as those with programmable feed-ins, the state signals are

not available anywhere in the analog signal path so additional analog filters must be built

to accommodate the LMS algorithm.

Using the LMS-CT or LMS-ICT algorithms, A/D converters are required on the

input and error signals only.  Digital signal processing is used to obtain estimates of the

gradient signals from the digitized input and error samples.  Compared to the traditional

LMS algorithm,  the convergence rate and misadjustment are identical.  An additional

matrix multiplication is required for each iteration of the algorithm.  So, analog circuit

complexity is reduced but digital circuit complexity is increased with little or no change in

overall performance making it an attractive option for mixed-signal integrated systems in

Figure 4.28 Model matching learning curves and MSE relative to the desired 
output using the LMS-ICT algorithm on integrated hardware.
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digital CMOS processes.  The signed and subsampled variations of these algorithms

allow a system designer to reduce the analog and digital circuit complexity even further,

but with a slower convergence rate.  This is likely to be a desirable trade-off in applica-

tions such as wired communications where the adaptation rate is not a limiting factor.

Combining these techniques, adaptation can be performed using just two comparators

and relatively simple digital logic, all of which can be subsampled below the Nyquist rate.

By comparison, an adaptive linear combiner with variable gains at the output summing

node can be adapted using the SS-LMS algorithm requiring one comparator on each state

signal and one comparator on the error signal alone, all of which may be subsampled.  In

this case, the advantages offered by the SS-LMS-ICT algorithm are modest, particularly

when only 2 or 3 parameters are being adapted.  However, in some filter structures (such

as the orthonormal ladder filter) the state signals do not exist anywhere in the filter.

Hence, direct sampling of the states for SS-LMS adaptation is impossible, and a co-ordi-

nate transform greatly simplifies gradient signal generation.

In practice, there is likely to be some mismatch between the analog filter and the digi-

tal representation of its impulse response in the matrices  and .  Fortunately, the

LMS-CT and LMS-ICT algorithms are robust in the presence of these mismatches as

evidenced by the robustness of the signed algorithms, which use only one bit to repre-

sent each entry in the  and  matrices, and the successful model-matching experi-

ments performed on an integrated filter with noisy measured impulse responses (Fig.

4.25).

In order to use the co-ordinate transform techniques, it must be possible to model the

adaptive filter as an adaptive linear combiner.  Therefore, it is not possible to use the

LMS-CT and LMS-ICT algorithms to adapt the poles of a filter.  In general, locating the

fixed poles in an analog continuous time filter is performed rather heuristically from a

knowledge of the input and desired signal statistics.  For instance, over wired channels

the equalizer poles are usually positioned to provide an approximation to the channel’s

inverse [12], [13], [14].  In magnetic storage read channels, the equalizer poles are placed

to provide a lowpass anti-aliasing magnitude response with linear phase in the passband

in order to preserve the signal’s timing information [15].  However, as demonstrated in

G K

G K
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[16], better pole locations can sometimes be found by using a more general optimization

approach.  Adaptive techniques have been used to optimize filter poles in the past [17].

One might consider combining the co-ordinate transform techniques of this chapter

with other adaptive algorithms capable of adapting the filter poles, such as the DLS algo-

rithm in Chapter 3.
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Chapter 5

Obtaining Gradient Signals by Unknown
Input State Observation

5.1  Introduction

The LMS algorithm requires a gradient signal, , for each adapted coefficient.  If a

state-space model is used for the adapted filter, the gradient signals can be generated

from a knowledge of the filter’s internal states [1].  This suggests the architecture

depicted in Fig. 5.1A.  However, in order to digitally adapt an analog filter, digitized state

signals are required.  If A/D converters are used to sample each of the filter’s internal

states, the size and complexity of the analog circuitry may become prohibitive.  This

chapter examines a method for estimating the state signals of an arbitrary state-space

adaptive filter using only the digitized filter output, allowing for the modified system

architecture depicted in Fig. 5.1B [2].  The technique is based upon estimating the filter’s

internal state signals from the filter output.

