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“Nothing in the world can take the place of persistence. Talent will not. The world is

full of unsuccessful men with talent. Genius will not. Unrewarded genius is almost a

proverb. Education will not. The world is full of educated derelicts. Persistence and

determination alone are omnipotent. The slogan ‘Press On’ has solved and always will

solve the problems of the human race.”

Calvin Coolidge
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Abstract
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Evaluation of Low-Cost MEMS Accelerometers and Investigation of

Inertial Algorithms for Dead Reckoning in Railway Environment

by René Rail-Ip

Low-cost micro-electro-mechanical systems (MEMS) accelerometers are gaining momen-

tum in the defence, aerospace, transportation, and automotive industries. While high-

cost accelerometers are being used on subway trains for their signalling systems, this

work investigates the possibility of replacing them with low-cost MEMS devices. To

achieve this goal, a 3D printer was modified for use as a three-dimensional motion plat-

form. A series of motions was developed to test parameters of the sensors such as noise,

cross-axis sensitivity, bias stability, and accurate displacement estimation from double

integration. A high-speed, high-resolution camera was used as a benchmark of the actual

position of sensors throughout testing. In addition, the sensors were tested on subway

trains. The results show that the Kionix KXRB5 accelerometer performs the best, even

out-performing the high-end sensor tested. In addition, inertial algorithms were devel-

oped that were able to estimate displacements to below 10% error on the evaluation

platform and subway line.
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Chapter 1

Introduction

MEMS technologies are most widely used in the production of accelerometers, which

are capable of sensing forces along three axes of motions and outputting this data as

an analog or digital signal. The largest driver of this technology in recent years has

been the automotive industry, where high-G sensors are used in air bag deployment

and low-G sensors are used for active suspension and vehicle stabilization [2]. More

recently, research is going into the use of accelerometer sensors to estimate position

for navigation and localisation purposes. Accelerometers are mounted together with

gyroscopes, which measure angular velocities about the three axes of motion, to form

an Inertial Measurement Unit (IMU). These IMUs perform mathematical integration on

data from the accelerometers and gyroscopes to obtain positional data about the system

on which the IMU is mounted. Theoretically, this concept can provide the user with

accurate displacements and intelligent robotic navigation and localisation.

However, MEMS accelerometers like all sensors suffer from various sources of error.

Sensor noise, nonlinearities, bias and sensitivity uncertainty, and other sources of error

can lead to large errors in data output and when these errors are integrated to obtain

velocity and displacement, they accumulate. This effect is called random walk and even

at rest can produce errors of many metres. It is crucial to gain an understanding of

these errors in order to effectively utilize these advancing sensors.

The applications of this sensing technology are endless and with increasing acceptance

for robotics in the household and decrease in the cost of the sensors, the demand to use

accelerometers in low-cost consumer robotics will grow. In addition, with the increasing

performance of low-cost sensors, transportation and automotive industries will begin to

shift towards replacing high-end, expensive sensors with lower-cost MEMS sensors that

have the same performance.

1



Chapter 1. Introduction 2

1.1 Operation Principles

MEMS accelerometers work similarly to a mass-spring-damper system. In accelerome-

ters, the mass is called a proof mass and is connected to the frame by a flexible spring.

Gas or liquids are used in the package to introduce the damping effect and prevent ex-

cessive vibrations and ringing. Figure 1.1 shows the system and the following equations

outline how acceleration is detected.

Figure 1.1: Structure of an accelerometer where m is the proof mass, k is the spring
constant, Bd is the damping coefficient, xm is the position of the proof mass away from

the spring’s natural position, and xf is the frame’s position

An accelerometer measures the force being applied to the proof mass inside the chip,

shown in Figure 1.1. The setup in Figure 1.1 is for a one-axis measurement, in this case

measuring in the upward direction. At rest or at constant acceleration, the net forces

acting on the sensor are the following, given by Hooke’s law and Newton’s second law.

mẍf = kxm (1.1)

In the above equation, m is the proof mass, k is the spring constant, xf is the position of

the frame, and xm is the position of the mass relative to the frame, away from the spring’s

natural position. The acceleration can therefore be calculated if the displacement xm is

known.

ẍf =
kxm
m

(1.2)

This turns the problem into one of sensing a displacement, rather than an acceleration.

At a constant acceleration, the proof mass will be displaced by a certain amount xm.

This explains why, at rest, an accelerometer aligned vertically with the axis of gravity will
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measure an acceleration of 9.8 m/s2 upward. The accelerometer is actually measuring

the normal force being applied to the sensor in response to the force due to gravity.

There are two basic sensing principles that are used for DC-response MEMS accelerom-

eters [2]. They are piezoresistive sensing and capacitive sensing. Piezoresistive sens-

ing uses piezoresistors on the spring in order to detect changes in resistance due to

acceleration-induced stress. These sensors are robust and simple, however have poor

noise and power performance. Capacitive sensing detects small changes in capacitance

due to the movement between the proof mass and the frame to determine acceleration.

These are the most widely used acceleration sensors as they are low-cost with low noise

and power consumption. These will be discussed in more detail below.

The following equations show how acceleration is obtained from this structure based on

the dynamics of the system when there are changes in acceleration as well as velocity

and position. Equation 1.3 follows by analyzing the net forces acting on the proof mass

m in Figure 1.1.

mẍm +B(ẋm − ẋf ) + k(xm − xf ) = FE (1.3)

In the above equation, m is the mass of the proof mass, k is the spring constant, B is

the damping coefficient of the gas or liquid, xm and xf are the positions of the mass

and the frame, respectively, and FE is the external force acting on the mass. We can

subtract mẍf from both sides to obtain the following equation.

m(ẍm − ẍf ) +B(ẋm − ẋf ) + k(xm − xf ) = FE −mẍf (1.4)

We take x = xm − xf and F = FE −mẍf to get the following equation.

mẍ+Bẋ+ kx = F (1.5)

From this equation, we take the Laplace transformation and use quality factor Q = ω0m
B

and resonant frequency ω0 =
√

k
m to obtain the frequency response below.

x =
F
m

s2 + sω0
Q + ω2

0

=
ẍf

s2 + sω0
Q + ω2

0

= H(s)ẍ (1.6)

The equation above shows the frequency response that relates the acceleration to the

displacement of the proof mass in Figure 1.1. Therefore if there is a method to detect

the displacement of the proof mass, then the acceleration response can be deduced.
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Two ways to detect displacement are investigated below: piezeoresistive sensing and

capacitive sensing.

1.1.1 Piezoresistive Sensing

The idea of piezoresistive sensing is based on the fact that when material is subjected

to mechanical stress, its electrical resistance changes. It is based on the following law.

R = ρ
L

A
(1.7)

In this equation, R is the resistance, ρ is the resistivity, A is the cross-sectional area

of the conductor, and L is the length. We can derive this equation to obtain a form

relating fractional changes in resistance.

∆R

R
=

∆ρ

ρ
− ∆A

A
+

∆L

L
(1.8)

From the above equation, changes in resistance are due to material and geometric

changes. The material changes are related to resistivity changes while the geomet-

ric changes are due to changes in surface area and length. An often used measure of

piezoresistivity is the piezoresistivity coefficient π defined below.

π =
∆ρ/ρ

T
=

∆ρ/ρ

ES
(1.9)

In this equation, T is stress, E is Young’s modulus, and S is strain. Materials with high

piezoresistivity coefficients are most suited for application in accelerometers as they are

able to better show changes in resistance, which can be detected by measuring voltage

or current. A second coefficient used is the gauge factor, GF , defined below.

GF =
∆R/R

S
=

∆R/R

∆L/L
(1.10)

Equations (1.8), (1.9), and (1.10) can be combined to obtain the following equation.

GF = 1− ∆A/A

∆L/L
+

∆ρ/ρ

∆L/L
= 1 + 2ν + Eπ (1.11)

In the above, we’ve used the Poisson’s ratio ν defined as − ∆A/A
2∆L/L , which for almost all

materials is between 0 and 0.5. Crystalline and polycrystalline silicon have large gauge

factors in the hundreds, which makes them optimal choices for piezoresistive sensors.
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The main disadvantage of using piezeoresistors is that they inherently introduce various

types of noise. The main noise sources that add error to this type of sensing are thermal,

shot, and flicker noise, which are discussed in other literature [2].

1.1.2 Capacitive Sensing

Capacitive sensors have taken the most of the market share for accelerometer technolo-

gies due to their low-cost, low-power, and low-noise performance. Mechanical movement

induces changes in capacitance that can be measured, though sometimes in challenging

ways for low capacitances. The operation of these sensors is based on the current through

a capacitor, given below.

i =
∂CV

∂t
= C

∂V

∂t
+ V

∂C

∂t
(1.12)

Changes in current are due to both changes in voltage and changes in capacitance.

The first term in the equation is often called the displacement measurement because

changes of voltage are related to change in position while the second term is called

velocity measurement because it depends on how quickly capacitance changes. Because

the velocity measurement is proportional to the capacitance rate-of-change, it cannot be

used to determine static displacements and is therefore not often used for accelerometers.

The position measurement term in equation (1.12) is the term most often used in circuit

analysis showing that the current through a capacitor is equal to the capacitance times

the change in voltage. It is shown below.

i = C
∂V

∂t
(1.13)

Parallel plate capcitors are most often used in MEMS technologies. They are constructed

by two parallel plates separated by a small gap. The capacitance is then given by the

following.

C = ε
Ae

d0 − xc
(1.14)

In the above, ε is the permittivity, Ae is the electrode area, d0 is the initial electrode

gap, and xc is the movement of the capacitor plate from the initial position. By using

four capacitors in a Wheatstone bridge configuration as shown in Figure 1.2, changes in

displacement xc will correspond to changes in output voltage.

Designing the two left capacitors so that they are always equal to some capacitance C0

and the two right capacitors as moving in opposite directions, we can see that C1 =

ε Ae
d0−xc and C2 = ε Ae

d0+xc
. If we set C0 = εAe

d0
, we have C1 = C0

1−xc
d0

and C2 = C0
1+xc

d0

. Thus,
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Figure 1.2: Capacitors in a Wheatstone Bridge Configuration for Differential Mea-
surement

we can take the differential Vout = V2 − V1 and after some manipulation we obtain the

result below.

Vout = V2 − V1 =
xc
2d0

V (1.15)

This shows that the differential voltage output makes the change in displacement linearly

related to change in output voltage, even though the change in displacement is related

nonlinearly to the change in capacitance. From this change in displacement xc, we

can use the dynamics of the spring-mass-damper system to obtain the acceleration that

produced the displacement.

The main disadvantage of using capacitive sensing is that parasitic capacitances exist

that can distort the measured signal voltage. This is the biggest issue that must be

addressed and there are various ways to reduce the parasitic capacitances, such as single-

chip integration, shielding and grounding, and physical separation between capacitor

electrodes [2].

1.2 Capabilities and Applications

Accelerometer sensor technology has many applications in the industrial, aerospace, and

robotics fields. Some of these applications are listed below.

• Vehicle Dynamics

• Failure Analysis

• Vehicle Durability Testing

• Crash Testing

• Active Vibration Damping

• Motion Control for Robots or Tools

• Inertial Motion Measurement

• Robotic Manipulator Perception
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Due to the linear nature of accelerometers, with the capability of sensing along the

direction of one axis, there are some applications that are directly related to the railway

environment. Within this field, there are many applications of accelerometer technology,

which increase the reliability of the transportation, the comfort of the passengers, or the

safety of the system. Some applications specific to the railway environment are listed

below.

• Bogie monitoring, diagnostics system for security or comfort

• High-speed train tilt control system for improved passenger comfort

• Position monitoring of magnetic levitation train

• Health and usage monitoring system

• Shock monitoring

• Precise train positioning

• Railway track monitoring system

1.3 Accelerometers and Inertial Motion Units

One of the most interesting and potentially impactful applications of accelerometers

is in the potential use for measuring distances travelled in navigation and localisation

applications [1] [3]. In order to use accelerometers in inertial navigation applications,

an inertial measurement unit (IMU) must be built, which combines the accelerometers

with gyroscopes onto one module, which when attached to an object, can measure

the necessary changes in orientation and displacement, as shown in Figure 1.3. The

mathematical integration of the gyroscope data outputs the orientation of the object

while the double integration of the accelerometer data provides the changes in three

dimensions of movement. However, the technology is not immune to error, therefore a

strong understanding of associated sensor error is necessary while techniques to reduce

or avoid this error are essential to the successful use of this technology for inertial

applications.

Although there are sources of error that arise from the use of MEMS gyroscope and

accelerometer technology, they can be reduced by implementing real-time bias and sen-

sitivity updates and estimates. Therefore, it is desirable to design an inertial measure-

ment unit that can adequately compute the orientation and position of some object. It

is known that the sensors provide angular speeds and translational accelerations, there-

fore the algorithm consists of integrating the angular speed to obtain orientation with

respect to the frame of reference. With this update, double integrations of translational

accelerations will enable a mobile robot to know which direction it is moving. This is

summarized in block diagram form in Figure 1.4.
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Figure 1.3: Inertial Motion Unit Measuring Accelerations and Angular Velocities [1]

Figure 1.4: Inertial Measurement Unit Block Diagram Algorithm [1]

Another concept is the idea of pedestrian localisation, which utilizes an IMU mounted

onto a human to sense their navigation through an environment. Using the steps of the

human as they touch the floor as zero-speed updates for the state estimation algorithms

enables higher precision and better results [1]. This concept of zero-speed updates is

further investigated in Chapter 4.

