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Recent development of microelectromechanical systems (MEMS) accelerometers improved 

their performance. Coupled with their benefits of lower cost and smaller size, enabled their 

increased utilization in navigation, automotive and consumer devices. However, specification 

and testing methodologies of these devices are not robustly defined. This work investigates 

and defines a set of testing methodology for MEMS accelerometers, making use of a 3D printer 

based testing platform and a scalable inertial sensor testing board. Specification results show 

that Kionix KXRB5 and Invensense MPU6000 perform the best of the devices tested. 

Furthermore, commonly used inertial algorithms were applied to study the impact of 

accelerometer choice in an inertial navigation system (INS).   Across a attitude estimation and 

dead reckoning tests, results indicate that noise density has little impact on performance after 

inertial algorithms are applied.  Cross-axis, bias variability and step motion specification 

results are better indicators of performance after inertial algorithms are applied.  
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Chapter 1 Introduction and Study Organization 

 

1.1 Introduction 

Accelerometers are inertial sensors used to measure forces, and subsequently acceleration, 

across three orthogonal axes; the measurements are output as a digital or analog signal and 

further utilized in other applications.  Another type of inertial sensor is a gyroscope, which 

measures angular velocity around three orthogonal axes. Traditionally, these inertial sensors 

were implemented using bulky mechanical fixtures which were costly but accurate. In the 

recent years, microelectromechanical systems (MEMS) were used to implement inertial 

sensing methods in the micro scale on an integrated chip (IC). These MEMS accelerometers 

are used in a variety of applications, such as airbag deployment, earthquake detection and 

navigation purposes [1].  These MEMS sensors are lower cost and smaller, but limited in 

performance; however, recent development sensors and methods are increasing the 

performance of these MEMS sensors enabling them for navigation purposes [2].  Due to the 

reduction in price and smaller size of these MEMS sensors, they have also been increasingly 

utilized in consumer devices for step tracking and new forms of human and computer 

interactions such as the Oculus Rift [3] [4].  In smartphone consumer devices alone, this 

accounts for more than 1.4 billion units and sales of 400 billion dollars in the global market.   

These MEMS inertial sensors suffer from a variety of errors, limiting their implementation in 

navigational purposes. These errors arise from uncertainty in measuring the acceleration, such 

as nonlinearities, bias variabilities, noise and other sources which are further magnified when 

integrated to get velocity and displacement.  In addition, common applications of a MEMS 

accelerometer naturally introduce attitude errors that contaminate the results of the 

accelerometer with the effects of gravity, further causing issues when integrated. With 

increasing use in navigational and military uses, it is crucial to understand and determine 

important specifications that need to be considered when evaluating the performance of these 

inertial sensors.   
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Specifications are used to compare between devices, but these specifications are often not 

comparable because of methodology and testing platform differences.  A study by the National 

Institute of Standards and Technology (NIST) found a lack of standardized testing protocol for 

evaluating accelerometer performance, which resulted in differences between their 

specifications and the actual measurements [5].  Currently, to specify and test inertial sensors 

for a specific application, evaluation boards from the respective manufacturers of each device 

are utilized. These differences between the evaluation boards were an issue, resulting in 

difficulty when comparing the performance of the different accelerometers [6].  Another 

method currently used involves custom evaluation boards that are used with a rate table or 

shaker to test specifications of a single inertial sensor, which limits the comparison [7] [8].  

The importance of a consistent testing methodology and platform is necessary for a comparison 

between devices, especially for users of accelerometers, as the specifications are commonly 

used to identify the performance of these inertial sensors. 

In addition to the specification of an accelerometer, it is also important to look at key 

application areas of accelerometers. MEMS accelerometers are an important part of an Inertial 

Navigation System (INS), which are used to calculate location and attitude of a system.  Inertial 

navigation systems utilize accelerometers and gyroscopes in a variety of different applications, 

ranging from military, robotics, and transportation.  Most practical applications of INS use a 

multitude of different sensors, such as accelerometers, compasses and gyroscopes, alongside 

external references such as Global Positioning System (GPS) or Wi-Fi.  Extensive research has 

been done on external reference enhanced-INS, however these external references are not often 

available in transportation or indoor scenarios [4] [9] [10] [11]. In these scenarios, the ability 

of the INS to determine the attitude and heading is crucial. One major area of research in 

inertial navigation systems involve location and attitude estimation without the use of external 

references. These systems combine accelerometers with gyroscopes and compasses due to a 

significant error when using the accelerometer alone. There has been research into inertial 

algorithms to improve the ability for INS to estimate the location and attitude [12] [13].  There 

has also been research into improving the capabilities individual MEMS sensors alone through 

the design of the readout circuit in the IC [14].  Both these areas consider the evaluation of the 

different algorithms for one device, or the evaluation of a single device and the performance 

of their specifications.  However, in common applications of MEMS accelerometers, they are 
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often used in conjunction with other inertial sensors through the use of inertial algorithms. 

What our study will look at is the impact of these specifications once common inertial 

algorithms are applied, and test this across two common usage scenarios.  

To summarize, there are two main goals that this study is hoping to achieve: 

 Develop a low-cost testing platform and define a consistent testing methodology that 

will be able to measure key specifications and compare between the capabilities of 

different MEMS accelerometers.  

 Determine the impact of these specifications after common inertial algorithms are 

applied, and evaluate the importance of different specifications on usage scenarios.  

1.2 Study Organization 

To effectively achieve these goals, the thesis will begin by covering the background needed.  

Chapter 2 will do this by covering the basic dynamics of MEMS accelerometers and INS. It 

will also explore inertial algorithms which are commonly used for sensor fusion and navigation 

purposes.      

Chapter 3 will show the platform and testing board that were developed to support the different 

device under test (DUT) that were evaluated. A testing methodology for 5 specifications were 

outlined and utilized to evaluate a variety of devices. Some of these are more complex 

movements which are helpful to evaluate the performance of the devices in more realistic 

motion.  These specification results are compared to data sheet when possible, but otherwise, 

the feasibility of these testing methodologies is evaluated by comparing between the different 

devices.   

Chapter 4 will explore two common inertial algorithms used in an INS – Kalman and 

Complementary filter. The specific algorithms were tested in two common applications of an 

INS – attitude estimation and dead reckoning.  The impact of the different device specifications 

in these inertial applications are explored in this chapter.  

Finally, a summary of the results is drawn and other aspects which can be further explored is 

discussed in the last chapter.    
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Chapter 2 Background 

 

2.1 MEMS Inertial Sensor 

There are two main inertial sensors that will be utilized in this thesis.  The first one will be an 

accelerometer, the focus of this study, and the second will be a gyroscope, which is used in the 

inertial algorithms.  This section will cover some of the basic principles of operations and how 

each of them will be used.  

2.1.1 Accelerometer Principles of Operation 

An accelerometer is based upon the principles of a spring-dampener system. A frame is 

connected to a known mass through a spring and dampener system.  When an acceleration or 

force is applied to the frame, it is measured by looking at the displacement between the mass 

and the frame.   

 

Figure 2-1 – Mechanical basis of a MEMS accelerometer. 

 

݉ 
 ௠ݔ

 ௙ݔ

 ݇ ߛ
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The following equation is derived from looking at the forces acting on the proof mass, 

௡௘௧ܨ =  ݉ܽ௠ = ݉
௠ݔଶߜ

ଶݐߜ = ௘ܨ − ݇൫ݔ௠ − ௙൯ݔ − ߛ
௠ݔ൫ߜ − ௙൯ݔ

ݐߜ
 (2.1) 

 ௘ is the external force acting on the proof mass that causes the displacement.  The second termܨ

of the equation results from Hooke’s law, where ݇ is the spring constant.  The third term results 

from the damping that is often done to prevent the sensor from ringing, ߛ is the damping 

coefficient of the gas that is used in the system.   

Subtracting ݉
ఋమ௫೑

ఋ௧మ  from both sides and rearranging,  

݉
௠ݔ)ଶߜ − (௙ݔ

ଶݐߜ + ߛ 
௠ݔ൫ߜ − ௙൯ݔ

ݐߜ
+ ݇൫ݔ௠ − ௙൯ݔ = ௘ܨ − ݉

௙ݔଶߜ

ଶݐߜ  (2.2) 

Substituting ݔ = ௙ݔ − ௠ݔ , and ܨ = ݉
ఋమ௫೑

ఋ௧మ − ௘ܨ  , it becomes a second order differential 

equation of the following form.  