Section 5.2 looks at established techniques for estimating the states of a system.  Sec-

tion 5.3 describes a method for generating approximate time delayed state estimates of

non-minimum phase systems with unknown inputs.  Section 5.4 provides behavioral

simulation results of the LMS algorithm using unknown input state observation.  Practi-

cal considerations such as dc offsets and mismatch between the analog and digital signal

processing are considered.  The hardware requirements of this approach are discussed in

Section 5.5 and compared with traditional LMS adaptation.

φi
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5.2  Unknown Input Observation

The estimation of a system’s internal states, called state observation, is well docu-

mented in control theory [3], [4], [5].  A linear state observer can be designed of order

equal to that of the system under observation and the dynamics of the state observer can

be designed to meet a desired tracking performance specification.  Unfortunately, in gen-

eral, access to both the system inputs and outputs is required to generate these state esti-

mates (Fig. 5.2A).

In Fig. 5.2B, the “Observed System” is the programmable filter (A, b, c, d) and only

its output  is available.  Furthermore, the programmable filter coefficients can be

adapted based upon gradient information from some time in the past (as long as the

overall system’s adaptation rate is satisfactory), so time delayed state estimates 

are sufficient.  A directly analogous problem appears in the control literature and is called

Figure 5.1 Digital adaptation of an analog filter (A) with and (B) without 
sampling the internal state signals.
The dashed lines correspond to digitized signals.
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“time delayed and unknown input observation”.  It was shown in [6] that this problem is

equivalent to inversion of the observed system.  This is intuitively satisfying because if

the observed system can be inverted then its input can be reproduced from its output

and the problem of state observation becomes straight forward.

Unfortunately, it is difficult to ensure that an adaptive filter will always be invertible,

particularly if the zeros are being adapted.  Since the filter may become non-minimum

phase, the resulting inverted system might have unstable poles.

5.3  Approximate Time Delayed State Observation

This section describes a method for generating time delayed state estimates of an arbi-

trary state-space system.  This approach approximates the inverse transfer function of

the system under observation by introducing delay.  Once a delayed estimate of the sys-

tem input is obtained, , a standard linear state observer may be used to produce

time delayed state estimates, as in Fig. 5.2B.

5.3.1  Background
Consider a discrete time linear time-invariant filter defined by its impulse response,

Figure 5.2 State estimation using (A) established techniques and (B) time 
delayed unknown input observation.
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(5.1)

The z-transform of  is,

(5.2)

 has one zero at , and a region of convergence (ROC) that includes the entire -

plane.

In order to recreate the input of filter  from its output, a BIBO stable filter1  is

required which satisfies the following condition,

(5.3)

This can be accomplished using the inverse system,

(5.4)

 has one pole at  and two possible regions of convergence:

•  resulting in a causal impulse response,  for 

•  resulting in a non-causal impulse response,  for 

The convolution theorem requires that the regions of convergence of  and 

overlap in order to satisfy Eqn. (5.3) [7].  Fortunately,  the ROC of  is the entire -

plane, so they will always overlap.  Therefore, Eqn. (5.3) is satisfied by both the causal

and non-causal inverses, although only one will be stable.

For stability, it is necessary that the ROC includes the unit circle.  There are three

cases of interest:

1. , in which case the causal inverse is stable and the non-causal inverse is unsta-

ble.  Therefore, the required stable filter is .

1. BIBO stability implies that for every bounded input, the system produces a bounded output
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2. , in which case the non-causal inverse is stable and the causal inverse is unsta-

ble.  Therefore, the required stable filter is .

3. , in which case there is no stable inverse of  since  has a transmission 

zero.  Hence, its frequency response has a spectral null making it impossible to recre-

ate input signals at that frequency.

5.3.2  Derivation of the Approximate Inverse Filter
Assume the adapted filter has a stable, real, rational, discrete time transfer function

 with zeros  and poles .