Research was done in the use of an IMU for train localisation, which includes using

gyroscopes and accelerometers to determine the position of the train [4]. This work

utilizes feature detection to determine when the train is in a certain type of track or in

a certain type of motion, such as as curves, changing slopes, or standing still. Feature

detection is common in image processing algorithms in robotics. Other literature has

also been able to robustly estimate position using various sensors on-board a train [5].

However, this work requires the use of Global Navigation Satellite System (GNSS) data,

which is not always available for subway trains. Further work in [6] acknowledged the

limitation of using GNSS data and attempts to utilize various on-board sensors including

an IMU, odometer, and feature classification to fuse data using a Bayesian filter, which

gave encouraging results in simulations.
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1.4 Problem Statement and Thesis Organisation

There is a lot of research and literature that has been used to attempt to combine

accelerometers, gyroscopes, and magnetometers into an effective and accurate IMU for

dead reckoning in three-dimensions using various sensor fusion algorithms [4] [5] [6]. The

purpose of this thesis is to determine the capabilities for these sensors to work in the

railway environment, specifically on subway trains. This railway application simplifies

the dead-reckoning problem, as the rails constrain the motion of the vehicle in such a

way that the majority of its motion is in one dimension. This is an approximation but

it is desired to see how much error exists using this approximation. Using this simplified

problem, the challenge is to determine if simplified sensor hardware could accurately

determine the subway train’s position through time. The simplified hardware for this

thesis is to use a single accelerometer, rather than three different types of sensors.

In order to effectively test this concept, an evaluation platform was built that would test

various inertial algorithms on accelerometers travelling in a line, similarly to the motion

that would be applied in the railway environment. This evaluation platform is described

in Chapter 2, as well as the image processing algorithms used to determine the ground

truth of sensors during testing and a description of the setup used to capture data from

analog and digital sensors.

After testing on the evaluation platform, the sensors were brought into the field on

the TTC Shepphard line in Toronto. Various tests were designed to determine if the

algorithms developed could accurately estimate displacement from the data obtained.

Landmarks in the subway line were used as an estimate to determine the ground truth

of the train throughout testing (for example, it is known that the blue emergency lights

in the tunnel are spaced 150 m apart).

The major part of this thesis is to find a low-cost MEMS accelerometer that could replace

the high-cost sensor currently in-use on subway trains in the railway environment. This

accelerometer has to be replaced whenever a train is repaired and these replacements

costs can end up being very high. Therefore it is of interest to reduce the cost of building

and the cost of repair by finding low-cost accelerometers that perform as well as or better

than the current sensor. Chapter 3 details the accelerometer evaluation stages of this

thesis, in which a large number of sensors are sourced and considered. Using a weighted

decision-making process, eight sensors are chosen to be evaluated in the thesis to possibly

replace the Jewell Instruments LCA-165-5051 currently being used. These eight sensors

undergo testing on the evaluation platform and in the railway environment in order to

compare them and benchmark them.
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Finally, in Chapter 4, the thesis focuses on improving the inertial algorithms used to

estimate displacements. The major challenge that must be addressed is the zero-g bias

estimation problem. Due to changing track gradients and the suspension and braking

mechanisms of the train, the sensors are constantly at a slight unknown tilt with respect

to the gravity vector. This introduces a small component of gravity on the output of

the sensing axis, which translates to an unwanted added acceleration when there may

or may not be motion. Various methods are investigated, such as zero-velocity updates,

bias interpolation, optimal bias determination, and delta-mounted sensors.

To summarize, the main objectives of this thesis are below.

• Find and/or build a motion platform for evaluation of accelerometers

and design a setup that can be used to capture analog and digital data

coming from accelerometers that are chosen for evaluation.

• Research the most prominent MEMS sensor companies and list their

accelerometers. Narrow the list in order to evaluate and benchmark

approximately eight accelerometer sensors to determine which has the

most promise in an inertial application for estimating displacement.

• Investigate inertial algorithms that only use the accelerometer sensor

to accurately estimate displacements in a railway environment.
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Experimental Setup

2.1 Accelerometer Evaluation Platform

This section describes the evaluation platform that was designed to benchmark the

performance of various accelerometers. The primary objective of this platform is to

measure some basic properties of the accelerometers and compare these measurements

to the specifications from the datasheets. The secondary objective of this platform is to

determine the sensors’ ability to have their output double-integrated to obtain estimates

of the displacement. The following sections describe the motion platform in detail, the

accelerometer evaluation setup, and the camera and image processing used to determine

ground-truth of the sensors during experimentation.

2.1.1 Motion Platform

The motion platform used is a modified Rostock MAX 3D printer, shown in Figure 2.1.

This platform was chosen largely because of its low-cost. However, despite the low cost,

it is a requirement for the printer to be precise to the millimetre in order to successfully

print 3D objects.

This printer utilizes three arms in a delta configuration connected to stepper motors

to move the print head linearly in three dimensions. The platform has a movement

resolution of 1 mm and can move at speeds up to 800 mm/s . The hot-end of the printer

was removed and the end-effector was modified so that a sensor suite could be fitted

onto it. The printer is commanded using G-code from Repetier-Host software, which

allows the user to command the end effector to a coordinate in the working space as

well as command a speed.

11
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Figure 2.1: Rostock MAX 3D printer used as a motion platform

2.1.2 Accelerometer Evaluation Setup

In order to evaluate the accelerometers, there had to be a method to log the data

from each sensor. Although various accelerometers have off-the-shelf dataloggers and

evaluation platforms, it was inevitable that a custom printed-circuit-board would have

to be developed to log the data from some accelerometers that were not sold with an

evaluation platform. Due to past experiences with the Programmable-System-on-a-Chip

from Cypress Semiconductors, it was chosen to fulfill the communication requirements

to log data from analog or digital accelerometers. The PSOC5 development kit was

purchased, shown in Figure 2.2, which allows the user to program it to perform many

different tasks. For the purposes here, it was used as an analog-to-digital converter and

digital communication hub. Further, it was used to communicate over a serial-to-USB

communication with a PC, which saves the data to a text file. The programmable system

can be seen in Figure 2.3.

An interrupt system was used to sample the ADC and read digital data at a frequency

of 200 Hz. The PSOC5 samples 8 ADC channels, reads the SPI data, and sends this

information to the PC with a timestamp every 5 ms. On the PC side, a Matlab program
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Figure 2.2: Programmable-system-on-a-chip used to read accelerometer data and
transmit to a PC

Figure 2.3: Components in the programmable system-on-a-chip needed to log data
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was written to connect to the PSOC5 serial port and read in the data, then write it to a

text file. To ensure that the timing was correct, the setup was tested by comparing the

output timestamps to a stopwatch running at the same time. This ensured there were

no delays in the communication and that the timestamps were accurate for each sample

being logged.

2.1.3 High-Speed Camera and Image Processing

Commanding the motion of the end effector is done by specifying coordinates and the

speed of motion. However, throughout motion the actual position at every point of time

is not known precisely. In order to know the actual position, or ground truth, of the

end-effector over time, a high-speed, high-resolution camera was chosen. The GoPro

Hero3+ is capable of taking 960p video at 100 frames per second. At a low cost, this

camera was desirable compared to other high-speed cameras ranging in the thousands

of dollars. The GoPro camera has a built-in fish-eye lens, which adds distortion to

the videos taken. GoPro Studio was used in post-processing to flatten the images and

remove the distortion.

To determine the position of the end-effector, a simple target of two circles of known

radius is mounted onto the side of the sensor platform (visible in Figure 2.4 and Fig-

ure 2.5). The GoPro camera was mounted to the side of the evaluation platform, as seen

in Figure 2.4.

Figure 2.4: GoPro camera mounted to evaluation platform

The camera records the motion of the end-effector as it runs through the tests. During

post-processing, a circle-detection algorithm based on the Hough Transform from Math-

works [7] is used, which can find circles in an image and determine the position and the

radius of the circles in pixels. Knowing the actual radius of the circles in mm allows us

to obtain a pixel to mm scale. Therefore, as the position of the circles changes in the

image, the corresponding change in pixels can be scaled to a change in mm, giving us
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our ground truth of the end effector. The picture in Figure 2.5 shows one frame read

in from the GoPro camera of the target used with two circles. The circles are being

outlined as they are detected by the Hough Transform algorithm and the coordinates of

the centre’s of the circles are being calculated and displayed.

Figure 2.5: Hough detection algorithm detecting circles to obtain coordinates of the
centre of the circles

After the entire video is processed, the trajectory of the end effector throughout the test

is known, as seen in Figure 2.6. This figure illustrates the motion captured during a step

motion test, which travels three iterations from −10 cm to 10 cm in steps of 1 cm, with

pauses of 400 ms between each step. These displacements can be differentiated twice

to obtain velocity and acceleration, which provides us with a ground-truth acceleration

with which we can compare accelerometer data.

Figure 2.6: Output of ground-truth calculation using GoPro camera
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2.1.4 Evaluation Setup for Railway Testing

Although the initial testing was done on the evaluation platform, the sensors had to

be further tested in the environment in which they will be running. For testing in the

railway environment, the sensors were removed from the evaluation platform and placed

onto a wooden frame, shown in Figure 2.7, which could be screwed down to the floor of a

subway train. During testing, the frame was screwed into the floor beneath seats on the

subway train, shown in Figure 2.8. The evaluation tests were performed on the TTC

Sheppard line, travelling between the Sheppard-Yonge station and Don Mills station.

This subway line is shown in Figure 2.9

Figure 2.7: Sensors mounted onto wooden frame for testing in the railway environ-
ment

Figure 2.8: Sensor unit, power supply, and PSOC5 screwed to the floor beneath seats
in the subway train

Figure 2.9: Shepphard subway line where the evaluation tests were performed
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Accelerometer Comparison

3.1 Accelerometer Selection

The primary objective of this chapter of the thesis was to identify a group of accelerom-

eters that could be benchmarked and evaluated for potential in displacement estimation

in a railway environment. The accelerometers are to be benchmarked against the Jewell

Instruments LCA-165-5051, which is currently in use on-board subway trains. To this

end, the companies that developed MEMS sensors at the time of research were identified

and their most promising sensors were determined. In this section, the requirements and

objectives put forth by the stakeholders are outlined. Furthermore, the manufacturers

and sensors that have potential for evaluation are listed, followed by the decision-making

process that led to a final group of eight sensors, including the Jewell, to be tested.

Some of the most important characteristics of accelerometers are listed below. The

sensors’ datasheets typically provide specifications for each of these characteristics. They

are what make up the metrics for the device selection.

• Measurement range: The minimum and maximum accelerations the sensor can

detect (ie. ±2 g) [8].

• Sensitivity: the ratio of change in acceleration to change in output signal. This can

be expressed for analog sensors as a mV/g or for digital sensors as an LSB/g [8].

• Noise density: The square root of the power spectral density of the noise output

[8].

• Cross-axis sensitivity: A measure of how much output is seen on one axis when

acceleration is imposed on a different axis, specified as a percentage. The coupling

between two axes results from a combination of alignment errors, etching inaccuracies,

and circuit cross talk [8].

17
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• Nonlinearity: A measurement of the deviation from a perfectly constant sensitivity,

specified as a percentage with respect to full-scale range [8].

• Package alignment error: The angles between accelerometer-sensing axes and the

referenced package feature [8].

• Orthogonal alignment error: deviation from the ideal angular displacement (90◦)

between two axes of the device [8].

3.1.1 Objectives and Requirements

A list of criteria was developed to rank the datasheet specifications of these sensors in

order to narrow the number of accelerometers to within ten. The constraints and criteria

that were identified are listed below in Table 3.1 and Table 3.2 and were developed jointly

by the stakeholders in this project. Following the decision-making process, actual tests

would be run and the best accelerometer would be chosen based on its performance

against a different set of evaluation criteria.

Specification Minimum Maximum

Measurement Range −5 g 5 g
Unit Price $0 $350
Sampling Rate 100 Hz 100 Hz

Noise Density 0 µg/
√

Hz 200 µg/
√

Hz
Cross-Axis Sensitivity −2.0 % 2.0 %
Nonlinearity −1.5 % 1.5 %
Operating Temperature −40 ◦C 85 ◦C
Storage Temperature −40 ◦C 85 ◦C

Table 3.1: Constraints on accelerometer specifications

Specification Criterion Weighting

Sensitivity Higher is preferred 5
Unit Price Lower is preferred 5
Noise Density Lower is preferred 10
Cross-Axis Sensitivity Lower is preferred 8
Nonlinearity Lower is preferred 10
Storage Temperature A wider range is preferred 3
Number of axes Higher is preferred 3
Integrated Gyroscope Presence is preferred 3
Internal Temperature Sensor Presence is preferred 5
Digital or Analog Prefer digital 3
Ease of Evaluation Existing platforms preferred 3

Table 3.2: Criteria on accelerometer specifications
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3.1.2 Decision-Making Process

In order to begin the selection of accelerometers to be evaluated, a number of the most

prominent sensor manufacturers was chosen and their most promising low-cost sensors

were identified. The manufacturers identified from research in the industry are listed

below.