݉
ݔଶߜ
ଶݐߜ + ߛ

ݔߜ
ݐߜ

+ ݔ݇ = ܨ (2.3) 

Solving this differential equation for x, which is the distance between the frame and the proof 

mass,  

ݔ = ൦

௙ݔଶߜ

ଶݐߜ

ଶݏ + ݏ
ߛ
݉ +

݇
݉

൪ =  ൦

௙ݔଶߜ

ଶݐߜ

ଶݏ + ݏ
߱଴
ܳ + ߱଴

ଶ 
൪ (2.4) 

Accelerometers which are used for inertial navigation are working at frequencies much lower 

than the resonant frequencies, resulting in the following approximation,  

ݔ ≈
ܽ௙

߱଴
ଶ (2.5) 

Measuring the distance between the frame and the proof mass will allow us to calculate the 

acceleration of the frame.  An important consideration is the effect of gravity on this mass 

spring dampener system.  A spring dampener system measures force, and not simply the 
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acceleration.  This results in a 9.81
௠

௦మ  constant acceleration in the direction of the sensor 

aligned with gravity.  One of the most popular methods of measuring displacement in a MEMS 

accelerometer is capacitive sensing.   

 

Fig 2-2 – Typical MEMS Capacitive sensing implementation. 

The proof mass acts as one of the plates in a capacitor, while the anchored comb fingers act as 

the other capacitor plate, and the frame.  The change in capacitance is measured and used to 

determine the acceleration.    

2.1.2 Gyroscope Principles of Operation 

Gyroscopes use the properties of the Coriolis acceleration along with vibrations to measure the 

angular velocity of the system.  Coriolis acceleration is observed in a rotating frame of 

reference and is proportional to the angular velocity.  

 

Fig 2-3 – Mechanical Basis of MEMS Gyroscope [15] 
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In fig. 2-3a, a particle traveling in the direction of the y-axis with velocity ݒԦ is also rotated 

around the x-axis with angular rotation Ω; an acceleration is seen along the x-axis that is 

proportional to the angular rotation due to the Coriolis effect, hence named Coriolis 

Acceleration.  In a MEMS gyroscope, this is commonly achieved using a tuning fork system, 

where vibrations are electrically driven along an axis and then sensed in the orthogonal axis 

by measuring the amplitude of the vibrations.  In the absence of rotations, the sensing axis will 

not measure any acceleration, but when the device is rotating, it would appear as if the axis are 

coupled, and the Coriolis acceleration is seen.   

 

Figure 2-4 SEM view of a comb-driven polysilicon surface micromachined [16] 

Capacitive sensing is also one of the most common techniques used to sense the vibration 

amplitude. Fig. 2-4 shows a vibrational mass anchored using MEMS springs, where the combs 

and vibrating mass sensed using the change in capacitance.  

2.1.3 Typical INS Principle of Operation 

In a typical Inertial Navigation System, the angular velocity and acceleration are each 

measured along 3 axes.  Figure 2-5 shows typical system and their measurement axis.  
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Figure 2-5 – (a) shows a basic INS setup involving two 3-axis MEMS accelerometer and Gyroscope, and (b) shows their 
measurement axis. 

An INS provides more than the raw acceleration and angular velocity.  It is often used in 

conjunction with inertial algorithms to determine a myriad of different measurements.  

Common measurements used from an INS are listed as follows 

 Acceleration 

 Angular Velocity 

 Attitude  

 Velocity  

 Position 

2.2 Inertial Algorithms  

Two common filtering methods used in an INS are the Complementary and Kalman Filter. 

This section will cover the principles behind each of these filters, the specific implementation 

for our testing will be covered in Chapter 4, where the implementation details of these filters 

are covered.  

2.2.1 Complementary Filter 

Sensor fusion is a method of combining different inertial sensors to estimate the attitude. A 

complementary filter is one such example which combines data from accelerometers and 

gyroscopes.  This filter is commonly used for attitude estimation due to its simplicity and ease 

of implementation. 

 ܽ௭ሬሬሬሬԦ 
ܽ௬ሬሬሬሬԦ 

ܽ௫ሬሬሬሬԦ 

߱௭ሬሬሬሬԦ 

߱௬ሬሬሬሬሬԦ 

߱௫ሬሬሬሬሬԦ 
(b) (a) 

3-axis  
Accelerometer 

3-axis  
Gyroscope 
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The Complementary filter can combine two different datasets by utilizing their different 

characteristics.  The complementary filter structure low pass filters the dataset with high 

frequency noise and vice versa with a dataset with low frequency noise and a high pass filter.  

 

Figure 2-6 – Principles of operation for a complementary filter, with typical sensors listed. 

The basics of a Complementary filter utilizes the differences of different data sets, and as such, 

it is often used to combine accelerometers and gyroscopes to estimate attitude due to their 

distinct advantages and disadvantages. There are different filter structures targeted towards 

inertial applications providing better gyro bias estimation, such as the Explicit Complementary 

filter and Passive Complementary filter.  These all make improvements on the classical 

Complementary filter by avoiding coupling of different axis and incorporation of 

magnetometer results [17].   

2.2.2 Kalman Filter 

Kalman filtering is an estimation method that is used in systems where the effect of statistical 

noise affects the measurements.  The filter uses multiple measurements with a dynamic model 

to estimate the state of the system recursively.   

There are two main stages in Kalman filtering: 

 Prediction (a priori) Stage 

 Update (a posteriori) Stage 

1

௖ܶ
 

݂ 

Dataset #1 
 Accelerometer 

 Magnetometer 

1

௖ܶ
 

݂ 

1

௖ܶ
 

݂ 

Dataset #2 
 Gyroscope 
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The prediction stage is used for the estimation of the state based on inputs and the dynamic 

model of the system. It doesn’t utilize the measurement from the current time step. The update 

stage uses a current measurement and the a priori result to update and refine the result.   

In the prediction stage, the state of the system (ݔො௞) is estimated based upon the previous state 

and the effects of the control (ݑ௞).  Likewise, the covariance matrix of the system ( ௞ܲ) is also 

estimated. The control is an input that specifies how the dynamics of the system may change.  

This is analogous to knowing how much the gas pedal is pressed when the system is tracking 

speed.  

ො௞|௞ିଵݔ = ො௞ିଵ|௞ିଵݔ௞ܨ +  ௞ (2.6)ݑ௞ܤ

௞ܲ|௞ିଵ = ௞ܨ ௞ܲ|௞ିଵܨ௞
் + ܳ௞ (2.7) 

In the update stage, the innovation for the state (ݕ௞) and the covariance matrix (ܵ௞) is calculated 

using the measurement (ݖ௞) and the a priori estimate.  The innovation is then used to determine 

the kalman gain (ܭ௞) which is used to adjust and update the state and covariance of the system.   

෤௞ݕ = ௞ݖ − ො௞|௞ିଵݔ௞ܪ (2.8) 

ܵ௞ = ௞ܪ ௞ܲ|௞ିଵܪ௞
் + ܴ௞ (2.9) 

௞ܭ = ௞ܲ|௞ିଵܪ௞
்ܵ௞

ିଵ (2.10) 

ො௞|௞ݔ = ො௞|௞ିଵݔ + ෤௞ݕ௞ܭ (2.11) 

௞ܲ|௞ = ܫ) − (௞ܪ௞ܭ ௞ܲ|௞ିଵ (2.12) 

Through this recursive process, the state ( ො௞ݔ ) will be more accurate than utilizing the 

measurements (ݖ௞) alone.  To utilize the Kalman filter, it is crucial to determine the dynamics 

of the system in the form of Eqn. 2.6 and the observation ݖ௞.  This is fundamental, as it will 

determine the covariance matrices used in the filter.  Utilizing the Kalman filter will help 

reduce the effects of stochastic noise on the measurements.   Figure 2-7 shows a general view 

of how these equations are used to across the time steps.  
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Figure 2-7 - The kalman filter is separated into the prediction and update step and is used to iteratively improve the 
output estimate in comparison to solely using the measurements or dynamics alone [18]. 
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Chapter 3 Inertial Measurement Unit Specification 

 

Specifying the performance of an accelerometer is crucial to comparing different MEMs 

devices.  This chapter covers the testing methodology and platform that were developed to 

compare the performance of MEMS accelerometers. The chapter will first cover the testing 

platform that was created. Secondly, it will cover in detail the testing methodology for 

accelerometers and the specification results collected from a variety of devices under tests.   

3.1 IMU Testing Platform 

This first section covers the Inertial Measurement Unit (IMU) testing platform created.  There 

are two main objectives for the construction of the platform.  

1. Provide an easy data logging/processing solution for IMU sensors.  

2. Provide a consistent testing platform that supports a variety of IMU sensors. 

The construction of this testing platform is crucial to comparing accelerometers with a similar 

environment, however, the implementation details of the testing platform will be covered 

within Appendix A.  The following sections will cover brief implementation details and views 

of the overall system only. The first section will cover the hardware platform that was created 

and the various design decisions made.  The second section will cover the software designed 

to allow for a multi-sensor support.   