(5.5)

This could be the transfer function of any real stable discrete state space system, or the

equivalent transfer function of a continuous time state space system sampled at or above

the Nyquist rate.  Again, a stable filter is sought to recreate the filter input  from its

output .  The inverse transfer function is,

(5.6)

As long as none of the zeros of , , lie on the unit circle, it is possible to make

 stable by choosing the ROC of each term  to include the

unit circle, as described for  in Section 5.3.1.  (Equivalently, one may think of

choosing the ROC of  to be a ring around the origin which includes the unit cir-

cle.)  Since both  and  are stable, both ROCs overlap on the unit circle guar-

anteeing that  perfectly reconstructs  from .

In general,  will be non-causal making it difficult to implement in real-time.

Instead, a time-delayed approximate inverse  is used,

(5.7)
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Eqn. (5.7) differs from the definition of  in Eqn. (5.6) only in that the first-order

terms  have been replaced by .  There are 3 cases to consider in defining

,

1. :  The ROC is taken to be  resulting in a causal stable impulse 

response.  In this case,  can be implemented in direct form.

2. :  The ROC is taken as .  The result is a non-causal system which can 

not be implemented in real time.

(5.8)

The Taylor series in Eqn. (5.8) is guaranteed convergent on the unit circle since 

.  In order to implement  in real time, a delay of  time steps is intro-

duced and the remaining (vanishingly small) non-causal terms are dropped,

(5.9)

3. :  This case is discussed in detail in Section 5.3.4.

The total delay, , introduced by the approximation  is  times the

number of factors  for which .

5.3.3  Approximation Error
An approximation error is incurred by truncating the Taylor series in Eqn. (5.9) to

exclude the non-causal terms.  Specifically, in Fig. 5.2B, the truncation causes

.  Let,

(5.10)

The error  can be considered an additive noise on the input estimate , which in

turn becomes noise on the gradient estimate used for LMS adaptation.  Fortunately, the
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LMS algorithm is robust with respect to noise on the gradient estimates.  However, at

some point gradient noise will limit the accuracy of the adaptation.

As shown in Fig. 5.3,  can be considered the difference between the output of

 and the output of  when subjected to the same input, .  Assuming

the filter output samples  are independent with zero mean and variance , the vari-

ance of the estimation error is given by,

(5.11)

Figure 5.3 System models for determining the input estimation error.
(A) basic model
(B) introducing  has no effect on the bottom signal path since  
provides perfect reconstruction of 
(C) the two  systems can be combined
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Recall that since , the bracketed power series in Eqn. (5.11) is convergent.  By

increasing ,  can be made arbitrarily small.  However, the complexity of calcu-

lating the coefficients and operating the filter  increases.

5.3.4  Transmission Zeros in the Adapted Filter
A problem arises when the zeros of  lie on (or close to) the unit circle.  As men-

tioned above, the resulting transmission zeros will cause part of the input spectrum to be

completely attenuated at the output .  However, if the input is broadband (as in most

digital communications systems) enough of the input spectrum can be recovered from

 to perform adaptation.  This scenario must be carefully simulated since more taps

may be required for  to ensure robust convergence.

When a zero of  is near the unit circle (within 0.1),  develops a large gain

(>20 dB) at frequencies near the zero.  To avoid instability, the inverse is calculated by

moving the offending zeros of  away from the unit circle (Fig. 5.4).  The zeros of

the actual adapted filter are not changed; however, the calculation of  proceeds as

if they were moved.  This purely heuristic trick has the effect of reducing the gain of

 near those frequencies and stabilizing the transfer function.  The extra approxi-

mation error which results did not cause problems during any of the behavioral simula-

tions performed.