• Analog Devices

• Bosch Sensortec (referred to throughout as Bosch)

• Colibrys

• Honeywell

• InvenSense

• Kionix

• Memsic

• STMicroelectronics

All Honeywell, InvenSense, and Memsic sensors had noise levels or prices that far ex-

ceeded the constraints shown in Table 3.1. From the remaining manufacturers, 56 sensors

were identified to meet or closely meet the requirements. These sensors are shown in

Appendix A. From these 56 sensors, measuring against the criteria provided in Table 3.2,

15 sensors were chosen with an effort to take at minimum one or two sensors from every

manufacturer. These 15 devices and some key specifications are found in Table 3.3.

Manufacturer Accelerometer Cost Noise (µg/
√

Hz) Output

Analog Devices ADIS16003 $23.00 110.00 Digital
Analog Devices ADIS16300 $96.06 200.00 Digital
Analog Devices ADIS16305 $133.35 225.00 Digital
Analog Devices ADIS16445 $537.00 105.00 Digital
Analog Devices ADXL203 $10.86 110.00 Analog
Analog Devices ADXL313 $49.00 150.00 Digital
Bosch BMA280 $1.46 120.00 Digital
Colibrys MS7002.3 $330.00 14.00 Digital
Colibrys MS9002.D $290.00 18.00 Digital
InvenSense MPU-6000 $15.00 400.00 Digital
Kionix KXR94 $10.64 45.00 A or D
Kionix KXRB5 $9.92 45.00 Analog
STMicroelectronics LIS344ALH $5.67 50.00 Analog
STMicroelectronics LIS3LV02DL $11.91 158.00 Digital
STMicroelectronics LSM303DLHC $5.02 220.00 Digital

Table 3.3: Fifteen accelerometers that met requirements

The fifteen accelerometers are further evaluated with the goal of evaluating between five

and ten sensors. In order to rank these sensors, a Pugh chart was used, which scores each
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sensor against the criteria listed in Table 3.2 and assigned each score the corresponding

weight. The scores resulting from the Pugh chart is shown in Figure 3.1.

Figure 3.1: Scores obtained from Pugh chart for alternatives

3.1.3 Overview of Selected Accelerometers

The accelerometers outlined in Table 3.4 were chosen to be evaluated and benchmarked

for this project. Table 3.4 also lists the reasoning for choosing each sensor. Further

details on each are described in the section below.

Manufacturer Accelerometer Reasoning

Analog Devices ADIS16305 Second best from AD, but much lower cost
Bosch BMA280 Best from Bosch and very low-cost
Colibrys MS9002.D Best from Colibrys
Jewell Instruments LCA-165-5051 Currently in use
Kionix KXR94 Best from Kionix; evaluation board exists
Kionix KXRB5 Similar to KXR94; data logger exists
STMicroelectronics LIS344ALH Best from STMicroelectronics
STMicroelectronics LIS3LV02DL In-House (AG-1 IMU)

Table 3.4: Accelerometers chosen for evaluation

3.1.3.1 Analog Devices ADIS16305

The ADIS16305 from Analog Devices is a three-axis digital acceleromter with a gyro-

scope. In order to test this device, the Analog Devices EVAL-ADIS Evaluation Board
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was purchased. Using the supplied firmware, data from the ADIS16305 could be run in

real-time and logged on a computer via a USB-to-Serial connection.

3.1.3.2 Bosch BMA280

The BMA280 is a 14-bit, three-axis, digital accelerometer that communicates via SPI or

I2C interface. At this time of research, Bosch does not provide any evaluation boards

to communicate with the chip and log data. A custom PCB was developed to breakout

the chip pads to pins in order to communicate with the chip using the PSOC5.

3.1.3.3 Colibrys MS9002.D

The MS9002.D is a one-axis accelerometer chip with an analog output voltage between

0 and 5 volts. At the time of research, the manufacturer did not supply any evaluation

boards or interfaces for this chip, so a custom PCB was designed that provided the chip

with power and put the chip’s output signals onto connector pins, which could be read

in by an ADC, configured on the PSOC5.

3.1.3.4 Jewell LCA-165-5051

The Jewell Instruments accelerometer is a rugged one-axis analog accelerometer that

operates on a ±15 V power supply. This accelerometer is considered the highest quality

as it is the most expensive accelerometer even though it is only one axis. A portion of

this cost can be attributed to the packaging that the sensor comes encased in. An ADC

is required to read and log the data from this sensor, so it was therefore connected to

the PSOC5.

3.1.3.5 Kionix KXR94

The Kionix KXR94 sensor is a three-axis accelerometer that comes in either a digital

or an analog package that had low noise and nonlinearity specifications. Furthermore,

Kionix offered an evaluation kit and firmware for this sensor. However, there were issues

with the zero-g bias of both chips that were purchased from Kionix and technical help

from the company did not prove useful. Since accurate and correct data could not be

obtained from this sensor, it was not put into any further tests.
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3.1.3.6 Kionix KXRB5

The Kionix KXRB5 is a three-axis digital accelerometer that has very similar specifica-

tions as the KXR94. It was identified primarily because it was used in a data logger, the

X2-2, from the company Gulf Coast Data Concepts (GCDC). This product logs the data

output from the sensor and saves it to a microSD card, which can be processed later.

Since there were implementation issues with the KXR94, the KXRB5 was considered an

alternative candidate from the same manufacturer. This sensor may be called GCDC

or GCDCXYZ in various figures throughout.

3.1.3.7 STMicroelectronics LIS344ALH

The LIS344ALH accelerometer is a three-axis analog output voltage accelerometer with

a ±2 g range. There is no evaluation board to log data from this accelerometer, but

the manufacturer provides a breakout board (STEVAL-MKI015V1), which can be easily

interfaced to an ADC. The PSOC5 was used to capture the analog data from this sensor.

3.1.3.8 STMicroelectronics LIS3LV02DL

The LIS3LV02DL is a three-axis digital accelerometer that was initially not included

in the list of accelerometers to test. However, an accelerometer and gyroscope data

logger (AG-1 from Icewire Technologies) was provided at no cost, which utilizes this

accelerometer and logs data onto an SD card. Because of the ease of implementation

and zero cost, this accelerometer was included in evaluation.

3.2 Evaluation Tests and Requirements

With eight sensors to be tested, a series of tests was needed to properly evaluate each

sensor and compare them. Using some of the criteria identified in Table 3.2, tests were

developed that would be able to verify datasheet specifications and quantitatively rank

the accelerometers. Therefore, a new set of evaluation requirements was established,

based off the various tests that were designed.
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3.2.1 Evaluation Tests

3.2.1.1 Noise Characterization

Noise was identified as the most important criterion from the initial set and therefore

consists of the first evaluation. The sensors were mounted onto the workbench and the

output data was logged in intervals of approximately twenty seconds. This was done ten

times. The noise density was calculated according to the following equation.

N0 =
σ√
BW

(3.1)

In this equation, N0 is the spectral noise density, σ is the signal standard deviation and

BW is the signal bandwidth. The noise density from each run was then averaged to

obtain a final actual measurement of each sensor’s noise density.

3.2.1.2 Off-Axis Motion

The cross-axis sensitivity is “a measure of how much output is seen on one axis when

acceleration is imposed on a different axis, specified as a percentage” [8]. This defini-

tion assumes that, given that motion could be perfectly applied perpendicularly to the

sensing axis, the sensing axis would then measure a percentage of this acceleration. The

off-axis motion tests are developed to test the cross-axis sensitivity of the accelerome-

ters, however the use of the term off-axis is used to explicitly state that this does not

specifically test the cross-axis sensitivity of the sensor. This is because by mounting

the devices into the evaluation platform, errors arise from small mounting angles and

tilts and other mechanical imperfections associated with the evaluation platform and

the workbench. Therefore, the off-axis sensitivity encompasses the cross-axis sensitivity,

packing alignment error, orthogonal alignment error, mounting error, and other mechan-

ical imperfections that are impossible to characterize quantitatively. The off-axis term

in this report corresponds to one of the axes perpendicular to that of the sensing axis,

most often the other horizontal axis (ie. x-axis for y-sensing-axis). In that sense, an

off-axis motion is a motion perpendicular to the sensing axis and an on-axis motion is a

motion in the direction of the sensing axis, as illustrated in Figure 3.2

The tests that were developed to quantify the off-axis error are to move the end-effector

of the evaluation platform in the perpendicular direction of motion to the sensing axis.

For the set-up with the coordinate frame of the platform, motion was applied in the

x-direction while acceleration was sensed in the y-direction. The standard deviation of
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Figure 3.2: Off-axis motion and on-axis motion when the y-axis is the sensing axis

the output is used to quantify the amount of signal obtained from each sensor based on

the same accelerations in the perpendicular direction.

3.2.1.3 Vibrations

The vibration tests are designed to test both the devices’ ability to reject off-axis vibra-

tion motion as well as detect small vibrations in the direction of the sensing axis. This

test moves the end-effector of the testing platform in all three directions at three different

speeds. The standard deviation is measured during the off-axis vibrations to quantify

the amount of error provided on the output of the sensing axis. Further, during the

on-axis motion, the output is double-integrated to determine if accurate displacements

of the vibration are obtained, with a final displacement of zero, since the end-effector

returns to its original position at the end of each vibration.

3.2.1.4 Linear Step Motion

The linear step motion test is designed to determine the sensors’ ability to estimate

displacements by double integrating their output. The motion is applied on-axis by

moving 5 cm to one direction. Then ten steps of 1 cm motion are applied in the other

direction, with 400 ms pauses in between. The end-effector is then returned to its original

position. Returning to the original position provides a simple method of determining

the error, as final displacement should be zero.
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3.2.1.5 Subway Train Tests

The sensors were brought onto subway trains at the Toronto Transit Committee (TTC)

for testing in a railway environment. Six types of tests were designed for comparing the

sensors to each other. They are described below.

• Step Test: The train was driven in one-direction, stopping every 150 m, for five

intervals.

• Shuttle Test: The train travels to one point, then returns to the original point.

This test was done in a subway station to have the most level track possible.

• High Speed Test: The train travelled at high speed from one station to another

• Step and Return Test: The train travelled from Bayview station to the end

station (Sheppard-Yonge station). The train then returned, along the returning

track, to the original station. In this test, when approaching the Sheppard-Yonge

station the train had to stop three times to flip a switch in order to continue.

• Full test: The train travelled the entire Sheppard line, stopping at all station.

During the actual test, the driver only slowed down at the first station, instead of

coming to a complete stop.

• Motionless test: This test was designed to measure the noise output aboard the

train to gauge how much more mechanical and electrical noise is present in the

railway environment.

3.2.1.6 Thermal Tests

Operating in the railway environment in various climates, it is important that the sensors

are able to function in a wide range of temperatures. The sensors were required to

function between −45 ◦C and 85 ◦C. The sensors were put into a thermal chamber in

order to test their functionality at these temperatures. The output bias and sensitivity

of the sensor could be affected by the temperature. In order to differentiate between

the two, the sensors were placed in the chamber mounted with the y-axis vertically (1 g

on the y-axis, 0 g on the others). The zero-g axes would determine if the bias level

is affected. The sensors were then placed at a 45◦ tilt (see Figure 3.3). With these

two tests, it would be possible to determine if there is a correlation between bias and

sensitivity changes and the temperature changes.

3.2.2 Evaluation Requirements

In order to remove sensors from evaluation and rank them, a set of requirements was

developed, based on the evaluation tests that were described in the previous section.
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(a) Sensors mounted in thermal chamber with y-axis
aligned with gravity

(b) Sensors mounted in thermal chamber with y-axis 45◦

to gravity

Figure 3.3: Thermal chamber mounting

The constraints are listed in Table 3.5. For each specification, the criteria is that the

lower error is preferred. The weighting for each error quantity is also listed Table 3.5.

The double integration results are strongly dependent on the algorithms used. A very

complex and sophisticated algorithm may be able to have great results for all sensors
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Specification Constraint Weighting

Noise Density < 200 µg/
√

Hz 10
Cost < $300 8
Off-Axis Error N/A 5
Vibration Error N/A 5
Linear Step Motion Integration N/A 5
Subway Step Test N/A 3
Subway Shuttle Test N/A 3
Subway High Speed Test N/A 3
Subway Step and Return Test N/A 3
Subway Full Test N/A 3

Subway Motionless Test < 200 µg/
√

Hz 8

Thermal Test < 200 µg/
√

Hz 5
Digital or Analog Prefer Digital 3

Table 3.5: Evaluation requirements for benchmarking

used, however would likely not be practical in real-time or in the subway control sys-

tem. Therefore, in order to compare the results of displacement estimation, error was

calculated with respect to the currently used accelerometer, the Jewell device. The fol-

lowing section will describe the algorithm used to perform double integration, which,

for the purposes of comparison of the sensors themselves, is as simple as possible. This

inertial algorithm, including integration and filtering, will be termed the simple inertial

algorithm. In Chapter 4, more advanced algorithms will be explored to provide more

precise estimation of displacement.