3.1.1 Data Logging Hardware  

The general system is composed of two boards – the motherboard and the sensor board.   The 

motherboard encompasses the logging functions, processing capabilities and the power 

distribution, while the sensor board ensures connectivity of the sensor. Connecting the two is 

a common protocol that supports a variety of sensors.  By building a custom testing platform, 

this ensures the testing platform has a consistency between different device under tests (DUTs).  

Figure 3-1 shows the basic block diagram of the system and Figure 3-2 shows the final data 
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logger implemented in a Printer Circuit Board (PCB).  Specific implementation details are 

available in Appendix A.  

 

 

Figure 3-1 – This figure highlights the inputs/outputs of the system and the connections of the major blocks. 

 

Figure 3-2 Picture of data logger platform motherboard 
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3.1.2 Sensor Protocols and Example implementations 

For the platform to support a variety of sensors, several different protocols are supported by 

the system. Instead of supporting all the protocols on separate pins, and using them 

inefficiently, the pinout was chosen such that various combination of board configurations are 

supported.  The following configurations are valid sensor board configurations, without 

external multiplexers.   

 1 Analog device (3-Axis) 

 1 Analog device (3-Axis) + up to 3 Serial Peripheral Interface (SPI) devices 

 1 Analog device (3-Axis) + up to 3 I2C devices 

 Up to 4 SPI or I2C devices 

 

Figure 3-3 - A pinout of the sensor board to motherboard connection. These are the most important pins, each of the pins 
can be repurposed as an enable to the sensor or data ready signal from the sensor. 

There are a variety of ways the sensor boards can be designed. This is an example of the sensor 

board that utilized 2 SPI devices. This was created for a specific pair of sensors which both 

utilized the SPI protocol.   Shown here is the pinout and resulting PCB:  



Inertial Measurement Unit Specification  15 

 
 

15 
 

 

Figure 3-4 Example of pinout for two SPI devices(Left) Picture of implemented PCB (Right) 

3.1.3 Software 

This section mainly covers the software implementation of the Data Logger. This includes the 

API and system level organization of the data logger with an execution description of the 

logger program developed.  

3.1.3.1 Architecture 

The software architecture was developed for the future adoption of new sensor boards. To do 

this, the construct of a sensor board and device level API was created, which allows for 

flexibility in the sensor board and sensor codebase.  This abstraction allows duplication of 

devices between boards without redundant code, and allows for easy configuration of the board 

such that different pinouts can be laid out easily.  The following figure shows the functional 

blocks which were created within the architecture to support the sensor board system.  
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Figure 3-5 Software API Architecture. Blocks in grey indicate blocks that will need to be configured specifically for each 
new device. 

There were four main categories of Application Programming Interface (API) created for the 

platform: 

Device level API – This is a user implemented API with a defined prototype of functions.  The 

main purpose is to have a common method of initializing the sensor, configuring it and reading 

values from it.  

Board level API – This was mainly implemented in the imu_wrapper.c file.  As long as the 

device level APIs are readily available, a board can be integrated into the system using 

configuration settings, after which the system can utilize the same functions to 

initialize/reset/read to the IMUs on the board.  
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Data Storage API – This supports the use of SD card or Serial port to transfer data.  In the 

case of the SD card, the data is stored in a text file using the FatFs filesystem implemented by 

ChuaN.  

Other APIs – This api mainly includes a variety of different useful functions, such as debug 

messages on the serial port, generating clock signals, internal timer initializations and data 

processing methods.  

3.2 Mechanical Testing Platform 

This section covers the setup which was used to produce the mechanical movements that was 

utilized within the metric testing stage.  It includes a description of the setup and highlight 

specifics of the testing platforms.   There are two main purposes to the mechanical testing 

platforms: 

1. Provide an accurate measurement of metrics relevant to an accelerometer 

2. Be a low-cost and low-effort setup. 

3.2.1 3-D Printer 

The main mechanical testing platform is a 3D printer.  A 3D printer is a low-cost setup that 

provides a good control of the movement while being accurate to the millimeter.   The printer 

used in this case is the Rostock MAX 3D printer which can achieve a resolution of 1mm at 

speeds of 800mm/s.   The dispensing printer head was removed and used as a platform for the 

accelerometers to be attached.   

The 3D printer is controlled using the Repetier Host application which accepts G-code as a 

way of controlling the movement.  G-code allows the user to provide coordinates within the 

working space along with a speed.   
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Figure 3-6 - Picture of the 3-D printer platform with the horizontal accelerometer testing rig attached 

The printer has two main benefits: 

 Control – g-code allows precise control over the positioning of the platform. 

 Repeatable – movements are highly repeatable, allowing for consistent results.  

Although this makes the printer a good candidate for mechanical testing, there are two main 

drawbacks to the 3D printer which makes the design of the movement patterns extremely 

important.  

 Mechanical noise – noise introduced is highly inseparable from data.  

 Peak Acceleration – peak acceleration within a ± 0.3g range. 

Due to the noisy nature of the 3D printer, and low signal amplitude, it makes the 3D printer 

unsuitable for linearity measurements.  Thus, another mechanical setup is used for linearity.  

3.2.2 Circular Motion Platform 

This platform is mainly used for the linearity measurements.  Linearity is difficult to measure 

without the ability to produce a good quality signal at a high signal amplitude.  This mechanical 

platform utilises the concept of circular motion and gravity to produce a ±1g tone which is a 

clean input needed to test linearity.   Details of the implementations will be discussed in the 

outlining of the testing methodology.   
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3.3 Accelerometer and Gyroscope Selection 

The following accelerometers are the list of accelerometers used in testing.  They were selected 

from three manufacturers that have shown good results in a previous study. [6]  As noise 

density are often used to evaluate the relative performance of difference devices, they were 

selected to cover a range of noise densities.  The following is the list of devices that were tested 

across the different suite of tests.  

Table 3-1 Table of Accelerometers tested 

Accelerometer Model Manufacturer Noise Density 

[
ࢍࣆ

ࢠࡴ√
] 

Type Cost 

[$]  

LSM303D ST Microchip 150 Digital 4.40 

LIS3DSH ST Microchip 150 Digital 3.64 

AIS328DQ ST Microchip 218 Digital 13.47 

MPU6000 Invensense 400 Digital 5.28 

KXTC9 Kionix 125 Analog 5.25 

ICM20689 Invensense 150 Digital 5.86 

KXRB5 Kionix 40 Analog 10.25 
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3.4 Accelerometer Metrics Test  

Using the testing platform outlined before the devices were tested in several specifications.  A 

consistent testing methodology was used to test each specification, ensuring a consistent 

comparison.  

1. Noise Density 

2. Cross-Axis Motion 

3. Linearity 

4. Bias Variability 

5. Step Motion 

These five were chosen because the first three are commonly specified on data sheets, and the 

last two are tests that will give a different look at accelerometers. The testing methodology will 

discuss the test dynamics, metric calculated for each specification and analysis of the results.  

Temperature and vibrational effects were initially considered as well, however, due to 

limitations of the testing platform, they are hard to measure consistently and as such not 

explored in this study.  

The purpose of a standard specification methodology is for an accurate comparison of 

Accelerometers.  Accelerometers are used in a variety of settings which allow for different 

metrics to be prioritized. To serve as an example application, the specification results were 

weighted for a dead-reckoning application.  The weighting was derived from the importance 

of velocity and displacements in a dead-reckoning application, where the bias variability and 

step motion results will take a higher precedence.   

Table 3-2 - Example application weighting of metrics 

Metric Weight (Out of 25) 

Noise Density 5 

Cross-Axis 3 

Linearity 3 

Bias Variability 7 

Step Motion 7 
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The data logger platform is powerful enough to process the data, however, MATLAB was used 

to process the data instead so different processing methods can be tested.  The following is the 

standard configuration. 

 Data was sampled at 400Hz. 

 Bandwidth set at 44-50Hz range. 

 Hanning Window Applied (before frequency analysis only) 

 Per device calibration done to remove offset and gain errors. 

AIS328DQ’s bandwidth is restricted to half of the sample rate at 200Hz from the device, so it 

cannot be reconfigured.    

3.4.1 Noise Density 

 

Figure 3-7 Dynamic Model of the Noise Density Test 

To measure noise density, the device was mounted on the bench with the z axis aligned to 

gravity. The test dynamics are relatively straightforward; the device was held stationary for 10 

minutes on the bench. The resulting data was analyzed to calculate the noise density. Noise 

density is calculated for all three axes and averaged for the final metric.  

3.4.1.1 Time Domain Method 

There are two calculation methods for noise density which are evaluated. The first method uses 

the assumption that in a stationary state, the noise model of the accelerometer is white noise. 