5.4  Simulation Results

Behavioral model matching simulations were used to study the performance of the

adaptation algorithm described above.  A block diagram of the simulated system is pre-

sented in Fig. 5.5.  The “Controller” in Fig. 5.5 calculates the approximate inverse trans-

fer function,  from a knowledge of  using (if necessary) a truncated Taylor

series expansion as described above.  Rather than using a linear state observer to estimate

the state vector , it is possible to run a digital model of  in parallel driven by the

input estimates, .  Since the adapted filter  is guaranteed stable, the state estimates

so obtained will asymptotically track  regardless of the initial conditions on  and
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the model.  A finite steady state error may be introduced to the model matching simula-

tions via .

Figure 5.4 Approximation of zeros on the unit circle.
(A) When zeros of  (filled circles, ) are just outside the unit circle but within the 
shaded region,  is calculated by moving the zeros just outside the shaded region 
(hollow circles, ).  (B) If the zeros are just inside the unit circle, they are moved to the 
interior of the shaded region.  In all simulations, the shaded region extends 0.1 to either 
side of the unit circle.

Figure 5.5 Model matching behavioral simulation of LMS adaptation using 
unknown input state estimation.
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The delay of  time steps does not destabilize the feedback loop formed by the LMS

algorithm so long as the delay is small relative to the algorithm’s adaptation rate.  This is

easily ensured in practical applications by appropriately selecting .  For instance, if

,  should be chosen so that the adaptation takes several hundred baud intervals

to converge.1  If fast adaptation is a requirement, this may place a limit on the maximum

delay  which can be introduced by 

5.4.1  2-Tap Transversal Filter
First, a simple 2-tap adaptive transversal filter was simulated.  The FIR filter transfer

function was,

(5.12)

The two adapted parameters were  and .  No steady state error was introduced via

.  Fig. 5.6A shows the trajectory of the filter using .  As you can see,

this approach will work as long as the signal-path filter  is minimum phase.  How-

ever, as soon as the adapted zero moves outside of the unit circle,  becomes

unstable and the algorithm diverges.  Using a FIR approximation for  with

1. Expressions relating  to the adaptation rate of the LMS algorithm are provided in Table 3.1.

Figure 5.6 Trajectory of filter coefficients superimposed on MSE contours.
(A) With , the algorithm diverges when  becomes non-
minimum phase.  (B) Using an approximate FIR inverse of length  for 

, the adaptive process converges.
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 taps as described in Section 5.3, the state trajectory is plotted in Fig. 5.6B with

no steady state error.

In Fig. 5.6 at point X,  is a minimum phase transfer function:

(5.13)

Since  has a stable inverse, there is no need to make any approximations.

(5.14)

The series connection of  and  will perform perfect reconstruction of the

filter input at the output with no delay, .  It may be desirable to truncate the

impulse response of  in order to implement it in hardware with an FIR filter.  In

simulations, the impulse response was truncated after  samples (Fig. 5.7).

(5.15)

The truncated impulse response no longer provides perfect reconstruction of the filter

input at its output.  Since , the gradient signals are noisy.  Of course, the LMS algo-

rithm always operates on noisy gradient estimates, so it is no surprise that the adaptation

is still stable.

At the point Y on the trajectories in Fig. 5.6,  is non-minimum phase.

(5.16)

The causal inverse is unstable, as evidenced by its ever-increasing impulse response (Fig.

5.8); this inverse filter was used in the adaptation experiment of Fig. 5.6A causing it to

diverge.  Instead, in Fig. 5.6B a time delayed and truncated non-causal inverse is used.

The approximate inverse (truncated after 10 taps) is,

(5.17)

Note that in the frequency domain,  has a magnitude response approximately equal

to , but because the non-causal inverse is delayed, the phase response has a steep

negative slope.  As a result, the series connection of  and  has a linear phase

response with a group delay of 10 sampling intervals, which also appears in the impulse
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response.  Again, the truncation introduces noise onto the gradient estimates, but the

adaptation is robust.