3.2.3 Simple Inertial Algorithm

3.2.3.1 Double Integration

The simple integration algorithm used includes a numerical double integration based on

the trapezoidal rule as shown in Equation (3.2) and Equation (3.3).

∫ t2

t1

v(t)dt ≈ (t2 − t1)
v(t2) + v(t1)

2
(3.2)

∫ t2

t1

x(t)dt ≈ (t2 − t1)
x(t2) + x(t1)

2
(3.3)

3.2.3.2 Filtering

The primary filtering that was done was the implementation of an Finite Impulse Re-

sponse (FIR) filter. The filter is a standard Hamming-window based, linear-phase filter
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with cut-off frequency of 15 Hz and order 60. The filter eliminates the unwanted vi-

brations that are present on the subway trains and in any environment where unknown

vibrations are present and reduces the noise level on the output of the sensors. The

magnitude response of the filter is shown in Figure 3.4.

Figure 3.4: Magnitude response of the low-pass FIR filter with 15 Hz cut-off frequency
and order 60

3.2.3.3 Bias Computation and Elimination

In order to accurately integrate acceleration, the zero-g bias must be removed from the

output data. For the simple inertial algorithm, this occurs two times. The first bias

correction takes the mean of the entire data set and subtracts the mean from the data.

This correction gets the data near zero-g, which helps to align the data from the various

sensors. This is necessary because the sensors are all started sequentially, a couple

seconds apart.

Once the data is aligned, it is passed through the filter described above. Then the second

bias correction stage is applied, in which the mean of the first second of data is removed

from the data set. This ensures that all sensors have the first second of data corrected

at zero-g to ensure an equal comparison during double integration.

3.2.3.4 Ground Truth from Video Data

In order to determine the ground truth during evaluation platform testing, the GoPro

camera is used to take videos of the end-effector through motion. Using the calculated

displacements from the circle-detection algorithm, the ground-truth is obtained. In order

to compare these results with the acceleration results, we take the double derivative of

the displacement to obtain velocity and acceleration. The ground-truth acceleration can

then be considered as an ideal accelerometer and its output is then processed through

the same inertial algorithm as the actual accelerometers. In addition, the computed raw

displacements from the GoPro are plotted with the displacement estimations from the
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accelerometers as well as the double-differentiated, then double-integrated, GoPro data

to determine any errors in differentiation or integration algorithms.

3.2.3.5 Full Simple Inertial Algorithm

The full simple inertial algorithm is visually depicted in Figure 3.5.

Figure 3.5: Block diagram of the simple inertial algorithm

3.3 Evaluation Results

3.3.1 Noise Results

The noise density of each sensor was measured to see how closely the sensor matches

its datasheet. Noise measurements were performed in a stationary environment on

the workbench. The results of the noise measurements are summarized in Table B.2

in order of lowest noise to highest noise with the datasheet specifications in the next

column. Furthermore, the total noise is also shown, which is independent of the sampling

frequency. The data obtained from these sensors for one of the ten noise runs can be

seen in Figure 3.6, also presented in order of lowest to highest noise.
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(a) Jewell motionless data (b) KXRB5 motionless data

(c) LIS3LV02DL motionless data (d) ADIS16305 motionless data

(e) BMA280 motionless data (f) MS9002.D motionless data

(g) LIS344ALH motionless data

Figure 3.6: Motionless data for sensors

The reason that the data in Figure 3.6d looks much noisier than others but has an
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Accelerometer
Measured

Noise (µg/
√

Hz)

Datasheet
Specification

(µg/
√

Hz)

Total Noise
(µg)

Jewell 42.65 100.00 426
KXRB5 43.17 45.00 488
LIS3LV02DL 47.23 158.00 419
ADIS16305 289.77 225.00 5018
BMA280 333.86 120.00 3339
MS9002.D 563.93 18.00 5639
LIS344ALH 585.96 50.00 5860

Table 3.6: Noise measurements of the sensors compared to datasheet specifications

actual lower noise density is that the ADIS16305 is sampled at a much higher sampling

rate, at approximately 600 Hz, while the the other sensors are sampled around 200 Hz.

This higher sampling rate correspondingly lowers the noise density, as evident from

Equation (3.1).

Only three of these eight sensors, the Jewell, the LIS3LV02DL and the KXRB5, meet

the constraints listed in Table 3.5. The next steps for testing the sensors were to mount

them onto the end-effector of the evaluation platform to test other characteristics such

as cross-axis sensitivity and inertial displacement estimation potential. The sensors that

did not meet the noise constraints are not included in the results for the next tests for

simplicity and conciseness of the report, since the noise level significantly affects other

tests. However, for completeness, the results are included in Appendix B. The scores for

the sensors that meet the noise constraints are shown in Table 3.7.

Accelerometer Score (out of 100)

Jewell 79
KXRB5 78.5
LIS3LV02DL 76.5

Table 3.7: Scores assigned to the devices from noise evaluation

3.3.2 Off-Axis Error Results

Noise density of the sensors was one of the highest weighted criteria that were outlined

by the stakeholders. Another heavily weighted criterion was cross-axis sensitivity. This

is defined as the amount of acceleration measured on an axis when an acceleration

is applied to another axis, perpendicularly. In an ideal testing environment, motion

would be applied perfectly perpendicularly to the axis being measured, however due to
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mounting errors and slight tilts of the workbench or end-effector, this is impossible. The

best effort was made to mount the sensors precisely for these tests.

The test in itself consists of moving the end-effector back and forth in the x- and z-axes.

The y-axis is the output being tested. One test moved the end effector in the x-axis

while measuring the y-axis output. The second test moved the end effector in the z-axis

three times, at different speeds (slow, medium, and fast), and this was done twice. The

metrics chosen to determine the amount of error on the output are the noise density

during measurement, the maximum signal measured, and the signal power. The noise

density is calculated in the same manner as in Equation (3.1). The maximum absolute

signal is the maximum positive or negative acceleration sensed during the measurement.

The signal power is an average of the signal energy over time, calculated according to

Equation (3.4).

P =
1

t2 − t1

∫ t2

t1

(|a(t)|)2dt (3.4)

The results of these tests are summarized in Table 3.8.

Test Accelerometer
Measured

Noise
(µg/

√
Hz)

Maximum
Signal (mg)

Signal
Power (g2)

X-Axis Jewell 37720 0.170 0.01400
X-Axis LIS3LV02 19945 0.094 0.00390
X-Axis KXRB5 15228 0.076 0.00230

Z-Axis Slow Jewell 10411 0.036 0.00107
Z-Axis Slow LIS3LV02 6464 0.018 0.00042
Z-Axis Slow KXRB5 5076 0.015 0.00028

Z-Axis Medium Jewell 43246 0.172 0.01820
Z-Axis Medium LIS3LV02 11286 0.073 0.00120
Z-Axis Medium KXRB5 9067 0.040 0.00080

Z-Axis Fast Jewell 37411 0.229 0.01370
Z-Axis Fast LIS3LV02 21737 0.117 0.00460
Z-Axis Fast KXRB5 15956 0.095 0.00250

Average Jewell 32197 0.152 0.01174
Average LIS3LV02 14858 0.076 0.00253
Average KXRB5 11331 0.056 0.00147

Table 3.8: Quantitative results from off-axis testing

As can be seen from the results, the KXRB5 is the sensor that rejects off-axis motion

the best, followed by the LIS3LV02DL, then the Jewell. The scores assigned to each

sensor for their performance in the off-axis error specification are shown in Table 3.9.
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Accelerometer Score (out of 100)

Jewell 60
KXRB5 95
LIS3LV02DL 90

Table 3.9: Scores assigned to the devices from vibration evaluation

3.3.3 Vibration Results

The vibration tests moved the devices in all three axes at three different speeds. In

order to quantify the sensors’ ability to reject off-axis vibrations and on-axis vibration,

the same metrics as in the off-axis error tests were used. They are the noise level, the

maximum absolute signal, and the signal power. The raw data from the tests is shown

in Figure 3.7.

Figure 3.7: Raw data for three sensors during vibration testing

The quantitative results from the raw data in Figure 3.7 is summarized in Table 3.10.

In all cases, a lower number is preferred.

Accelerometer
Measured

Noise
(mg/

√
Hz)

Maximum
Signal (mg)

Signal
Power (g2)

Jewell 38.03 119.96 24.12
KXRB5 38.35 116.32 25.61
LIS3LV02DL 31.04 91.28 21.39

Table 3.10: Quantitative results from vibration testing

To summarize the results from Table 3.10, the LIS3LV02DL sensor has the best ability to

reject vibration signal by having the lowest measured noise, lowest maximum signal, and

lowest signal power. The scores resulting from vibration results are shown in Table 3.11.
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Accelerometer Score (out of 100)

Jewell 80
KXRB5 80
LIS3LV02DL 95

Table 3.11: Scores assigned to the devices from vibration evaluation

3.3.4 Step Motion Results

During the step motion tests, the end-effector was brought to the location y = −10 cm,

then moved across the stage to y = 10 cm in intervals of 1 cm, with pauses of 400 ms in

between each interval. The end-effector was then brought back to the initial position at

y = 0 cm.

Using the simple inertial algorithm, the output of the accelerometers was double inte-

grated to obtain displacement. The test was performed three times in a row. The raw

data obtained from the test is shown in Figure 3.8.

Figure 3.8: Raw data for three sensors during step motion testing
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The GoPro camera was used to determine the ground-truth of the end-effector through-

out the test. This shows the actual motion that the devices underwent. The devices are

contrasted against this ground-truth in order to compare their performance, based on

several metrics. The quantifiable metrics are: the displacement power and the velocity

power. The power of a signal is calculated according to Equation (3.5).

P =

n2∑
n=n1

|a[n]|2 (3.5)

For the individual tests, the results are shown in Figure 3.9. The results are further

quantified in Table 3.12

Accelerometer
Final

Velocity
(m/s)

Velocity
Power
(m2/s2)

Final Dis-
placement

(m)

Displacement
Power(m2)

Jewell 0.666 1.736 -0.384 43.125
KXRB5 0.669 1.633 -0.02 32.636
LIS3LV02DL 0.975 2.919 2.887 14.390

Table 3.12: Quantitative results from step testing, averaged for three individual runs

The results from Table 3.12 would suggest that the LIS3LV02DL performs the best

amongst the three sensors, as it has lower velocity and displacement power. However,

having a final velocity higher than the other two sensors is a very significant downfall.

If the data is integrated through all three tests at once, as shown in Figure 3.10, it is

clear why this is the case.

The final displacement and velocity of the LIS3LV02DL is much larger compared to

the other three sensors when the three tests are put together. Although the individual

tests would suggest LIS3LV02DL to be the best sensor in this case, the full integration

shows that this is not the case. This is shown in Table 3.13, where the full measurement

velocity and displacement powers are shown.

Accelerometer
Final

Velocity
(m/s)

Velocity
Power
(m2/s2)

Final Dis-
placement

(m)

Displacement
Power(m2)

Jewell 1.96 45.80 37.49 12707
KXRB5 1.99 46.79 38.29 13250
LIS3LV02DL 2.96 121.50 66.72 44657

Table 3.13: Quantitative results from step testing for three runs in a row
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(a) Single integration of acceleration to obtain velocity

(b) Double integration to obtain displacement

Figure 3.9: Results of double integration for one step motion run
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(a) Single integration to obtain velocity

(b) Double integration to obtain displacement

Figure 3.10: Results of double integration for all three step runs in a row
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From these results, it is clear that the KXRB5 sensor has the best performance, followed

closely by the Jewell. The scores assigned to each sensor in this category are shown in

Table 3.14.

Accelerometer Score (out of 100)

Jewell 90
KXRB5 95
LIS3LV02DL 75

Table 3.14: Scores assigned to the devices from step motion evaluation

3.3.5 Subway Test Results

There were five subway tests used to evaluate the sensors: the step test, the shuttle test,

the step-and-return test, the high speed test, and the motionless test. The step test

was performed four times, the shuttle test was performed once, the step-and-return test

was performed twice, and the high speed test was performed twice. The motionless test

was ran for over 200 seconds to obtain a measurement of the noise density on-board the

subway train.

Raw data from the noise measurements can be seen in Figure 3.11.

The LIS3LV02DL maintains the least noise followed by the KXRB5, as the results in

Table 3.15 show. These sensors are both digital, while the Jewel is an analog sensor.

There is possibility of electrical noise being induced onto the cables connecting to the

Jewel, which could account for its weaker performance in this category.

Accelerometer
Measured

Noise (µg/
√

Hz)

Datasheet
Specification

(µg/
√

Hz)

Total Noise
(µg)

Jewell 112.91 100.00 1129
KXRB5 54.31 45.00 457
LIS3LV02DL 40.38 158.00 361

Table 3.15: Noise measurements of sensors on stationary subway train

The step test consisted of five movements of 150 m each. The actual displacement was

approximately 760 m. The raw data obtained from the three sensors for one of these

runs can be seen in Figure 3.12.