If that is the case, noise can be calculated using the following equation: 

y 
x z 

Bench 

Top View 

1g 
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ܦܰ =
ߪ

ඥ ଷ݂ௗ஻

= ඩ
1

ଷ݂ௗ஻

1
ܰ

෍(ݔ௜ − ଶ(ߤ 

ே

௜ୀଵ

(3.1) 

The time domain method is affected by the device’s inherent filter and 1/f noise, as such, the 

preferred method is the frequency domain method it provides a more accurate derivation of the 

noise density.   

3.4.1.2 Frequency Domain Method 

The frequency domain analysis is more accurate, as it takes into account the noise model of 

the accelerometer.  However, it is more computationally intensive and requires more 

understanding of the accelerometer.  

 

Figure 3-8 Frequency representation of simulated noise on z-axis. 

The figure above shows the FFT of a typical accelerometer noise model; the model is separated 

into 3 distinct regions. Region 1 involves the bias and 1/f noise, which is unwanted and not 

part of the noise density calculation. Region 3 is the roll-off caused by the low pass filtering 

done on the device.  As region 3 doesn’t affect where the signal of the system is, it is not 

included when calculating the noise density. Therefore, the region of interest, is region 2, 

where the noise density is calculated using the following formula: 

1 2 3 
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ܦܰ =
1

ଷ݂ௗ஻
ඩ

1

ଶ݂ − ଵ݂
න ቚܣ(݂)ሬሬሬሬሬሬሬሬሬԦቚ

ଶ
௙ଶ

௙ଵ

 ݂݀ (3.2) 

ଷ݂ௗ஻ is the bandwidth of the device, and is equal to the end frequency, ଶ݂. The start frequency 

ଵ݂ was empirically determined to be 1/100th of the bandwidth to ensure the 1/f noise doesn’t 

affect the noise density calculation.   

ଵ݂ =
1

100 ଷ݂ௗ (3.3) 

3.4.1.3 Noise density Results  

Figure 3-9 and 3-10 show an example of how the time domain and frequency domain of a noise 

density plot will appear like. The spectrum shows the different sections of the noise model as 

well.   

 

Figure 3-9 Time domain plot of noise density test 
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Figure 3-10 Frequency domain plot of the noise density test –  box indicates the region used for noise density calculation 

Using both the frequency and time domain methods, the noise density was determined to be 

the following for the different accelerometers.  

Table 3-3 Noise Density test results 

Device 

Spec 

Sheet 

[
ࢍࣆ

ࢠࡴ√
] 

Noise Density  

Time Domain 

method 

[
ࢍࣆ

ࢠࡴ√
] 

Noise Density  

Frequency domain 

method 

[
ࢍࣆ

ࢠࡴ√
] 

Total 

Noise 

 [ࢍࣆ]

Bandwidth 

[Hz] 

LSM303D 150 619 826 5840 50 

LIS3DSH 150 355 604 4270 50 

AIS328DQ 218 361 360 5091 200 

MPU6000 400 252 413 2739 44 

KXTC9 125 126 194 1372 50 

ICM20689 150 175 280 1857 44 

KXRB5 40 138 227 1605 50 
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There are two main points of discussion from the summary which will be explored in detail: 

1. Time domain vs Frequency domain 

2. Discussion of outliers LSM303D/LIS3DSH 

The time domain analysis consistently underestimates the noise density except for AIS328DQ, 

where it is comparable since the bandwidth is at half of the sample rate. In general, the time 

domain analysis will take into consideration the effect of the filtering, resulting in lower noise 

density.  If the frequency method limits were changed to include the high frequency ranges, 

the noise density will match the time domain results. Most of the devices have a spec sheet 

noise density which does not specify how they are calculated.  The time domain method and 

frequency based method can yield vastly different results particularly when different low pass 

filters are employed by different devices. By quoting based of the frequency domain, this 

eliminates the ambiguities that different spec sheets have. In addition to calculation 

methodology, data sheets do not differentiate between different axes. The following table 

shows that there is a considerable difference between them. 

Table 3-4 Frequency Domain based Noise Density result per axis 

Device 
Spec Sheet 

[
ࢍࣆ

ࢠࡴ√
] 

Measured  

[
ࢍࣆ

ࢠࡴ√
] 

  x y z 

LSM303D 150 602 348 1530 

LIS3DSH 150 583 421 809 

AIS328DQ 218 319 299 464 

MPU6000 400 369 337 532 

KXTC9 125 210 37 336 

ICM20689 150 282 283 273 

KXRB5 40 176 223 282 

 

Secondly, looking at LSM303D and LIS3DSH, the noise density is significantly higher than 

the specification. The discrepancy results from the output data rate selection; at higher 

sampling rates, even when the device is kept at the same bandwidth, the noise is much higher 
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than specified. Noise density should not be affected by the output data rate, but rather the 

device bandwidth. LSM303D and LIS3DSH share a similar chip architecture, with the 

difference being LIS3DSH includes an on-chip magnetometer, and both show this issue.  This 

was recreated across 3 different copies of each chip. When the device was set at the same data 

rate and bandwidth specified by the device, it gives a very comparable noise density.  This 

highlights one of the issues with testing accelerometers - most specifications are not listed, and 

even when they are, they are inconsistent across vendors and devices.  

By keeping a consistent methodology, it is possible to compare the relative noise performance. 

In general, we can see that the specifications do follow a similar trend compared to the spec 

sheet dataFor noise density, the KXTC9 is the best performing in relation to all the devices 

tested. To ensure a relative performance is tracked across all the metrics, the following formula 

is used to score and compare the relative performance of the devices. The same formula is 

applied to all subsequent metrics as well.  

݁ݎ݋ܿܵ =
௕௘௦௧ܿ݅ݎݐ݁ܯ

ௗ௨௧ܿ݅ݎݐ݁ܯ
∗ 100 (3.4) 

Where the metrics of the respective devices are compared to the best scoring device in that 

category. 

Table 3-5 - Scoring Matrix for Noise Density 

Device 
Noise Density  

[
ࢍࣆ

ࢠࡴ√
] 

Score 

/100 

LSM303D 826 23 

LIS3DSH 604 32 

AIS328DQ 360 54 

MPU6000 413 47 

KXTC9 194 100 

ICM20689 280 69 

KXRB5 227 86 
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3.4.2 Cross Axis 

 

Figure 3-11 Dynamic Model of the Cross-Axis test 

To measure cross-axis, a signal is introduced on one axis (signal axis), and the cross axis is the 

ratio of the signal introduced seen on the other axes (non-signal axis).  In the figure above, this 

is equivalent to putting an input signal (ܽ௦ప௚௡௔௟ ௔௫ప௦ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ) and measuring its effect on the other axes.  

Then the cross-axis ratio is identified as: 

݋݅ݐܴܽ ݏ݅ݔܣ ݏݏ݋ݎܥ =
 หܽ௡௢௡ି௦ప௚௡௔௟ ௔௫ప௦ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦห

หܽ௦ప௚௡௔௟ ௔௫ప௦ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦห
(3.5) 

Any signal can be utilized for a cross-axis analysis, if the amplitude of the signal is identifiable.  

However, when using the 3D printer platform for motion generation, it will involve mechanical 

noise from the stepper motors, drive assemblies and other mechanical factors which are hard 

to differentiate from the signal, making the cross-axis ratio hard to calculate. To work around 

this, the input signal can be specified to allow for differentiation between the signal and 

mechanical noises.  On the low-cost 3D printer, it is difficult to generate a smooth sinusoid; 

thus, a small duty cycle square wave was determined empirically to be easily differentiable 

from the mechanical noise.  

1. Stop the device at the starting position for calibration period.  

2. Move a set distance (D) at a constant speed (V) along the signal axis. 

3. Return to the starting point at the same speed 

4. Repeat steps 2 and 3 at a fixed frequency.   

y 
x z 

Platform Attachment 

Top View 

1g + ܽ௭ሬሬሬሬԦ 
ܽ௬ሬሬሬሬԦ 

ܽ௫ሬሬሬሬԦ 
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To verify this approach, the test movement was simulated assuming a 1g spike in acceleration 

for a short time duration, and the period of the whole motion is 1 second.  Figure 3-12 shows 

the time domain view of this signal, and 3-13 shows the effect in the frequency domain.  