Next, the simulation was repeated with some finite steady state error introduced via 

to emulate a real system.  A reference filter with a zero on the unit circle is considered,

Figure 5.7 Impulse and frequency responses of HX(z) and its approximate 
inverse.
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Figure 5.8   Impulse and frequency responses of HY(z) and its approximate

                     inverses.
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(5.18)

As described above, state estimation is difficult under these conditions since part of the

input spectrum is completely attenuated at the output.  Therefore, the technique

described in Section 5.3.4 must be used.  The results using only  taps for 

are plotted in Fig. 5.9A.  In steady state, the filter parameters “bounce” around their opti-

mal values because 2 taps are insufficient to produce an accurate stable approximation of

.  However, using  taps (Fig. 5.9B), the performance is the same as

a traditional LMS algorithm (not shown here).

5.4.2  Effect of Mismatches
In practice, a digital filter  is used to approximate the inverse of an analog fil-

ter, .  Therefore, this technique presupposes an accurate knowledge of the gains and

Figure 5.8 Impulse and frequency responses of HY(z) and its approximate 
inverses.
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time constants in the analog signal path.  These may be measured during testing and

stored in a digital memory, or measured on-the-fly using some startup or calibration pro-

cedure.  Even so, some mismatch is likely to persist between the signal path transfer

function  and the transfer function used to calculate , which will be referred

to as .  The effect of such mismatches are considered in this section.

If there is only a gain mismatch between  and , the effect is only a gain off-

set in the gradient estimates used for LMS adaptation.  This will change the rate of adap-

tation and steady state misadjustment slightly, but will not cause instability as long as  is

chosen sufficiently small.  Fig. 5.10B shows simulation results for the 2-tap transversal

filter in the presence of a 30% gain mismatch between the analog and digital filters.  Con-

vergence is obtained with a 28% reduction in steady state misadjustment due to the

slower rate of convergence.

Mismatches between the time constants of  and  introduce noise onto the

gradient estimates.  Like the noise caused by truncating the approximate inverse filter,

this noise is due to the fact that  is not a perfect inverse of  and, hence,

.  Fortunately (again), since the LMS algorithm is robust with respect to noisy gra-

dient estimates, the effect is usually not catastrophic.  In Fig. 5.10C, the 2-tap adaptive

transversal filter was again simulated.  This time, a mismatch in the time constant was

Figure 5.9 Trajectory of filter coefficients superimposed on MSE contours.
(A) Uses state estimation with .  (B) Uses state estimation with .
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emulated by assuming a 10% mismatch in parameter  only (no mismatch in ).  This

translates into a 10% discrepancy between the zero frequency of  and .  The

discrepancy caused no observable difference in convergence rate or misadjustment.

5.4.3  Dc Offset Effects
In Fig. 5.11A the trajectory of a traditional LMS algorithm is plotted for a 2-tap adap-

tive transversal filter with dc offsets introduced on the state signals, the error signal, and

at the output of the LMS multipliers, as would be expected in an analog circuit imple-

mentation.   The dc offsets have magnitudes equal to 0.1% of the RMS input signal

power.  The algorithm does not converge to the optimal coefficients in steady state.

However, using the state estimation techniques described here in combination with the

adaptive dc cancellation tap described in the Section 1.3.2, dc offsets have no effect.  Fig.

5.11B shows the simulation results using the same dc offsets as before, but this time

using state estimation and an adaptive dc tap.  There is no steady state error.  As men-

tioned in Chapter 4, the same advantages are obtainable using any digital gradient descent

algorithm in combination with an adaptive dc tap.

5.4.4  5th Order Continuous Time Filter
As a more practical example, the adaptation of a 5th order orthonormal ladder contin-

uous time filter, , was considered.  If the continuous time output is sampled at the

Nyquist rate, the combination of the filter and subsequent sampling block can be mod-

Figure 5.10 Two-tap adaptive transversal filter parameter evolution in the 
presence of mismatches.
(A) No mismatch (B) 30% gain mismatch (C) 10% mismatch in the time constant
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eled by a discrete time transfer function  obtained from  via an impulse invari-

ance transformation [7].  State estimation and filter adaptation can then proceed just as

before.  Fortunately, in most digital communications applications the output of a contin-

uous time filter is sampled at the Nyquist rate anyway in order to perform clock recovery

and demodulation.  Therefore, no additional analog hardware is required for adaptation.