The shuttle test was a single movement approximately 140 m each through a station,

followed by a movement back to the original position. The raw data obtained from the

three sensors in this one run is shown in Figure 3.13.
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(a) Jewell stationary noise on the subway
train

(b) GCDC stationary noise on the subway
train

(c) AG1 stationary noise on the subway train

Figure 3.11: Raw data measurements of stationary subway noise
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(a) Step test acceleration

(b) Step test velocity

(c) Step test displacement

Figure 3.12: Raw data measurements of subway step test
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(a) Shuttle test acceleration

(b) Shuttle test velocity

(c) Shuttle test displacement

Figure 3.13: Raw data measurements of subway shuttle test
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The step-and-return test started at Bayview station, travelled towards Yonge station,

and then returned to Bayview station. Both stations are 2000 m apart, totalling 4000 m

of travelled distance. The raw data from one of the two runs is shown in Figure 3.14.

During the high speed test, the subway train was brought up to its maximum speed

(approximately 55 km/h) and travelled from one station to the other. The raw data

from one of the high speed runs is shown in Figure 3.15.

The output for each run was double-integrated using the simple inertial algorithm to esti-

mate the displacement. In order to compare the sensors, final velocity and displacement

values were calculated. However, these results utilize a very simple inertial algorithm

that has poor performance. Therefore, to normalize the results, the error is calculated

as a difference between the sensors’ output and the Jewell’s output, then divided by the

Jewell output, providing a percentage error value. The results of the all of the tests are

summarized in Table 3.16.
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(a) Step-and-teturn test acceleration

(b) Step-and-teturn test velocity

(c) Step-and-teturn test displacement

Figure 3.14: Raw data measurements of subway step-and-return test
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(a) High speed test acceleration

(b) High speed test velocity

(c) High speed test displacement

Figure 3.15: Raw data measurements of subway shuttle test
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Step 1 KXRB5 1.41 4 128.75 3
Step 1 LIS3LV02DL 1.06 3 84.08 2
Step 2 KXRB5 0.53 2 35.56 2
Step 2 LIS3LV02DL 0.45 2 30.71 2
Step 3 KXRB5 0.23 1 38.47 1
Step 3 LIS3LV02DL 0.26 1 7.06 0
Step 4 KXRB5 0.05 0 24.95 0
Step 4 LIS3LV02DL 0.00 0 9.31 0

Average KXRB5 0.55 2 56.93 2
Average LIS3LV02DL 0.44 0 32.79 1

Shuttle KXRB5 0.85 7 115.39 4
Shuttle LIS3LV02DL 1.57 14 404.08 14

Step and Return 1 KXRB5 2.27 6 914.53 4
Step and Return 1 LIS3LV02DL 4.36 11 1459.48 6
Step and Return 2 KXRB5 3.50 12 1037.30 6
Step and Return 2 LIS3LV02DL 1.57 5 528.13 3

Average KXRB5 2.89 9 975.92 5
Average LIS3LV02DL 2.96 8 993.80 5

High Speed 1 KXRB5 0.31 2 52.62 14
High Speed 1 LIS3LV02DL 0.66 3 41.66 11
High Speed 2 KXRB5 0.25 2 36.38 18
High Speed 2 LIS3LV02DL 0.46 3 65.62 33

Average KXRB5 0.28 2 44.50 16
Average LIS3LV02DL 0.56 3 53.64 22

Table 3.16: Quantitative results from various subway tests

Examining the results from Table 3.16, it is difficult to say whether one of the sensors

performs better than the other. The LIS3LV02DL performs better on average in the

step test, however the KXRB5 performs better on average in the other three tests.

In these results, the sensors are rated relative to the Jewell. However, the Jewell has

significant error itself and possibly more than the other two sensors. Therefore it is useful

to compare the final displacements of each sensor for the tests in which the approximate
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actual displacements are known. The results are summarized in Table 3.17, where the

total error for the displacement estimation is shown. Averages are taken for the tests

that had multiple runs.

Test Accelerometer
Displacement

(m)

Actual Dis-
placement

(m)

Displacement
Error(m)

Step Jewell 3642 760 2882
Step KXRB5 3585 760 2825
Step LIS3LV02 3609 760 2849

Shuttle Jewell -3691 0 3691
Shuttle KXRB5 -3057 0 3057
Shuttle LIS3LV02 -3482 0 3482

Step-and-Return Jewell 19310 0 19310
Step-and-Return KXRB5 19371 0 19371
Step-and-Return LIS3LV02 18844 0 18844

Table 3.17: Absolute error during subway tests

From the absolute error results shown in Table 3.17, all three sensors have a large amount

of error from the simple inertial algorithm. Because the bias estimation is inaccurate

using this algorithm, large integration drift error is present. However, the sensors are

consistent amongst themselves, with final displacements being only a small percentage

different from each other. This suggests that the sensors perform similarly, but a more

intelligent algorithm may be needed to accurately estimate the displacement from the

acceleration data.

In addition, it must be taken into account that there were possible mounting errors,

which would make the sensing axis of each sensor misaligned with the direction of motion.

This could have a significant effect in reducing or increasing the error in the results,

though it is impossible to quantify this error. Care was taken in mounting the sensors

parallel to the side of the train, though imperfections would remain.

The next section will introduce advanced algorithms that obtain better estimations

of displacements. These results serve only to demonstrate that with the most simple

algorithms, the results from the three sensors is very similar. In fact, the low-cost

sensors have lower displacement error on average. The scores for the sensors for the

TTC trials are summarized in Table 3.18. Because of the fact that it is very difficult to

compare the sensors from these evaluations due to the simple inertial algorithm used,

the subway testing criteria are weighted lower than the rest, except for the stationary

noise measurement.
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Test Accelerometer
Score (out of

100)

Noise Jewell 50
Noise KXRB5 80
Noise LIS3LV02 75

Step Jewell 45
Step KXRB5 55
Step LIS3LV02 50

Shuttle Jewell 40
Shuttle KXRB5 60
Shuttle LIS3LV02 50

Step-and-Return Jewell 50
Step-and-Return KXRB5 45
Step-and-Return LIS3LV02 60

High Speed Jewell 50
High Speed KXRB5 55
High Speed LIS3LV02 45

Table 3.18: Scores for the various subway evaluations

3.3.6 Thermal Testing Results

The sensors were tested at the Thales office in an industrial thermal chamber. The main

factor that was immediately noted was that when the thermal chamber was turned on,

a substantial amount of vibrations was present due to the heating and cooling systems.

This mechanical noise was then seen on the output of all of the accelerometer sensors.

Secondly, there is the possibility that some electrical noise was also induced on the output

of the sensors. Thirdly, as can be seen from Figure 3.3, some of the sensors were mounted

above others. When the main block of wood undergoes vibrations, they are propagated

to the devices on the upper levels and the vibrations are amplified there. A last issue is

that the devices logged data in many different manners, as we had two different off-the-

shelf dataloggers, one custom PCB, and two rugged analog accelerometers mounted at

the same time. The GCDC data logger was unable to completely log cold temperatures

as it went into an error mode, which could not be reset until the battery died. This

prevented full testing of the Kionix KXRB5 chip.

Due to the combination of these factors, the thermal testing was largely inconclusive.

However, plots of the data from the sensors is available in Appendix B, which shows

some variance in the sensor data during testing. It is not clear unfortunately if there is a

direction relation between temperature changes and acceleration changes, which makes

it impossible to compensate for these changes. Further thermal testing is recommended

to ensure that the selected device can successfully perform in the required temperature

range.
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3.4 Evaluation Summary

In order to recommend a low-cost device for use in the railway environment, a score was

assigned to each device that met constraints in each criterion from Table 3.5. The scores

for the devices are shown in Table 3.19.

Characteristic Weight Jewell KXRB5 LIS3LV02DL

Noise Density 10 79 78.5 76.5
Unit price 8 0 100 100
Off-Axis Error 5 60 95 90
Vibration Error 5 80 95 80
Step Integration 5 90 95 70
Subway Step 3 45 55 50
Subway Shuttle 3 40 50 60
Subway High Speed 3 50 55 45
Subway Step and Return 3 50 45 60
Subway Noise 8 50 80 85
Thermal 5 N/A N/A N/A
Digital or Analog 3 0 100 100

Table 3.19: Summary of all scores for the evaluation requirements

These scores are then multiplied by the assigned weights and a final score for each device

is calculated. The final score for each device can be seen in Figure 3.16.

Figure 3.16: Decision-making results, based on the assigned score and weight for each
requirement

As can be seen from Figure 3.16, the KXRB5 sensor has the highest score calculated

from its performance in the various evaluation tests. The LIS3LV02DL performs very

similarly to the KXRB5 and could certainly be considered as an alternative for the Jewell

replacement. Although the final score shows the Jewell performing significantly worse
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than the other two devices, this is primarily because the cost of the device is included in

this selection process. In this category, the Jewell scores zero. However, it is important

to note that the Jewell is an off-the-shelf device that is ready for implementation at

its stated cost. In contrast, both the KXRB5 and the LIS3LV02DL require an amount

of electrical and mechanical design in order to obtain the data from the digital sensors

and ruggedize the components for an industrial and automotive environment. The final

recommendation for further investigation and implementation in the railway

environment is the Kionix KXRB5.
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Inertial Algorithms

This section of the thesis describes the methods that were used to improve the results

of double integration of the acceleration data to obtain displacement. The key problem

to be solved is bias estimation. The biggest challenge to be addressed in determining

displacements from acceleration signals is to remove the undesired gravity component

from the output. Unfortunately, the largest expected accelerations in the railway envi-

ronment reach approximately 0.15 g, which is kess than a fifth of the acceleration due to

gravity. Any component of gravity that is present due to an unknown tilt of the sensors

cannot be eliminated will provide unwanted integration drift error. Any slight tilts of

the sensors put a component of gravity on the output. As a simple example, a relatively

small tilt of 5 degrees will provide an unwanted signal of cos(5 ∗ pi/180) = 0.0872 g,

which is over 50% of our expected signal. Unfortunately, although the gradient of rail-

way tracks is known, there are unknown tilts applied to the train and sensors during

motion due to the suspension system and braking mechanics. Therefore, during motion,

a combination of acceleration due to gravity from an unknown tilt and acceleration due

to motion is seen on the sensor output.

It was observed throughout testing that during periods of no motion, the zero-g bias of

the accelerometers varied from position to position. On the evaluation platform, this

bias was approximately consistent for every coordinate in the workspace. However, in

the railway environment, the movement of the subway train is less consistent and is

more dynamic. Figure 4.1 shows a test in which the subway train moved forward and

stopped at different points. Highlighted are the points of no motion, where the zero-g

bias of the accelerometer is significantly different at each stop.

Many efforts [4] [5] [6] have gone into using gyroscope, magnetometers, and inclinometers

with sensor fusion algorithms in order to precisely know the orientation of an IMU at

all times and effectively remove the gravity component of acceleration. Although some

50
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Figure 4.1: A step motion showing two different biases at the start and end of motion

high-end IMUs manage to deduce linear acceleration with good accuracy, the efforts in

this section of the thesis were to determine how well low-cost accelerometers could do

this as a single sensor, which simplifies the hardware and the computational algorithms

while reducing the cost required for a navigation system.

A variety of methods were used to remove the gravity bias and they are listed below.

They will be further described in the remainder of this section.

• Low Pass Filtering

• Zero Velocity Detection

• Bias Interpolation

• Optimal Bias Algorithm

• Delta Mounted Sensors

Some of the above methods are not possible to be implemented in real-time. These would

not be beneficial in the railway environment, especially as safety is a critical requirement.

However, they were explored to determine if, given that the bias was nearly perfectly

known, these low-cost accelerometers could be successfully used alone in displacement

estimation.

4.1 Low Pass Filtering

Filtering the high frequency noise is a strategy that was implemented in all of the

methods. It was determined through trials that the signal due to motion resides at

frequencies less than approximately 15 Hz, so an FIR low-pass filter of order 60 was
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designed that could be used in real-time to eliminate unwanted mechanical and electrical

noise. The magnitude response of this filter is shown in Figure 4.2.

Figure 4.2: Magnitude response of the low-pass FIR filter with 15 Hz cut-off frequency
and order 60

4.2 Zero Velocity Detection

The biggest problem, based off issues with the simple algorithms explored in the previous

chapter, is that slight tilts of the devices cause an obvious offset to the zero-g bias of the

sensors since a component of the gravity vector appears on our sensing axis. Therefore

the challenge is to attempt to determine the zero-g bias. It is simple to determine the

zero-g bias when the sensors are not moving. If it is possible to know that there is no

actual motion, then the sensor output is the zero-g bias at that moment. However, the

only way to know that the sensors are not moving is to subtract the zero-g bias from the

output and the result is zero. This is an inherent problem: you need to know the zero-g

bias in order to know you are not moving in order to know that the sensor output is the

zero-g bias!

In the railway application being studied, there may be other ways of determining when

the train is not moving. From the tests that were done, it was observed that during mo-

tion, the sensor outputs were significantly noisier due to vibrations than during periods

of no motion. This is demonstrated in Figure 4.3.

As can be seen within the black boxes, the standard deviation of the output on all three

axes is significantly lower. These black boxes are during periods of no motion. However,

the algorithm must be well tuned or false-positives for no motion may be made. One

such false positive is shown in the red box. Here the standard deviation is also low,

however it is known that the train was moving here, at a slow but near constant speed.