 

Figure 3-12 Simulated motion pattern for cross-axis calculation with no accelerometer noise model, 
࢙ࢌ  = ૝૙૙ࡴ , ࢀ = ૚࢙  

 

Figure 3-13 – Frequency domain of the simulated cross-axis test motion. ࢌࢤ ∝  
૚

ࢀ
  

This motion was chosen because it is easily identifiable in the frequency domain; in the 

frequency domain, a similar delta train is seen, where the spacing is dependant on the frequency. 
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In simulation results, similar delta trains can be identified on the signal and non-signal axes 

allows us to differentiate the signal from the mechanical noise.  The power of this signal can 

be determined by summing up the power of the pulses seen in the frequency domain. By 

looking at the frequency bins where this mechanical motion exists, the cross-axis ratio can be 

calculated  

௔௫௜௦݌ = ෍ ቚܣ௔௫ప௦(݂)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦቚ
ଶ

୒

(3.6) 

  ௔௫ప௦(݂)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ is the frequency representation of the signalܣ

N is the number of deltas to sum up the power – across the bandwidth of the device.  

݋݅ݐܴܽ ݏ݅ݔܣ ݏݏ݋ݎܥ = ට
௣೙೚೙ ೞ೔೒೙ೌ೗

௣ೞ೔೒೙ೌ೗
 (3.7)  

  .௡௢௡ ௦௜௚௡௔௟ is the signal power that is seen on the non-signal axis݌

   .௦௜௚௡௔௟ is the signal power that is seen on the signal axis݌

The cross-axis metric is often specified on spec sheets as a ratio of the input signal, as such, 

we normalized it to a ration of amplitudes to allow for easy comparison with the spec sheet as 

well. The cross-axis ratio was calculated by introducing this signal individually on each axis 

and results were averaged to get the final cross-axis ratio for the device. 

Figure 3-14 and 3-15 show the runs measured on KXRB5.  In both the signal and non-signal 

axis, there is a significant amount of mechanical noise apparent in the 10଴ − 10ଶHz range, 

which was shown to cause trouble when only comparing amplitude of the time domain data.   

In the signal axis, there are spikes occurring at the signal frequencies.  Therefore, to determine 

the cross-axis ratio, the power of the signal was calculated by summing across all the signal 

frequencies within the bandwidth of the device.  
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Figure 3-14 Fast Fourier Transform (FFT) of the data seen on the Signal Axis of Cross-Axis test. 

 

Figure 3-15 FFT of the non-signal axis in the cross-axis test 



Inertial Measurement Unit Specification  31 

 
 

31 
 

By analysing frequencies where the signal is in, it mitigates most of the effect from the 

mechanical noise which affects all axis in a similar fashion.  From the testing results, KXRB5 

has the best cross axis performance.  Other devices are comparable in terms of cross axis 

performance, with most of them around the 1% cross axis ratio range.  Most spec sheets do not 

specify the methodology of testing this, but our consistent methodology does show a similar 

result to the spec sheet comparison.  This method is a way of utilizing a noisy platform to 

determine the cross-axis performance without the use of a highly controllable shaker table.  

Table 3-6 - Cross Axis results and scoring summary 

Device Spec Sheet Cross Axis 

Ratio 

Score 

/100 

LSM303D -- 0.015 53 

LIS3DSH -- 0.012 67 

AIS328DQ 0.05 0.025 32 

MPU6000 0.02 0.017 47 

KXTC9 0.02 0.012 67 

ICM20689 0.02 0.010 80 

KXRB5 0.02 0.008 100 

 

3.4.3 Linearity 

 

Figure 3-16 Dynamic Model of Linearity Test 
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Linearity is the third specification that is explored. It is important to produce a known signal 

with a known amplitude and frequency to measure linearity. However, due to the 

characteristics of the stepping motor, the 3D printing platform introduces mechanical noise 

and discretization which inhibits the ability to evaluate the linearity of a device.  Linearity is 

especially a concern at higher accelerations near the limits of the accelerometer, as this is the 

region where the linearity is the highest.  For this test, a vertical rotational platform was devised 

such that a tone with a 1݃ amplitude can be created.   In this test, the vertical rotation platform 

will have a circular motion which induces the following forces on the tangential and radial axis: 

ܽ௧ሬሬሬԦ = (ݐ߱)݊݅ݏ݃ (3.8) 

ܽ௥ሬሬሬሬԦ = −ሾܽ௖ሬሬሬሬԦ + ሿ(ݐ߱)ݏ݋ܿ݃ (3.9) 

ܽ௖ሬሬሬሬԦ is the centripetal force caused by the rotational motion of the platform.  

݃ is the force of gravity.  

߱ is the rotational speed in cycles per second.  

To test linearity, the tangential acceleration is aligned with the axis to be tested.  The resulting 

motion would provide a tone with an amplitude of ±1݃ on the measurement axis of the device.  

This is not the limits of the accelerometer, as they can be rated to ± 8݃, but for navigational 

purposes, typical acceleration values seen on subways are much lower than this.  Looking at 

the frequency domain, and the tones and harmonics generated, the metric to determine the 

linearity of the device for that input can be calculated.   Figure 3-17 and 3-18 show the 

frequency domain of the test, where the input tone is seen at around 1.6ݖܪ and the second and 

third harmonics are seen when it is zoomed in. Signal to Noise and Distortion Ratio (SNDR) 

is calculated by taking the power of the fundamental over the power of the noise and distortion 

terms.  Signal to Noise Ratio (SNR) is the ratio of the fundamental and noise, while the 

Dynamic Range (DR) is the ratio of the fundamental and the harmonics.  
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Figure 3-17 FFT of linearity test. 

 

Figure 3-18 FFT of linearity test, showing second and third order harmonics. 
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Using the same methodology, the metrics for linearity are calculated for each device and the 

results are below.  Since we are focusing on the effects of the harmonics, the dynamic range 

was used to determine the relative scoring.   

Table 3-7 Linearity Summary and Scoring Results 

Device Spec Sheet SNDR [dB] SNR [dB] DR [dB] Score 

/100 

LSM303D -- 32.5 35.6 35.5 92 

LIS3DSH -- 32.7 36.6 35.0 90 

AIS328DQ -- 30.0 32.8 33.2 86 

MPU6000 -- 34.4 38.4 36.6 95 

KXTC9 30 34.6 38.8 36.6 95 

ICM20689 -- 34.9 37.5 38.3 99 

KXRB5 30 35.1 37.6 38.7 100 

 

Linearity is one of the less documented specification compared to cross-axis and noise density.  

However, it is important metric if high g applications are intended for the device.  The 

following devices have comparably good performance: MPU6000, KXTC9, ICM20689, 

KXRB5.  The harmonics are fairly apparent in this setup, however, the difference between the 

performances of the devices tested were relatively small - a spread of 3dB.  This is due to the 

test setup introducing a fixed ±1g sinusoidal input, which doesn’t hit the boundaries of the 

typical ±2݃ or ±8݃ device range.  With the current setup, there isn’t a consistent method of 

varying the sinusoidal amplitude, making it difficult to test the linearity of the device across 

the input motion range.  Despite this drawback, the linearity results still show a comparison 

between the devices since it does the relative performance of the devices in the ±1݃ input, 

which is the region more important for inertial navigation applications.   

 



Inertial Measurement Unit Specification  35 

 
 

35 
 

3.4.4 Bias Variability 

 

Figure 3-19 Bias Variability Dynamic Model 

Noise modelling is an important aspect of research in MEMS inertial sensors. For inertial 

navigations, the effect of integration amplifies the effects of specific types of noise, thus 

making it important to understand the varieties of noise in the sensor. A typical noise model of 

a MEMS inertial sensor will break down the noise model into three categories.  

1. White Noise 

2. Zero Mean Flicker Noise (1/f) 

3. Random Walk Noise (Bias Changes) 

Through modelling, the noise is broken down into three different sources to illustrate the 

effects of each type. To illustrate the different effects of noise, a typical noise model of an 

accelerometer was constructed. These values were determined empirically by looking at 

typical values seen across the different DUTs.  

 Noise Density: 200
ఓ௚

√ு௭
  

 Flicker Noise Power: 1/5th the power of the white noise.  

 Random Walk Noise: ׬ 10
ఓ௚

௦∗√ு௭

௧
଴

 , Random walk noise is an integral of white noise.   

This noise model was simulated and shown in Figure 3-20, where white noise has the most 

impact in acceleration. However, when the results are integrated to determine velocity, as 

shown in Figure 3-21, Random Walk and Flicker noise have a much more significant impact, 

resulting in more than  1
௠

௦
  and −0.5

௠

௦
 for each type of noise respectively.  

y 
x z 

Test Bench 

Top View 

1g 
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Figure 3-20 – Different types of noise seen on a typical accelerometer model. 

 

Figure 3-21 – Effects of integration on different type of noise seen in a typical accelerometer model 
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Therefore, the purpose of this test is to characterize and compare the performance of different 

devices across these other noise processes.  The dynamic testing for this metric is similar to 

noise density; the device is strapped on to the test platform and held stationary. However, to 

ensure an accurate Allan variance plot can be constructed, the stationary data is recorded for 

60 minutes, with the beginning 20 minutes truncated to minimize startup fluctuations.   