The reference filter for the continuous time simulations was a 5th order elliptic filter,

so  had zeros on the -axis.  As a result, in steady state, portions of the input

spectrum were completely attenuated at the filter output.  However, as long as enough

taps are used in the approximate inverse, the state estimates are still accurate enough to

allow for convergence using the LMS algorithm (Fig. 5.12).  Notice that as  increases,

the performance approaches that of the standard LMS algorithm.  Using simulations like

this one, a value for  can be selected based on the amount of excess MSE which can

be tolerated.

5.5  Hardware Requirements

Implementation of an adaptation algorithm using unknown input state observation

requires more complex signal processing than straight LMS adaptation.  However, in

Figure 5.11 Trajectory of filter coefficients superimposed on MSE contours.  Dc 
offsets are introduced on all state and error signals.
(A) Uses the standard LMS algorithm.  (B) Uses state estimation with .
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many digital communications applications a DSP core is integrated along with the analog

front-end and is mostly idle during startup while adaptation is being performed.  The

DSP core could be used to perform the state estimation.  Specifically, the following digi-

tal signal processing functions are required:

• A digital filter operating at the Nyquist rate on the adapted filter’s output, , is 

required to implement the approximate inverse .  An FIR filter was used in all 

of the behavioral simulations above.  The number of taps depends on the order of the 

adapted filter, and the amount of noise in the gradient estimate which can be toler-

ated.  For the 2nd order transversal filter, 10 taps were used.  For the 5th order con-

tinuous time filter, up to 100 taps were used.  It might be possible to reduce the 

number of computations required by using a recursive filter structure for .  

Furthermore, assuming slower convergence can be tolerated, the filter’s speed 

requirement can also be relaxed by using a polyphase implementation.  This would 

entail storing a burst of samples of the filter output in a memory at the Nyquist rate.  

The samples would then be processed at a slower clock rate to obtain the input & gra-

Figure 5.12 LMS adaptation of a 5th order orthonormal ladder filter using 
unknown input state observation.
The length of the approximate inverse filter, , is varied from  to 100.  
Simulation results for the standard LMS algorithm are also plotted for comparison.
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dient estimates, after which one iteration of the LMS update equation could be per-

formed and the entire process repeated.  This is very likely to be the strategy used for 

any practical integrated implementation.

• A variable delay line is required for the error signal, .  The maximum delay is 

equal to the length of the FIR implementation of .

• The “controller” in Fig. 5.5 must calculate the approximate inverse transfer function 

 from a knowledge of the adapted filter parameters, .  If this calculation is 

repeated at the Nyquist rate using the step-by-step procedure described in Section 5.3, 

it would involve considerable overhead: one Taylor series expansion for each adapted 

pole or zero involving several digital multiplications and divisions each.  However, 

 only has to be recalculated when  changes.  It can be recalculated less fre-

quently if a block LMS update rule is used whereby the gradient estimates are aver-

aged for a while before the filter parameters  are updated.  Further simplifications 

might be possible depending upon the exact filter structure.  For instance, a simple 

and fast realization of the controller would be to use the parameters  as the 

address to a lookup table where the approximate inverse transfer functions are stored 

for all possible combinations of parameter values.  As the number of parameter bits 

increases, the lookup table will grow large.  Depending upon the particular applica-

tion, the best implementation might be a combination of the block LMS algorithm 

with lookup tables followed by more accurate calculations.

Of course, unknown input observation implies a savings in analog hardware complex-

ity since sampling of the filter input and state signals is not required.  The trade-off of

analog hardware for digital hardware is desirable in many mixed-signal ICs, particularly in

deep submicron CMOS.