This observation suggested that it may be possible to determine when the train was

stopped by analysing the deviation in the signal from its mean. Utilizing this strategy,
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Figure 4.3: Standard deviation in a window of accelerometer outputs - the black
boxes show the periods where the train was stopped while the red box shows a period

of low acceleration where the train was moving slowly but at constant speed

sensors with three-axes have a significant advantage because all three axes can be anal-

ysed for motion vibrations to assist in determining if the train is really moving or not.

The algorithm that was found to succeed in determining when the train was in motion

checks the standard deviation of the signal in a small window near the current time.

If the standard deviation on all three axes is below a certain threshold, it is assumed

that the train is stopped and the bias is determined to be the sensor output. If the

standard deviation on one axis is above the threshold, it is assumed the train is moving.

In addition, if the train is assumed to be stopped, integration is not necessary, which

eliminates integration drift due to random error for the period of no motion.

This approach of analysing the standard deviation was used successfully for a step run,

demonstrated in Figure 4.4. The periods of no motion are after deceleration and the

algorithm successfully detects them. However, there is one short false positive at ap-

proximately the 70 second mark.

An alternative approach to analysing the standard deviation of the three axes takes the

total magnitude of the acceleration and analyses the standard deviation of this. The

total magnitude of the acceleration is calculated using Equation (4.1).
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Figure 4.4: Standard deviation algorithm for no motion - the red line shows 1 if the
algorithm determines there is motion and 0 if it determines there is no motion

atot =
√
a2
x + a2

y + a2
z (4.1)

The advantage of doing this is that it is known the signal will centre about 1 g. Sub-

tracting 1 g from the magnitude centre the data about 0 g, which allows the algorithm

to also use the absolute value of the acceleration to determine if there is no motion. The

total acceleration standard deviation is shown in Figure 4.5.

Figure 4.5: Standard deviation of the total acceleration

Adding the condition that the absolute value of the total acceleration must be below

a threshold helps to remove the false positives that can occur by only looking at the

standard deviation of the signal. The results of this algorithm’s performance are shown

in Figure 4.6.
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Figure 4.6: Standard deviation algorithm using total acceleration - no false positives
are detected

This algorithm works well for determining when there is no motion in the railway envi-

ronment. It uses two parameters, the standard deviation threshold in a window and the

absolute value of the total acceleration threshold, to determine when there is no motion.

These two values must be tuned for the sensors and the environment at hand. Further,

the algorithm works for three-axes sensors as it makes use of the off-axis vibrations that

are present. For one-axis sensors, it is not as robust.

4.3 Bias Interpolation

The bias interpolation method is a post-processing algorithm that would not work in real

time. The premise behind this idea uses zero velocity detection to determine the bias

during periods of no motion. However, during periods of motion, the bias is no longer

known and has to be estimated somehow. The bias interpolation algorithm assumes that

the bias changes approximately linearly from two points of no motion, demonstrated in

Figure 4.7.

This direct linear interpolation method was evaluated, however with further testing,

a slightly different interpolation function was found to have better performance.This

function assumes that the second bias point is reached approximately 40% of the way

during motion. It therefore interpolates from the first bias to the second bias for the

first 40% of motion, then keeps the second bias until the end of motion. This is visually

depicted in Figure 4.8.
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Figure 4.7: Bias estimation using linear interpolation between points of no motion

Figure 4.8: Bias estimation using partial linear interpolation between points of no
motion

The results obtained using this partial interpolation on the evaluation platform were

considered accurate. As can be seen from Figure 4.9 to Figure 4.11, four different runs

of horizontal motion were performed, with displacement estimations being accurate to

within 2 cm over 96 cm of motion.

As the results show, the accelerations, velocities, and displacements of the accelerometer

closely match those of the GoPro camera, which is measuring ground truth. This indi-

cates that for the evaluation platform, the bias interpolation is giving accurate estimates

of the bias between periods of no motion.

This horizontal test uses longer motions with long rest times, which help the bias esti-

mation perform interpolation. Another test, the step test, goes through shorter motions
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(a) Acceleration for horizontal run 1 (b) Acceleration for horizontal run 2

(c) Acceleration for horizontal run 3 (d) Acceleration for horizontal run 4

Figure 4.9: Accelerations during horizontal runs using interpolated bias

(a) Velocity for horizontal run 1 (b) Velocity for horizontal run 2

(c) Velocity for horizontal run 3 (d) Velocity for horizontal run 4

Figure 4.10: Velocities during horizontal runs using interpolated bias
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(a) Displacement for horizontal run 1 (b) Displacement for horizontal run 2

(c) Displacement for horizontal run 3 (d) Displacement for horizontal run 4

Figure 4.11: Displacements during horizontal runs using interpolated bias

and shorter rest times, which make the bias interpolation more difficult. The results

from three step tests are seen in Figure 4.12 to Figure 4.14.

From the results shown, the sensors using the interpolation algorithm are able to estimate

displacements to within a few centimetres of error after 40 centimetres of motion. This

accuracy scaled to the railway environment would be acceptable, however the main issue

remains that the bias interpolation is a post-processing algorithm and does not give this

accuracy in real time.
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(a) Acceleration for step run 1 (b) Acceleration for step run 2

(c) Acceleration for step run 3

Figure 4.12: Accelerations during step runs using interpolated bias

(a) Velocity for step run 1 (b) Velocity for step run 2

(c) Velocity for step run 3

Figure 4.13: Velocities during step runs using interpolated bias
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(a) Displacement for step run 1 (b) Displacement for step run 2

(c) Displacement for step run 3

Figure 4.14: Displacements during step runs using interpolated bias

4.4 Optimal Bias Algorithm

Due to the fact that bias interpolation seemed to show some error, it was desired to

know approximately what the bias really is during periods of motion. If points of zero

velocity are known, then when acceleration is integrated once between two points of zero

velocity, the resultant final velocity must be equal to zero. This is more clearly depicted

in Figure 4.15.

From the image, it can be seen that at approximately the 43 second mark, the train

started to move. At about the 80 second mark, the train has finished its deceleration

and is stopped. We know Equation (4.2) must hold.

∫ t=80

t=43
[a(t)−B]dt = 0 (4.2)

In this equation, a(t) is the sensor output and B is the unknown sensor zero-g bias,

assumed constant throughout motion. An algorithm was developed based off gradient

descent optimization tools within the Matlab Optimization Toolbox [9]. The fminunc

function is used to minimize the error of a function by varying some parameter. In order

to use this algorithm for this application, the error term was integrated velocity while
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Figure 4.15: The acceleration output of one step motion lasting approximately 40
seconds

the parameter to be varied was the bias, in this case assumed to be constant throughout

motion. Using this algorithm, a constant bias can be calculated for the period of motion,

which if used during that motion, will result in a zero final integrated velocity. This

algorithm eliminates the undesirable integration drift during periods of zero motion.

However, this algorithm is too complex to be used in real-time. The algorithm applied

to the motion in Figure 4.15 gives the velocity profile in Figure 4.16.

Figure 4.16: The velocity during one step motion using bias computed from the
optimal algorithm

The bias that was computed by the algorithms successfully forces the velocity profile to

begin and end with zero velocity. This eliminates the integration drift that occurs when

non-zero velocity is computed from the first integration and gives a displacement profile
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that approximately matches the actual motion during testing, as seen in Figure 4.17

where the actual displacement in the test was 150 m.

Figure 4.17: The displacement during one step motion using bias computed from the
optimal algorithm

The biggest benefit of this algorithm was to observe what the bias actually approximately

looked like during periods of motion. It was initially assumed that the bias would be

approximately linearly interpolated between periods of no motion, however the tests done

using the optimal bias algorithm suggested that during motion, the vehicle’s suspension

system and braking mechanics tilt the train significantly, which gives a different bias

immediately when the train begins to move.

The optimal bias algorithm was applied to a number of the tests ran on the TTC Yonge-

Sheppard subway line. The runs that were tested were the step test, the step-and-return

test, the shuttle test, and the full run of the line. The results of these tests are shown

in Figure 4.18 through Figure 4.25, where the displacement estimations are accurate to

below 10% error over long distances.
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(a) Single integration after computed optimal bias

(b) Double integration after computed optimal bias

Figure 4.18: Results of double integration for step motion run 1 using optimal bias,
actual displacement was approximately 760 m
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(a) Single integration after computed optimal bias

(b) Double integration after computed optimal bias

Figure 4.19: Results of double integration for step motion run 2 using optimal bias,
actual displacement was approximately 760 m
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(a) Single integration after computed optimal bias

(b) Double integration after computed optimal bias

Figure 4.20: Results of double integration for step motion run 3 using optimal bias,
actual displacement was approximately 760 m
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(a) Single integration after computed optimal bias

(b) Double integration after computed optimal bias

Figure 4.21: Results of double integration for step motion run 4 using optimal bias,
actual displacement was approximately 760 m
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(a) Single integration after computed optimal bias

(b) Double integration after computed optimal bias

Figure 4.22: Results of double integration for shuttle motion run using optimal bias,
actual displacement was approximately 110 m forward then return to the original posi-

tion
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(a) Single integration after computed optimal bias

(b) Double integration after computed optimal bias

Figure 4.23: Results of double integration for step-and-return motion run 1 using
optimal bias, actual displacement approximately 2000 m forward then 2000 m back
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(a) Single integration after computed optimal bias

(b) Double integration after computed optimal bias

Figure 4.24: Results of double integration for step-and-return motion run 1 using
optimal bias, actual displacement approximately 2000 m forward then 2000 m back
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(a) Single integration after computed optimal bias

(b) Double integration after computed optimal bias

Figure 4.25: Results of double integration for full subway line run using optimal bias,
actual displacement was approximately 5500 m
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It is possible that, while the train comes to a stop, the bias can be computed to update

the current displacement with a more accurate estimate. The main problem with the

optimal bias algorithm is that it takes a long time to compute using the gradient descent

algorithm. However, after revisiting the algorithm, it was found that a more simple

approach can be used to deduce the required bias during motion. Observing the equation

for the integration, we know that a constant bias error integrated gives the velocity error

as follows

∫ t2

t1

a(t)dt = vε(t) = Bε[t2 − t1] (4.3)

where Bε is the bias error. Since we know the integrated velocity should be equal to

zero when t1 and t2 represent consecutive times of zero velocity, any nonzero velocity

must be due to the constant bias error, therefore we can calculate the bias error as

Bε =

∫ t2
t1
a(t)dt

t2 − t1
(4.4)

Further, since we know that the displacement error due to a constant bias error is

xε(t) = Bε(t2 − t1)2 (4.5)

we can calculate an updated displacement by

xnew = xold − xε = xold −Bε(t2 − t1)2 (4.6)

instead of integrating again with the new bias, which would be more complex to process.

It is shown here that the required bias can be computed with one division and a more

accurate displacement estimation can be computed in a similarly simple manner. This

means that the algorithm can update the displacement immediately when it is known

that there is no motion, while using a previous bias during motion.
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4.5 Delta-Mounted Sensors

The concept of delta-mounted sensors is named this way because the sensors are mounted

so that two axes are 45◦ to the direction of motion, which forms a triangle or delta shape,

as seen in Figure 4.26. The motivation behind this method is that applied accelerations

would always be equal on both axes while tilts in the sensors would provide a differential

on the output of the two axes. The idea is that a set of equations could be used to

calculated both the sensor’s tilt and the motion being applied to the sensor from these

two axes.

Figure 4.26: Delta-mounted sensors with labelled axes

The derivation of equation Equation (4.7) for this configuration is found in Appendix C.

In the equations that follow, ax and ay are respectfully the x-axis and y-axis sensor read-

ings, g is the acceleration due to gravity, aa is the applied acceleration from the motion

platform or subway train, and φ is the unknown tilt angle that is being determined. The

equations derived in Appendix C provide us with a quadratic equation to determine the

tilt angle. The quadratic formula gives two solutions to the equation.

φ1,2 =
−(2ax + 2ay)±

√
(2ax + 2ay)2 − 4(ax − ay)(2ay − 2ax − 4g√

2
)

2(ax − ay)
(4.7)

Examining the quadratic formula applied to this solution, we know that a real solution

exists if b2 − 4ac > 0. To see if this equation can provide real solution, let’s consider

the simplest case that there is zero tilt (φ = 0). By mounting the sensors at 45◦ angles,

b = (2ax + 2ay) ≈ 0, therefore it is necessary that 4ac < 0 for a solution to exist. Again,

due to the mounting of the sensors, a = ax − ay < 0, therefore for 4ac < 0, c must be

a positive number. This gives us the the constraint that 2ay − 2ax − 4g√
2
> 0. Testing
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this equation in the railway environment with accelerations less than 0.15 g show that

this equation is rarely satisfied. However, this equation was still tested by mounting

the AG-1 (ST LIS3LV02DL accelerometer chip) onto the evaluation platform at various

tilt angles and moving horizontally, as in the horizontal runs. The results from these

experiments are shown in Figure 4.27 and Figure 4.28.