3.4.4.1 Allan Variance 

Allan variance (ܴܣܸܣ) is commonly used to determine and distinguish the effect of noise in 

oscillators.  There are two benefits to using this over a normal variance calculation method: 

1. Not affected by non-stationary mean present in complicated noisy processes. 

2. Allows differentiation of different regions of noise through a time based method.  

There are two common methods of calculating ܴܣܸܣ, the first method is a non-overlapping 

method.  It is calculated by averaging ݉ number of consecutive data points, where m is chosen 

so that it can segment the dataset equally.  For a dataset, ݔ, with ܰ data points, the averages, 

 :are calculated as follows ,ݕ

௜ݕ =
1
݉

෍ ௝ݔ

௜௠

௝ୀ(௜ାଵ)௠

(3.10) 

ܴܣܸܣ  is denoted with relation to a time period, which is related to the number of points 

averaged.  

߬ = ݉߬଴ =
݉

ௌ݂
(3.11) 

 :is defined as the following ܴܣܸܣ 

ܴܣܸܣ = ௬ߪ
ଶ(߬) =

1

2 ቀ
ܰ
݉ − 1ቁ

෍ ௜ାଵݕ) − ௜)ଶݕ

ே
௠ିଵ

௜ୀଵ

(3.12) 

Allan Deviation, which is more commonly used in the Allan Variance plots, is calculated 

simply by taking the square root: 

ܸܧܦܣ = ܴܣܸܣ√  = (߬)௬ߪ  (3.13) 



Inertial Measurement Unit Specification  38 

 
 

38 
 

The non-overlapping method provides a quick way to determine the ܴܣܸܣ. At longer time 

periods, this calculation is less accurate due to a lower number of segments to calculate the 

first difference from.  An overlapping Allan Variance will alleviate this issue. 

 

Figure 3-22 - Overlapping vs Non Overlapping Samples for Allan Variance. Image taken from NIST Handbook for 
Frequency Stability Analysis [19] 

An overlapping Allan Variance is calculated using the following set of equations: 

௜ݕ =
1
݉

෍ ௝ݔ

௜ା௠

௝ୀ௜

 (3.14) 

The Overlapping Allan Variance is calculated using the following: 

௬ߪ
ଶ(߬) =

1
2݉ଶ(ܰ − 2݉)

 ෍ ቐ ෍ ௜ା௠ݕ − ௜ݕ

௝ା௠ିଵ

௜ୀ௝

ቑ

ଶ
ேିଶ௠

௝ୀଵ

(3.15) 

Due to the computationally intensiveness of the inner loop, the Overlapping Allan Variance 

can also be estimated by first integrating ݔ: 

௜ݖ = ௜ିଵݖ + ௜ݔ , ଵݖ = 0; (3.16) 

Then the Overlapping Allan Variance can be estimated as  

௬ߪ
ଶ(߬) =

1
2(ܰ − ଶ߬(ܯ2 ෍ ሾݖ௜ାଶ௠ − ௜ା௠ݖ2 + ௜ሿଶݖ

ேିଶ௠

௜ୀଵ

(3.17) 
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The Allan Deviation plot is obtained by sweeping across time periods and plotting the Allan 

Deviation vs ߬ in a loglog plot.  

 

Figure 3-23 Slopes of difference types of noise in an Allan Deviation Plot. Image taken from NIST Handbook of 
frequency stability analysis [19] 

To determine the metric, Allan Variance (ܴܣܸܣ) is used to compare between devices. In the 

case of accelerometers, there are three main processes of noise which are all captured by the 

Allan variance – White, Flicker and Random Walk. All three of these noise are seen with the 

following slope in the plot.  

Table 3-8 - Types of noise seen on accelerometers and their slopes on Allan Deviation Plot 

Noise Type Slope 

(log Allan deviation) 

White Noise -0.5 

Flicker Noise 0 

Random Walk 0.5 

 

To illustrate this, Figure 3-24 and 3-25 show the frequency domain plot and Allan Variance 

plot of the noise model that was illustrated in Figure 3-20.   
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Figure 3-24 - Spectrum of the different type of noises.  White noise is flat throughout. Pink noise exhibits a   
-10dB/decade. Random walk exhibits -20dB/dec and has significant impact at lower frequencies. 

 

Figure 3-25- Allan Deviation Plot shows the noise in a different representation.  On a loglog plot, white noise has a slope 
of  

-0.5.  Pink noise has a 0 slope. And random walk with a slope of 0.5. 
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3.4.4.2 Bias Variability results and discussion 

Using the overlapping ܴܣܸܣ, the Allan deviation plot for each device was determined. From 

there, two different metrics are measured to determine the bias variability.  The smallest time, 

where the slope is within 0 ± 0.05, was recorded along with the Allan deviation at that time.  

The Allan deviation measured at that time is best performance the device can theoretically 

achieve when the output is averaged for that time.  The Allan deviation measured at the 

minimum can also be interpreted as random variable bias change.  

For example, when Bias variability is specified at 30݊݁ݒ݅݃ ݃ߤ ߬ =  ݏ40

ݐ@ = ݏܽ݅ܤ :0 =   ௧ܤ

ݐ@ = ݏܽ݅ܤ :߬ = ௧ܤ ± ௬ߪ1 = ௧ܤ ±  ݃ߤ30

Or it is interpreted as the bias becoming a random variable with a standard deviation of 30݃ݑ.   

The following graphs are examples of how the Allan deviation plot appears for the devices 

measured.    

 

Figure 3-26 – Sample of MPU6000 Allan Deviation Plot 
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Figure 3-27 - LIS3DSH Allan Deviation Plot 

Table 3-9 Bias Variability Results and Score 

Device Time Period  

 [࢙]

  (࣎)࢟࣌

 [ࢍࣆ]

Bias Variability 

[
ࢍ࢓

࢘ࢎ
] 

Score 

/100 

LSM303D 41 76.6 6.72 11 

LIS3DSH 41 50.6 4.44 17 

AIS328DQ 41 64.2 5.64 13 

MPU6000 164 34.7 0.76 100 

KXTC9 82 101.8 4.47 17 

ICM20689 41 61.3 5.38 14 

KXRB5 82 66.9 2.94 26 

 

Allan deviation isn’t specified amongst all the device tested, and typically not performed.  

However, it gives the benefit of being able to account for other sources of noises other than 

white noise.  Ideally, the Allan deviation is as low as possible, where the time is as large as 

possible. This indicates that the flicker and random walk noises are as small as possible.  

However, as it is difficult to compare 2 separate metrics, and to promote comparison between 
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the devices, the Allan deviation was normalized to the time measured, and then normalized to 

mg/hr.  This allows for an easy comparison as it accounts for the effect of the time and the 

Allan deviation at that time.   

From the Allan deviation plot, there are two specific devices which stand out.  MPU6000 has 

very good performance, showing a bias variability of 0.76 
௠௚

௛௥
, followed by KXRB5, showing 

a bias variability of 2.94
௠௚

௛௥
.   In the case of the MPU6000, it results from both a low Allan 

deviation and large time period, indicating lower effects of these types of noises.  This method 

explores other type of noise processes not usually covered by manufacturers, but these types 

of noises are especially important for inertial navigation purposes where integration is often 

necessary.  

3.4.5 Step Motion  

 

Figure 3-28 Step Motion Test Dynamic Model 

The step motion test is a controlled representation of motion, and its purpose is to measure 

how the device performs at calculating displacement in a short time. This is a more complicated 

specification which tests more than the basic parameters of an accelerometer, but it utilizes the 

device in a similar way that it will be commonly used. The test moves the platform a fixed 

distance repeatedly and seeing how close the double integration of the results will be to the 

displacement moved.  

This test will perform the following motion: 

1. Move 1cm along one axis 

2. Pause for 2 seconds 

3. Repeat steps 1-2 10 times.  

y 
x z 

Platform Attachment 

Top View 

1g + ܽ௭ሬሬሬሬԦ 
ܽ௬ሬሬሬሬԦ 

ܽ௫ሬሬሬሬԦ 
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4. Repeat steps 1-3 5 times. 

5. Repeat for other axes 

6. Repeat test for 5 times.  

The calculation of the metric will use the integration of the accelerometer.  The displacement 

is calculated by double integrating the acceleration using the following formula:  

Ԧ݀ = ඵ ܽ௦ప௚௡௔௟ሬሬሬሬሬሬሬሬሬሬሬሬሬԦ − ݇௖௔௟ ݐ݀ 
்

଴
(3.18) 

݇௖௔௟ is the calibration constant from the 2 second pause which is used to remove the effects of 

the offset issues.  