5.6  Conclusions

Techniques for state observation which are studied in the control literature either

require access to both the system inputs and outputs, or require the system under obser-
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vation to be minimum phase.  An approximate time delayed state estimator was pro-

posed which can be applied to any state space system with unknown inputs.  This

technique is particularly relevant in analog filters with digitally programmable parameters

since the LMS algorithm requires estimates of the filter’s internal state signals, but it is

impractical to build the additional analog circuitry to generate and digitize them.  Instead,

time delayed state estimates are calculated digitally from the filter output and used for

LMS adaptation with minimal additional analog hardware.

The technique is also potentially immune to dc offset effects which usually hinder

analog implementations of the LMS algorithm.  Since the state estimates are generated

digitally from the filter output, an adaptive dc tap at the filter output results in state esti-

mates which are offset-free.  However, the adaptation algorithm is computationally com-

plex compared to straight LMS adaptation and efficient hardware implementations are

still an open issue.

The general state observation technique is potentially applicable to any adaptation

algorithm where the filter’s state information is required but inaccessible.  Although only

the LMS algorithm was discussed here due to its popularity and straightforward imple-

mentation, the state estimates could also be used in (for example) the Newton-Raphson

algorithm.

Filter adaptation using unknown input state observation was verified in behavioral

simulations on a 2-tap adaptive transversal filter and a 5th order continuous time filter.

The approximate inverse filter must have a long enough impulse response to provide

good state estimates, even when the signal path filter has spectral nulls.  If the filter

 is made long enough, the performance of the adaptation algorithm approaches

that of the standard LMS algorithm.
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Chapter 6

Conclusion

6.1  Summary

The problems that limit the use of analog adaptive filters in modern integrated sys-

tems were studied.  Chief among those problems are analog circuit complexity (particu-

larly in deep submicron CMOS process technologies) and dc offset effects.  The

problems are overcome by combining a digitally programmable analog filter in the signal

path with a digital adaptation algorithm.  Both the analog circuits and the digital adapta-

tion algorithms were discussed.

Chapter 2 described several circuit techniques for implementing a digitally program-

mable analog filter in a CMOS process technology.  The techniques were verified in hard-

ware on a prototype 5th order integrated filter with all poles and zeros digitally

programmable.  Although the results were modest (particularly the linearity), the degree

of programmability realized had previously only been reported in BiCMOS processes

with cutoff frequencies below 10 MHz [1] (compared with up to 70 MHz in this work).

The remainder of the thesis sought to alleviate the LMS algorithm’s need for direct

access to the filter’s internal state signals by performing some additional signal processing

digitally.  Three techniques were described: Chapter 3, the dithered linear search (DLS);

Chapter 4, the LMS algorithm with a co-ordinate transform (LMS-CT and LMS-ICT);

and Chapter 5, the LMS algorithm using an unknown input state observer (LMS with

UIO).  All three are compared qualitatively in terms of their performance and complexity
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in Table 6.1.  All compare favorably with the LMS algorithm in terms of analog circuit

complexity.  This is the most important criteria in many data communication systems

since the performance requirements are not stringent and digital circuits are relatively

easy and cheap to integrate in deep submicron CMOS.  The DLS algorithm is simple and

general, but its rate of convergence is orders of magnitude slower than the others restrict-

ing it to applications where slow adaptation can be tolerated.  The LMS algorithm with a

UIO converges quickly (at the same rate as the LMS algorithm) but has the greatest com-

putational complexity (and, as a result, was not verified on the prototype filter).  The

LMS-CT/ICT algorithms combine a simple hardware implementation with performance

identical to the LMS algorithm making them preferable to the LMS algorithm for almost

any analog adaptive linear combiner in a mixed signal application.  Unfortunately, the

LMS-CT/ICT algorithms can not be used to adapt filter poles.