The data in Figure 4.27 shows the acceleration results of the horizontal test performed

with the AG-1 mounted at 0◦, 5◦, and 10◦. Examining the periods where there is

no motion, the bias level is based on the tilt angle being applied. For example, in

the 0◦ experiment, the y bias is approximately 0.7 and the x-bias is approximately

-0.7. These values correspond to 1/
√

2 = 0.71, because each axis carries an equal

component of gravity due to the zero tilt. Taking the magnitude of these values gives 1

g. Correspondingly, at 5◦, the y-axis is closer to 0.75, while the x-axis is closer to -0.65

when there is no motion. This is because, due to the tilt, more of the gravity vector

appears on the y-axis. A similar explanation holds for the 10◦ run. Further, examining

the accelerations during motion, it can be seen that the change in acceleration is in the

same direction for each axis. That is, the first motion makes both axes more positive,

followed by a short constant acceleration where the signal is near the bias but noisier,

followed by a signal that makes both axes more negative. This was the reason for

mounting the sensors in this manner.

Figure 4.28 shows the tilt angles computed using equation Equation (4.7). The computed

angles are correct withina small percentage error when the sensors are not in motion,

however during motion the b2 − 4ac term becomes negative, which provides complex

solutions to the quadratic equation (the real part of these complex solutions is plotted

here). These solutions cannot be used, which implies that mounting the sensors in this

delta formation does not provide a benefit because the problem remains that the tilt

cannot be deduced when the sensors are in motion.

Other approaches were taken to analyze the deta obtained from the experiments with

the sensors mounted in the delta configuration. One approach was to add the signals

together, which would cancel the tilt bias and leave us with just the signal. However,

this did not prove useful, as there was still a changing bias during the periods of no

motion when this was done. To make matters still more difficult, during motion it

remains impossible to determine if the tilt is changing, because motion will always

add mechanical noise. This mechanical noise means that is not possible to separate if

acceleration changes are due to motion or change in tilt.
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(a) Accelerations for delta run at tilt of 0◦

(b) Accelerations for delta run at tilt of 5◦

(c) Accelerations for delta run at tilt of 10◦

Figure 4.27: Accelerations during horizontal runs with sensors mounted at various
angles



Chapter 4. Inertial Algorithms 75

(a) Computed tilt angle for delta run at tilt of 0◦

(b) Computed tilt angle for delta run at tilt of 5◦

(c) Computed tilt angle for delta run at tilt of 10◦

Figure 4.28: Computed tilt angles for horizontal runs with sensors mounted at various
angles
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Conclusions and Future Work

5.1 Conclusions

As the mechatronics field has such a huge potential for advancement in the near future

with the expanding consumer robotic market, it is necessary to investigate all sensors

that assist systems in perceiving and acting in their environment. With the increasing

ratio of performance to cost of MEMS accelerometer sensors, they are an ideal candidate

for further development and use in various mechatronic applications for smart systems,

especially in transportation and automotive industries.

The basic operation principle of MEMS accelerometers is that it functions as a mass-

spring-damper system. Due to the dynamics of this system, the frequency response of

the acceleration can be determined due to displacements of the proof mass within the

chip. This displacement can be detected in multiple ways, both dynamic and static.

The dynamic methods are characterized as AC response sensors and can only detect

changing accelerations and are therefore not studied here. Piezoresistive and capacitive

sensing are static methods, which can detect static or unchanging accelerations and are

more widely used in industry.

The accelerometer currently in use by Thales on subway trains is the Jewell LCA-165-

5051. This is a high-end and expensive sensor, which make costs of building and repairing

trains higher than desirable. Over 70 sensors were sourced from the most prominent

MEMS companies and narrowed down to eight sensors using a weighted-decision-making

process. These eight sensors were tested using the evaluation platform built out of a

modified Rostock 3D printer, using a high-speed GoPro camera to determine the ground

truth of the sensors during evaluations. They were then also tested in the railway

application by driving a subway train in the TTC Shepphard line. After benchmarking

76
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all the sensors, it was found that the Kionix KXRB5 sensor performed the best amongst

the others, even outperforming the high-end Jewell accelerometer. It is recommended

that this sensor is put forth for further testing.

The potential of MEMS accelerometers and gyroscopes to function as an Inertial Mea-

surement Unit (IMU) and provide localisation information for a mobile robot greatly

assists the dead-reckoning problem. These sensors provide the robot with an angular

speed vector about three axes in the robot’s frame and a force vector along the axes in

the robot’s frame. The accelerations in the reference frame can be deduced and these can

be integrated, knowing the initial position and speed, to track the position of the robot

through some three-dimensional environment. However, in the railway environment,

accelerations are almost entirely in one-dimension. This poses the following question: if

the environment is constrained to one dimension, can the sensors be simplified to only

one low-cost accelerometer while continuing to accurately estimate displacements over

time? The very basic inertial algorithms used show that because of unknown tilts in

the sensors during motion, the zero-g bias is constantly changing. The bias estimation

problem becomes the biggest challenge facing accelerometers to estimate displacement.

Various methods of estimating the biaswere investigated, however it has been shown that

while the sensors are in motion, it is impossible to accurately determine the bias because

it is impossible to distinguish between acceleration due to gravity and acceleration due

to motion. A standard deviation method to determine when there is zero velocity has

been introduced, which allows the inertial algorithms to know when the sensors are not

moving. This is an important algorithm, because the algorithm will not integrate the

data when there is no speed, which eliminates integration drift error. It also assists the

algorithms estimate the bias, because if the system is not moving, it is known that the

zero-g bias is simply the current output of the accelerometer sensors.

An optimal bias algorithm was investigated, which can be used to determine the bias

that would result in a zero velocity integration between two points of zero velocity. The

main problem with this algorithm is that it can only be used during points where the

system knows it has stopped moving, after which it can calculate the bias and update

the displacement. This updated displacement has been experimentally tested to be

accurate to below 10%. During motion, however, the estimated displacement is entirely

dependent on how close the bias estimation is during motion, which can introduce large

errors from integration.
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5.2 Future Work

The biggest disadvantage of these sensors for displacement applications was identified as

the integration of various errors, especially the unknown zero-g bias, which generates an

undesirable random walk effect. Other main sources of error for MEMS accelerometers,

as with most sensors, are issues of noise. However, because of the electromechanical na-

ture of these sensors, they are also sensitive to temperature changes, which affect their

bias and sensitivity. Furthermore, nonlinearities and cross-axis sensitivities introduce

factors of error into the output of the individual axes of the sensors. The biggest chal-

lenges for this evaluation system are mounting the accelerometers level, estimating and

computing the bias, and tuning the various parameters in the inertial algorithm. The

3D printer that was used exhibits the issue that as it moves along a horizontal axis, the

end-effector is slightly tilted, which means that an unknown and varying component of

the gravity shows up on the output of the X or Y axes. This bias needs to be subtracted

from the output of the sensor in order to determine the actual signal that is due to

motion. This issue would be present in any robotic or vehicular application, as perfect

mounting of accelerometers is impossible and if the vehicle goes up- or down-hill, gravity

components appear on the outputs in an undesirable manner.

Another challenge of the evaluation system is that the camera can only measure motion

accurately in the Y and Z directions. As the end-effector moves in the X direction

away from the camera, it has a lower ability of correctly determining this change in

displacement. In order to capture this axis effectively, another camera would be needed

or some other sensor such as an infrared or ultrasonic proximity sensor.

For future work with these MEMS accelerometers, there are a number of subjects that

can be further investigated. The thermal tests were inconclusive and it would be im-

portant to ensure that the sensors can adequately function in the required temperature

range. It must be kept in mind that thermal chambers induce a significant mechanical

noise from vibrations as well as possibly electrical noise. Mounting sensors carefully to

reduce this noise is critical.

Furthermore, it was found that the evaluation platform itself had some problems in

tilting during testing. It would be beneficial to design and build an evaluation platform

with a bigger workspace, which did not tilt the sensors in any way. A possible evaluation

would be to design tests to run at the Vicon lab at the UTIAS (University of Toronto

Institute for Aerospace Studies) motion capture laboratory. This would provide ground

truth of the sensors during any sort of testing.

The inertial algorithms were able to estimate displacements to below 10% error on

almost all tests and even much better on some tests. However, some of these algorithms



Chapter 5. Conclusions and Future ork 79

do not work in realtime or would only be able to update displacement at points of zero

velocity. It is of interest to investigate how much these algorithms can be improved,

possibly by combining the ideas from various algorithms. One method that was used

in [4] is feature detection. This idea could be further applied to the data to attempt to

determine various states of motion (ie. constant speed, standing still, accelerating, or

braking) using signal processing techniques.

Finally, it is important to fully test if the recommended sensor, the KXRB5, can re-

place the high-cost Jewell currently in-use. This would involve designing a ruggedized

compartment to place the sensor into as well as the electrical equipment necessary to

interface to the train’s control system. It will be required to run tests with the KXRB5

and the Jewell to ensure that the low-cost alternative can adequately and safely replace

the Jewell accelerometer.

The list below summarizes the key ideas for future work.

• Proper thermal testing of recommended sensor(s) with investigation of mechanical

noise due to vibrations and electrical noise from the equipment.

• Development of bigger evaluation platform that has the ability to rotate the sensors

in a known manner as well as a larger work space (at least a few metres of travel

distance) or possiblydevelop tests that can be ran at the Vicon motion capture lab

at UTIAS

• Further investigate various inertial algorithms to see if they can be combined to

improve results.

• Investigate feature detection possibilities using signal processing techniques to de-

termine different states of motion.

• Perform more advanced reliability and failure testing on recommended sensor(s).

• Investigate the option of mounting sensors onto the train chassis, where there is

less unknown tilt than the car body.

• Design and implement a ruggedized data capturing module for sensor(s) put forth

for further development.

• Compare Jewell with recommended sensor(s) in long-term testing on TTC subway

trains.

As technology advances, specifically MEMS technology as well as processing technol-

ogy for intelligent systems, consumer, industrial, and commercial robotics will prove to

demonstrate great capabilities to assist society in various ways. There will always be a

push for more accurate sensors to assist smart systems and with the pace of improve-

ment of the performance to cost ratio of MEMS accelerometers, they will likely be an

important sensor of the future.



Appendix A

Table of all accelerometers

considered

The table shown on the following page lists all the MEMS accelerometers that were

considered for evaluation.
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Part Number Manufacturer

MPU-6000 InvenSense
MPU-6050 InvenSense
MPU-6100 InvenSense
MPU-6150 InvenSense
MPU-9150 InvenSense
MPU-9250 InvenSense
ADIS16003 Analog Devices
ADIS16201 Analog Devices
ADIS16300 Analog Devices
ADIS16305 Analog Devices
ADIS16334 Analog Devices
ADIS16362 Analog Devices
ADIS16364 Analog Devices
ADIS16445 Analog Devices
ADXL103 Analog Devices
ADXL203 Analog Devices
ADXL212 Analog Devices
ADXL213 Analog Devices
ADXL313 Analog Devices
ADXL325 Analog Devices
ADXL327 Analog Devices
ADXL335 Analog Devices
ADXL345 Analog Devices
HS8002.D Colibrys
MS7002.3 Colibrys
MS8002.D Colibrys
MS9001.D Colibrys
MS9002.D Colibrys
MS9005.D Colibrys
RS9010.B Colibrys
VS9002.D Colibrys
BMA280 Bosch
BMA355 Bosch
BMI055 Bosch
BMX055 Bosch
AIS326DQ STMicroelectronics
AIS328DQ STMicroelectronics
LIS2DH STMicroelectronics
LIS2DM STMicroelectronics
LIS331DLH STMicroelectronics
LIS3DH STMicroelectronics
LIS3DSH STMicroelectronics
LIS344ALH STMicroelectronics
LIS352AR STMicroelectronics
LIS352AX STMicroelectronics
LIS3LV02DL STMicroelectronics
LIS3LV02DQ STMicroelectronics
LSM303DLH STMicroelectronics
LSM303DLHC STMicroelectronics
LSM330D STMicroelectronics
LSM330DLC STMicroelectronics
LSM9D3 STMicroelectronics
KMX61 Kionix
KMX61G Kionix
KX022 Kionix
KXCJK Kionix
KXR94 Kionix
KXRB5 Kionix
KXTC9 Kionix
KXTJ2 Kionix
KXG02 Kionix
KXGS2 Kionix
CXL02TG3 Memsic
MXA2500EL Memsic

Table A.1: List of all sensors considered for evaluation



Appendix B

Full Results of Tests from all

Sensors

This section presents the results from the tests for all sensors that is available to display.

Some sensors do not have test results for all tests, as they were eliminated earlier during

evaluation or if there was a problem during a certain run. The graphs also include results

from the IG500 fom SBG Systems. This is a rugged miniature IMU that can accurately

provide orientation measurements in real time. It has an internal low-pass filter, which

helps reduce the noise output that is measured.

It may be noted that through various tests, after double-integration of the acceleration

data, the BMA280 sensor has a final displacement that is better than the others. How-

ever, it is important to note that the Jewell accelerometer is considered the gold standard

for these evaluations and therefore any deviation from this accelerometer is in fact not a

good result. Examining the accelerations of the BMA280 compared to the other sensors,

it seems to have an problem with positive accelerations. That is, the negative acceler-

ations match the other sensors to a close degree, however the positive accelerations are

noisy and overall much lower in magnitude than those from the other sensors. This may

be an issue with the sensor itself or with the PSOC5 interfacing to it. The end result of

this lower magnitude in the positive direction is that the displacement happens to look

better due to this problem, because the integration drift is in the positive direction, so

the sensor exhibits less of this integration drift due to bias errors.