ܿ݅ݎݐ݁ܯ ݊݋݅ݐ݋ܯ ݌݁ݐܵ = ߳ௗ௜௦௧௔௡௖௘ = ห Ԧ݀ − ݀௥௘௙ห (3.19) 

݀௥௘௙ is the reference displacement of that axis.   

The following figures are example plots for ICM20689 which show the acceleration and 

velocity plots of the motion.   

 

Figure 3-29 - Raw Acceleration for a z-azis step motion run 
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Figure 3-30 - Velocity of z-axis step motion from integration of acceleration.  During periods of no motion, a zero 
velocity is ensured through the removal of the offset in the acceleration. 

Due to removal of offset during periods with no motion, there is no change in velocity between 

the movement.  However, the velocity still changes due to integration of a variety of errors 

during the motion, such as cross axis contamination or stochastic errors. Looking at the shorter 

motions in Figure 3-30, the velocity and duration matches closely with the expectation – the 

duration and amplitude results in ~1cm of displacement, and this is quite consistent across all 

the movement.   As a result, the offset error of the velocity comes mainly from any errors 

during the movement, which results in a change in velocity before and after the spike.  This 

error is more apparent when looking at longer movement durations, specifically at the 35-40 

seconds.  The velocity before and after the movement differs a lot.  Figure 3-31 shows the 

velocity profile of AIS328DQ, where the movement spikes aren’t always consistent, and this 

test will capture that. This test was meant to be help quantify some of the errors that were not 

covered in previous specifications and be a more realistic test as it is based on the movement 

and displacement of the device.  If a device is prone to short term processes which get 

exacerbated by integration, such as cross axis or vibrations, this test will highlight it.   
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Figure 3-31 - AIS328DQ showing more significant errors during periods of motion, with the velocity changing 
significantly after motion. 

By looking at the end displacement, it tracks how much the velocity has changed due to the 

errors accumulated by the motion.  This test was repeated 5 times and the step motion error 

was averaged to get the following results.  

Table 3-10 - Step Motion Results and Score 

Device Step Motion Metric  

[m] 

Score 

/100 
 

Average  

LSM303D 0.47 23 

LIS3DSH 0.25 44 

AIS328DQ 1.74 6 

MPU6000 0.22 50 

KXTC9 0.11 100 

ICM20689 0.39 28 

KXRB5 0.20 55 
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There are two main contributions of this test: 

 A specification that is similar to common use cases of accelerometers, and captures 

different aspects from the other specifications. 

 Capture effects that are exacerbated by integration – calibration, noises, or in-motion 

attitude errors.  

This test doesn’t narrow down the source of error, but it does show that some devices are more 

susceptible to errors that worsen with integration and provides a way of characterizing the 

performance of the different devices.   In the step motion test, KXTC9 has the best performance, 

with a close performance from the KXRB5 and MPU6000.  AIS328DQ and MPU6000 have 

similar noise, cross-axis and linearity performance, however, AIS328DQ has a much worse 

performance compared to the MPU6000.  In another comparison, ICM20689 and KXRB5 both 

have a relatively good performance in the other specifications, but there is a larger difference 

when used in this test.  The step motion test exercises the devices differently from the previous 

specifications and is necessary to consider when comparing accelerometers. It highlights 

difference between devices with similar noise performance when they are moved and 

integrated, which is extremely important as accelerometers are commonly integrated in inertial 

systems.   

3.5 Device Specification Summary 

There were two problems that this chapter seeks to address – inconsistencies at comparing 

accelerometers across different evaluation platforms and standard testing methodologies on a 

low-cost platform that will allow comparison of different accelerometers.  The construction of 

a common testing platform provides the ability to effectively compare between different 

devices tested and any future devices.   When investigating noise density, which is a very 

common metric, devices did not match specification and appeared to use an improper method 

of calculation.  For other metrics, there were many situations where not all the devices were 

specified.  In the process of defining the testing methodology, we have shown a set of testing 

methodologies which provide a consistent and stable way to analyse and compare 

accelerometers. This section has clearly defined 5 distinct metrics which are measurable using 

a low-cost 3-D printer to effectively compare between accelerometers and their performance.  
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1. Noise Density 

2. Cross Axis 

3. Linearity 

4. Bias Variability 

5. Step Motion 

The first three specifications are strictly defined to ensure comparability between the different 

devices, and bias variability and step motion are static and dynamic tests that investigate areas 

that are not covered by the other common specifications.  Throughout this definition, the 

development of a 3D printer based accelerometer testing and measurement platform enabled a 

consistent comparison. Along with a strict methodology to test and measure the devices, it 

becomes possible to also interpolate performance in key application areas.  An earlier example 

mentioned is when an accelerometer is used for dead-reckoning purposes.  In that scenario, the 

accuracy of the displacement calculated is the priority. In that case, specifications such as the 

bias variability and step motion will be more significant than noise density, cross-axis and 

linearity.  Which results in a weighting system to compare between different devices.  However, 

this is only an example weighting and the metric weightings will change depending on the 

application.   

Table 3-11 Scoring Matrix for dead-reckoning scenario 

Device Noise 

Density 

Cross 

Axis 

Linearity Bias 

Variability 

Step 

Motion 

Final 

Score 

Weighting 5 3 3 7 7 25 

LSM303D 23 53 92 11 23 7.9 

LIS3DSH 32 67 90 17 44 10.6 

AIS328DQ 54 32 86 13 6 7.6 

MPU6000 47 47 95 100 50 17.1 

KXTC9 100 67 95 17 100 18.1 

ICM20689 69 80 99 14 28 11.8 

KXRB5 86 100 100 26 55 16.0 
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Using the example weighting, KXTC9, MPU6000, and KXRB5 will be the better choice for 

applications which need better dead reckoning performance.  The decision of the weighting is 

highly dependant on the application, and its selection is outside of the scope of this study.    

However, using this example, it highlights a method of using the result of a standardized testing 

methodology and how it can aid in selecting accelerometers for different application.    
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Chapter 4 Specification Impact on Inertial 
Algorithms  

 

There are extensive studies that explore different inertial algorithms and their implementations.  

There are also studies that explore a variety of applications for a single algorithm. This section 

explores the impact that specification of a MEMS accelerometer would have on the 

performance of an inertial navigation system (INS) in estimating location and attitude.   

This section will approach this by exploring and evaluating common methods used in 

improving accuracy of inertial navigation systems.  Afterwards, we will focus on specific 

scenarios and applications that commonly utilize an INS and evaluate the performance of a 

variety of accelerometers.  Finally, by analyzing the performance of the different 

accelerometers in these scenarios, and discussing this in context of the previous chapter, it will 

provide insight on the impact of accelerometer specification on the performance of an INS.  

4.1 Inertial Algorithms 

4.1.1 Attitude errors on INS performance 

As established in Chapter 1, there are a variety of studies considering inertial algorithms 

involving external references or a combination of multiple sensors.  This section will cover 

some of the common inertial algorithms used in attitude and location estimation.  One of the 

significant error in an INS is due to attitude inaccuracies which results from contamination of 

the acceleration measured by gravity [13].   Figure 4-1 illustrate a scenario where there is a 

fixed attitude error due to a rotation about the y axis.    This results in Eqn 4.1, where the 

rotation will cause gravity to be seen on the measurement axis –  ܽ௫ሬሬሬሬԦ.  

൤
ܽ௫ሬሬሬሬԦ
ܽ௭ሬሬሬሬԦ

൨ = ቈ
cos൫ߠ௬൯ − sin൫ߠ௬൯

sin൫ߠ௬൯ cos൫ߠ௬൯
቉ ൤

0

௚݂
ሬሬሬԦ൨ (4.1) 
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Figure 4-1 - Dynamics of a 1 dimensional attitude error of a stationary accelerometer  

Thus, a portion of gravity will be seen in the measurement frame of the sensor.  If the device 

is stationary, calibration is done to measure this stationary error and account for it by rotating 

the measurement axes.  The scenario is more complicated when there is an external movement, 

and the attitude is no longer stationary.    

 

Figure 4-2 – Dynamics of an attitude error on an accelerating accelerometer  

൤
ܽ௫ሬሬሬሬԦ
ܽ௭ሬሬሬሬԦ

൨ = ቈ
cos൫ߠ௬(ݐ, Ԧ)൯ݔ − sin൫ߠ௬(ݐ, Ԧ)൯ݔ

sin൫ߠ௬(ݐ, Ԧ)൯ݔ cos൫ߠ௬(ݐ, Ԧ)൯ݔ
቉ ቈ

ܽ௠௢௩௘ሬሬሬሬሬሬሬሬሬሬሬԦ

௚݂
ሬሬሬԦ ቉ (4.2) 

Although the governing equations and dynamics are still the same, this problem is much more 

challenging due to the difficulty of getting an accurate measurement of the attitude change.  