6.2  Future Work

The digital adaptation algorithms in this thesis have been presented without reference

to any particular application in order to highlight their generality.  The logical next step is

to target a specific application in order to demonstrate their practicality.  Applications

where analog adaptive filters offer practical advantages over digital adaptive filters are

generally restricted to those where all of the following criteria apply:

Algorithm LMS DLS LMS-CT/ICT LMS with UIO

Adaptation rate Fast Slow Fast Fast

Analog circuit 
complexity High Low Low Low

Digital circuit 
complexity Lowa

a. Digital circuit complexity is significantly reduced by using signed variations.

Low Mediuma High

Applicable filter 
structures

Any with a uni-
modal perfor-
mance surface

Any with a uni-
modal perfor-
mance surface

Adaptive Linear 
Combiner

Any with a uni-
modal perfor-
mance surface

Table 6.1 Comparison of digital algorithms for analog adaptive filters.
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1. The input signal already exists in analog form, so that additional data converters are 

not required to perform the filtering in the analog domain.

2. Only moderate linearity is required, because high linearity (> 50 dB) is difficult to 

achieve in analog circuitry with low supply voltages.

3. High speed and/or low power are important design objectives, otherwise digital cir-

cuits are efficient and easier to implement.

All of the applications discussed in Section 1.2 meet these criteria, with the possible

exception of magnetic storage read channels where CMOS process scaling appears to

have allowed digital adaptive filters to catch up to the system requirements [2] and analog

adaptive filters are losing favor.  The most promising candidates in the near-term are

long haul fibre optic and short-distance very-high-speed wired (including chip-to-chip)

channels.  In these applications, filter zeros could be adapted quickly and with low com-

plexity using a subsampled SS-LMS-ICT algorithm providing programmable high-fre-

quency boost to equalize the lowpass channels.  Furthermore, the linearity requirements

are modest since very few data levels are transmitted, and a digital approach is unlikely to

be practical at the targeted speeds (10+ Gb/s) in the near future.

Several other potential topics for future study suggest themselves:

• Integrated implementation:  An obvious extension would be to prototype an ana-

log adaptive filter integrated alongside one of the digital adaptation algorithms 

described above.  This would be particularly interesting for the LMS algorithm with a 

UIO since it is not clear how to efficiently implement the required digital signal pro-

cessing in hardware.

• Programmable analog signal conditioner:  The circuit techniques that were proven 

successful in Chapter 2 could be used to implement a highly programmable analog 

Gm-C filter in 0.18 µm CMOS.  Based upon the experience gained from the proto-

type filter design, realistic design specifications would be a filter with 40 dB linearity 

and poles & zeros that are digitally programmable beyond 100 MHz.  Such a block 

could be used as a general analog signal conditioner in a wide range of applications, 

and would be far beyond any previously reported digitally configurable analog filter.
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• Further stability analyses:  General stability proofs of the adaptation algorithms 

described in this thesis are still lacking.  Stability of the DLS algorithm using multilevel 

dither was not verified analytically.  Neither was stability of the signed variations of the 

LMS-CT and LMS-ICT algorithms.  The LMS algorithm with a UIO uses heuristic 

techniques to perform gradient estimation when there is a transmission zero in the 

adapted filter; further stability analysis is also warranted here.

• Exploration of other dither signals:  Other, possibly multilevel, dither signals may 

offer advantages over either pseudorandom or Hadamard sequence dither.  One pos-

sibility is to use delta-sigma modulation to shift the dither energy outside of the 

adapted filter’s bandwidth of interest.

• Use of UIO for other applications:  Although the technique developed for 

unknown input state observation in Chapter 5 was intended for gradient estimation in 

analog filter adaptation, the same technique could be useful anywhere an approximate, 

time delayed, unknown input state observer is needed.  It would be interesting to 

explore other applications for the technique.

• Combine algorithms:  It might be possible to combine the different algorithms in 

the adaptation of a single filter to take advantage of the merits of each.  For instance, 

the DLS could be used during startup to adapt the filter’s poles.  Then, the LMS-ICT 

could be used to adapt the zeros.  The input sampling circuit required by the LMS-

ICT could be eliminated by using the approximate inverse technique from Chapter 5 

to obtain estimates of the filter input from its output.
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