B.1 Evaluation Platform Results

The following sections present the results of the sensors on the evaluation platform.
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B.1.1 Off-Axis Results

The data below in Table B.1 presents the results for the three sensors LIS344ALH,

MS9002.D, and BMA280 for off-axis testing on the evaluation platform. Comparing

these results to Table 3.8, these three sensors have off-axis error that is significantly

higher, with the LIS344ALH performing especially poorly. This could be due to mount-

ing errors of this sensor with respect to the axis of motion.

Test Accelerometer
Measured

Noise
(µg/

√
Hz)

Maximum
Signal (mg)

Signal
Power (g2)

X-Axis LIS344ALH 193652 0.936 0.3524
X-Axis MS9002.D 39380 0.155 0.0147
X-Axis BMA280 40293 0.251 0.0155

Z-Axis Slow LIS344ALH 106743 0.357 0.11177
Z-Axis Slow MS9002.D 25429 0.087 0.00633
Z-Axis Slow BMA280 24957 0.122 0.00611

Z-Axis Medium LIS344ALH 154457 0.486 0.23385
Z-Axis Medium MS9002.D 30435 0.130 0.00091
Z-Axis Medium BMA280 26484 0.157 0.00690

Z-Axis Fast LIS344ALH 263559 2.844 0.6818
Z-Axis Fast MS9002.D 50531 0.883 0.0251
Z-Axis Fast BMA280 72188 1.986 0.0521

Average LIS344ALH 32197 0.152 0.01174
Average MS9002.D 14858 0.076 0.00253
Average BMA280 11331 0.056 0.00147

Table B.1: Quantitative results from off-axis testing
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B.1.2 Vibration Results

The data in Figure B.1 shows vibration data for the LIS344ALH, the MS9002.D, and

the BMA280 sensors. Comparing the data from this graph to the data in Figure 3.7,

the amplitude and noise level is significantly higher with these three sensors than for

the Jewell, KXRB5, and LIS3LV02DL.

Figure B.1: Vibration data for three sensors
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B.1.3 Step Test Results

The data in Figure B.2 shows data for the LIS344ALH, the MS9002.D, and the BMA280

sensors for the step test on the evaluation platform. The MS9002.D in this run actually

has good results comparing it to the other two sensors. It also has a final displacement

of only 2 m, which is good.
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(a) Accelerations of sensors for step run

(b) Velocities of sensors for step run

(c) Displacements of sensors for step run

Figure B.2: Accelerations, velocities, and displacements for step run for all sensors
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B.2 Subway Train Results

The graphs on the following pages summarize the data from some of the TTC tests

that were undertaken for all sensors. The simple inertial algorithm is used to estimate

displacement for comparison purposes. It is important to note that the sensors are all

fairly consistent amongst themselves, except for the BMA280. The main differentiator

between the sensors are their noise levels. This is the fundamental reason the sensors

with lowest noise were chosen to continue evaluation.

B.2.1 No Motion Noise Results

Accelerometer
Measured

Noise (µg/
√

Hz)

Datasheet
Specification

(µg/
√

Hz)

Total Noise
(µg)

Jewell 112.91 100.00 1129
KXRB5 54.31 45.00 869
LIS3LV02DL 80.41 158.00 1017
BMA280 929.50 120.00 9295
MS9002.D 897.41 18.00 8974
LIS344ALH 1548.21 50.00 15482
IG500 150.73 250.00 783

Table B.2: Noise measurements of sensors on-board subway train
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B.2.2 Step Test Results

(a) Accelerations of sensors for step run 1

(b) Velocities of sensors for step run 1

(c) Displacements of sensors for step run 1

Figure B.3: Accelerations, velocities, and displacements for step run 1 for all sensors
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(a) Accelerations of sensors for step run 2

(b) Velocities of sensors for step run 2

(c) Displacements of sensors for step run 2

Figure B.4: Accelerations, velocities, and displacements for step run 2 for all sensors
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(a) Accelerations of sensors for step run 3

(b) Velocities of sensors for step run 3

(c) Displacements of sensors for step run 3

Figure B.5: Accelerations, velocities, and displacements for step run 3 for all sensors
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(a) Accelerations of sensors for step run 4

(b) Velocities of sensors for step run 4

(c) Displacements of sensors for step run 4

Figure B.6: Accelerations, velocities, and displacements for step run 4 for all sensors
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B.2.3 Shuttle Test Results

(a) Accelerations of sensors for shuttle run

(b) Velocities of sensors for shuttle run

(c) Displacements of sensors for shuttle run

Figure B.7: Accelerations, velocities, and displacements for shuttle run for all sensors
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B.2.4 Step-and-Return Test Results

(a) Accelerations of sensors for step-and-
return run 1

(b) Velocities of sensors for step-and-return
run 1

(c) Displacements of sensors for step-and-
return run 1

Figure B.8: Accelerations, velocities, and displacements for step-and-return run 1
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(a) Accelerations of sensors for step-and-
return run 2

(b) Velocities of sensors for step-and-return
run 2

(c) Displacements of sensors for step-and-
return run 2

Figure B.9: Accelerations, velocities, and displacements for step-and-return run 2
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B.3 Thermal Testing Results

The thermal testing results were largely inconclusive due to various sources of error and

inconsistencies with the methods of capturing data between different sensors. In order

to fairly evaluate the sensors, the data from each sensor would have to be captured in the

same manner. This way, the source of error can be tracked to either the accelerometer

itself or the method capturing the data.

Below are the results from all of the sensors that underwent testing in the thermal

chamber. The ADIS16305 from Analog Devices and the LSM303DLHC from STMi-

croelectronics did not undergo thermal testing as they were eliminated prior to this

testing.

The data in Figure B.10 show the filtered results from the first test with the sensors

mounted with the y-axis aligned with gravity with a thermal profile going to 85 ◦C as

shown in Figure B.10a.

The data in Figure B.11 show the filtered results from the first test with the sensors

mounted with the y-axis aligned with gravity with a thermal profile going to −40 ◦C as

shown in Figure B.11a.

Afer the second thermal run, the GCDC data logger could not function. This is more

likely due to the datalogger itself than the accelerometer. Therefore there is no available

data for thermal tests 3 and 4 for the KXRB5 sensor. The data in Figure B.12 show

the filtered results from the first test with the sensors mounted with the y-axis aligned

at a 45◦ angle with respect to gravity with a thermal profile going to 85 ◦C as shown in

Figure B.12a.

The data in Figure B.13 show the filtered results from the first test with the sensors

mounted with the y-axis aligned at a 45◦ angle with respect to gravity with a thermal

profile going to −40 ◦C as shown in Figure B.13a.
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(a) Thermal curve for thermal test 1 (b) Jewell filtered data

(c) LIS3LV02DL filtered data (d) BMA280 filtered data

(e) KXRB5 filtered data (f) IG500 filtered data

(g) LIS344ALH filtered data (h) MS9002.D filtered data

Figure B.10: Sensor data for thermal test 1
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(a) Thermal curve for thermal test 2 (b) Jewell filtered data

(c) LIS3LV02DL filtered data (d) BMA280 filtered data

(e) KXRB5 filtered data (f) IG500 filtered data

(g) LIS344ALH filtered data (h) MS9002.D filtered data

Figure B.11: Sensor data for thermal test 2
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(a) Thermal curve for thermal test 3 (b) Jewell filtered data

(c) LIS3LV02DL filtered data (d) BMA280 filtered data

(e) IG500 filtered data (f) LIS344ALH filtered data

(g) MS9002.D filtered data

Figure B.12: Sensor data for thermal test 3
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(a) Thermal curve for thermal test 4 (b) Jewell filtered data

(c) LIS3LV02DL filtered data (d) BMA280 filtered data

(e) IG500 filtered data (f) LIS344ALH filtered data

(g) MS9002.D filtered data

Figure B.13: Sensor data for thermal test 4
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B.4 Note on ADIS16305

The Analog Devices ADIS16305 sensor was brought in and evaluated in the early stages

of the work. The sensor was sampled at a high sampling rate above 500 Hz. However,

it was found that the timestamps on the data had issues because for every timestamp,

multiple samples existed. This created an issue that it was unknown what precise time

each sample was for and the problem that multiple samples existed for different time

periods.

The problem of the timestamps with the evaluation board and evaluation software cou-

pled with the fact that in general, the noise level of the sensor was greater than the

others being tested at the time, brought an end to further testing of this sensor. It may

be of interest to further test this sensor using a different evaluation setup, in order to

correct the timestamp problem and determine if it is an acceptable sensor for railway

applications.



Appendix C

Derivation for Equations for

Delta-Mounted Sensor

Figure C.1: Delta-mounted sensors with labelled axes

This Appendix shows the derivation of the quadratic equation for the delta-mounted

sensors during motion.Figure C.1 shows how the sensors are mounted, as well as the

symbols for the derivation. In the following, ax and ay are respectfully the x-axis and

y-axis sensor readings, g is the acceleration due to gravity, aa is the applied acceleration

from the motion platform or subway train, and φ is the unknown tilt angle that is being

determined.

The small angle approximations, shown in Equation (C.1) and Equation (C.2) are used

in addition to the Sum-Difference trigonometric identities, shown in Equation (C.3) and

Equation (C.4).
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cosφ ≈ 1− φ2

2
(C.1)

sinφ ≈ φ (C.2)

sin (u± v) = sinu cos v ± cosu sin v (C.3)

cos (u± v) = cosu cos v ∓ cosu sin v (C.4)

Examing the free-body diagram in Figure C.1, we have the following equation.

ax = aa cos(π/4− φ)− g cos(π/4 + φ) (C.5)

ay = aa cos(π/4 + φ) + g sin(π/4 + φ) (C.6)

Using Equation (C.4) to expand the trigonometric functions, we obtain

ax = aa cos(π/4− φ)− g cos(π/4 + φ) (C.7)

= aa[cos
π

4
cosφ+ sin

π

4
sinφ]− g[cos

π

4
cosφ− sin

π

4
sinφ] (C.8)

= aa[

√
2

2
cosφ+

√
2

2
sinφ]− g[

√
2

2
cosφ−

√
2

2
sinφ] (C.9)

Similarly for ay, we use Equation (C.3) and Equation (C.4) to obtain

ay = aa cos(π/4 + φ) + g sin(π/4 + φ) (C.10)

= aa[cos
π

4
cosφ− sin

π

4
sinφ] + g[sin

π

4
cosφ+ cos

π

4
sinφ] (C.11)

= aa[

√
2

2
cosφ−

√
2

2
sinφ] + g[

√
2

2
cosφ+

√
2

2
sinφ] (C.12)

If we let x =
√

2
2 cosφ and y =

√
2

2 sinφ, we can simplify Equation (C.9) and Equa-

tion (C.12).

ax = aa[x+ y]− g[x− y] (C.13)
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ay = aa[x− y] + g[x+ y] (C.14)

Using Equation (C.13) and Equation (C.14) and solving for aa, we have

aa =
ax + g[x− y]

x+ y
=
ay − g[x+ y]

x− y
(C.15)

Equating the right side of Equation (C.15) and simplifying, we obtain

ax[x− y] + g[x− y]2 = ay[x+ y]− g[x+ y]2 (C.16)

ax[x− y] + gx2 − 2gxy + gy2 = ay[x+ y]− gx2 − 2gxy − gy2 (C.17)

Bringing all terms to one side to equation to zero,

ay[x+ y]− ax[x− y]− 2gx2 − 2gy2 = 0 (C.18)

Now subbing back in our terms for x and y, we obtain

ay[

√
2

2
cosφ+

√
2

2
sinφ]− ax[

√
2

2
cosφ−

√
2

2
sinφ− 2g[

1

2
cos2 φ]− 2g[

1

2
sin2 φ] = 0

Now, simplifying with the small-angle approximations Equation (C.1) and Equation (C.2),

we obtain

ay[

√
2

2
(1− φ2

2
) +

√
2

2
φ]− ax[

√
2

2
(1− φ2

2
]− g(1− φ2

2
)2 − gφ2 = 0

ay[

√
2

2
(1− φ2

2
) +

√
2

2
φ]− ax[

√
2

2
(1− φ2

2
]− g + gφ2 − gφ4

4
− gφ2 = 0

Here, the gφ2 terms cancel out and we can make the approximation that φ4 << φ2 to

obtain:

ay
√

2

2
− ay

√
2

4
φ2 +

ay
√

2

2
φ− ax

√
2

2
+
ay
√

2

4
φ2 +

ax
√

2

2
φ− g = 0
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Multiplying by 4 and grouping terms, we obtain

(ax − ay)φ2 + (2ax + 2ay)φ+ 2ay − 2ax −
4g√

2
= 0

The solution to this quadratic equation is found using the quadratic formula, φ =
−b±
√
b2−4ac

2a , where a = ax − ay, b = 2ax + 2ay, and c = 2ay − 2ax − 4g√
2
.

φ1,2 =
−(2ax + 2ay)±

√
(2ax + 2ay)2 − 4(ax − ay)(2ay − 2ax − 4g√

2
)

2(ax − ay)
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