The acceleration from the movement of the device  ܽ௠௢௩௘ሬሬሬሬሬሬሬሬሬሬሬԦ will now cross-contaminate with 

gravity, affecting the measurements seen at the sensor.  In practice, the challenge lies in 

determining the attitude of the system accurately and in real time.  

This attitude error can result from device offset, alignment issues, or attitude changes resulting 

from the movement. Alignment errors manifests itself as a fixed attitude error and arises from 

a variety of sources, such as the ones listed below [5]: 

 sensing element and package alignment  

y 
x z 

Platform Attachment 

Top View 

௚݂
ሬሬሬԦ  

  ௬ߠ

y 
x z 

Platform Attachment 

Top View 

௚݂
ሬሬሬԦ  

,ݐ)௬ߠ   Ԧ)  ܽ௠௢௩௘ሬሬሬሬሬሬሬሬሬሬሬԦݔ
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 chip and board alignment 

 board and system alignment 

These sources are unavoidable in practice, as there are always alignment errors during 

fabrication or setup. Since these sources have a stationary nature, they consistently affect the 

measurement axis in the same way, they can be calibrated and accounted for.   

On the other hand, attitude errors resulting from movement and vibrations cause time varying 

attitude changes which are difficulty to accurately measure. An example of this is the effects 

of suspension system on a subway train car.  A recent study showed that the suspension leads 

to attitude changes resulting from people within the train car and from the movement of the 

train [6].    This is the main challenge of inertial algorithms, as it becomes a necessity to 

estimate the attitude change accurate to compensate for the effects of gravity on the measured 

acceleration. The error is even more apparent when looking at applications which rely on 

calculating velocity or displacement, where this error gets further magnified by integration.   

To illustrate the importance of attitude estimation,  a 0.5° error in was introduced in Eqn. 4.1. 

൤
ܽ௫ሬሬሬሬԦ
ܽ௭ሬሬሬሬԦ

൨ = ൦
sin ൬

ߨ2
360

0.5°൰

cos ൬
ߨ2

360
0.5°൰

൪ = ቂ0.0087
0.9999

ቃ   

That results in a contamination of ~0.009݃ on the measurement axis due to gravity.  For 

perspective, a typical subway will hit around a short term sustained acceleration of 0.1݃ over 

when it is accelerating [6]. This means that a small angle change causes a ~10% difference in 

the measurement. This attitude error is exacerbated by the fact that the accelerometers measure 

acceleration.  When it is integrated to look at velocity or displacement, this small attitude error 

has a significant impact.  

Using Δݐ =   ,ݏ60

Δݒ = |ܽ|Δt ∗ 9.81
m
sଶ =  5.1

݉
ݏ

 

Δ݀ = |ܽ|
1
2

Δݐଶ ∗ 9.81
݉
ଶݏ  =  153.6݉ 
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To simulate this change, the accelerometer model used in Chapter 3 was rotated by 0.5° and 

simulated for a runtime of 60 seconds, showing comparable errors to the calculations.   

 

Figure 4-3 – Acceleration, Velocity and Displacement of a ૙. ૞° attitude error. 

The results of these attitude errors will manifest itself as an offset/bias error in the measurement 

axis of the accelerometer, as shown in Figure 4-11.  To address this, a previous study showed 

a post-processing bias estimation method which resulted in final displacements deviating by 

10% over 80 seconds of motion.  This method uses a single accelerometer, and zero velocity 

detection techniques in combination with a gradient descent bias estimation algorithm. [6] This 

study showed a significant improvement over raw integration of the accelerometer, however 

there is a significant drawback of not being able to run in real time and relies upon knowledge 

of motion dynamics.   For most practical purposes, this post-processing technique will not be 

useable, however, it highlights the potential of accelerometer usage in an INS without external 

references.  

To start, we explore two basic methods of calculating attitude changes – accelerometer 

calculation and gyroscope integration.  This is followed by a discussion of well-known sensor 

fusion algorithms, and their implementation.  
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4.1.2 Basic Attitude Estimation 

In a stationary accelerometer setup, the magnitude of the acceleration is constant. Since the 

magnitude is constant, the accelerometer can be used to determine the attitude of the system. 

Using only an accelerometer, and the constant magnitude of gravity, it is possible to determine 

two of the three angles needed for a complete estimation of the attitude, as shown by Eqn 4.4 

and 4.5. 

| Ԧܽ| = ටܽ௫ሬሬሬሬԦଶ + ܽ௬ሬሬሬሬԦଶ + ܽ௭ሬሬሬሬԦଶ = 1݃ (4.3) 

݈݈݋ݎ = ߚ  = ௫ߠ = ݊݃݅ݏ ቆ
Ԧܽ௬

Ԧܽ௭
ቇ ∗ arctan ቌඨ ห Ԧܽ௬ห

ଶ

| Ԧܽ௫|ଶ + | Ԧܽ௭|ଶቍ (4.4) 

ℎܿݐ݅݌ = ߛ  = ௬ߠ = ݊݃݅ݏ  ቆ
Ԧܽ௫

Ԧܽ௭
ቇ ∗ arctan ቌඨ

| Ԧܽ௫|ଶ

ห Ԧܽ௬ห
ଶ

+ | Ԧܽ௭|ଶ
ቍ (4.5) 

In contrast to an accelerometer, a gyroscope is a MEMs device which measures the angular 

velocity of a system. It is typical for a gyroscope to be a 3-axis gyroscope, which gives the 

ability to detect angular change across the three axis – roll, pitch, yaw. In a single gyroscope 

setup, it is possible to determine the angle of the system by integrating the angular change over 

the duration of the rotation.  

݈݈݋ݎ = ߚ  = ௫ߠ = න ߱௫݀ݐ
௧

଴
(4.6) 

ℎܿݐ݅݌ = ߛ  = ௬ߠ = න ߱௬݀ݐ
௧

଴
(4.7) 

These basic methods are not very useful in attitude estimation due to their individual 

drawbacks when used in a practical environment.  In the case of using the accelerometer only 

to determine the attitude, the attitude calculation is susceptible to movements and vibrations 

and the noisy nature of the accelerometer. In addition, calculating the angle using an 

accelerometer will not give an indication of the yaw.    
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Figure 4-4 – Attitude estimation using accelerometer only.  Angle fluctuations of ± ૙. ૞° are seen. 

Figure 4-3 highlights the noisy nature of the attitude estimation through an accelerometer. In 

contrast, attitude estimation using a gyroscope isn’t affected by noise or vibrations, but rather 

the integration of noise – drift.  

 

Figure 4-5 -- Attitude estimation using gyroscope only.  Angle drifts by 0.4-2° over 5 minutes. 

Basic attitude estimation methods are inadequate due to their respective drawbacks of noise 

and drift. As such, it is common to utilize both of these sensors in conjunction to improve the 

attitude estimation. Other inertial algorithms use a magnetometer as well to provide an even 

more accurate attitude estimation.  However due to measurement platform limitations which 

prevent a magnetometer from analog testboards, it was excluded from all test boards. Thus, 
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only inertial algorithms which use an accelerometer with a gyroscope is included in the scope 

of this study.   

Regardless, there are a number of situations where a gyroscope and accelerometer combo is 

used to determine attitude. This study focuses on determining the impact of accelerometer 

specification on their performance in common inertial algorithms.  As such, the gyroscope is 

the same across these inertial tests.  MPU6000 from Invensense will be utilized throughout the 

tests as a way of providing consistent gyroscope measurements.  Two of the accelerometers, 

LIS3DSH and LSM303D are also excluded from this testing due to their noise issues during 

the higher sampling rates. The next two sections will go over the implementation of more 

complicated attitude estimation algorithms used in this study to combine the accelerometer 

results with the gyroscope. 

4.1.3 Complementary Filtering 

The complementary filter is a common sensor fusion method used for the attitude estimation 

for gyroscopes and accelerometers.  This method is popular due to its simplicity; the filter has 

a single parameter which can be tuned to change the cross-over frequency of the filter.  

 

Figure 4-6 - Classic Complementary Filter Block Diagram 

This filter structure will result in low-passing the accelerometer and high-passing the 

gyroscope.  This is particularly useful because gyroscope estimates of attitude introduce low 

frequency drift, where as the accelerometer is susceptible to high frequency movements.  

Solving Figure 4-5 for the output, 

(ݏ)ߠ =
1

1 + ௖ܶݏ
௔ߠ  + ௖ܶݏ

1 + ௖ܶݏ
߱ ൬

1
ݏ

൰ =
௔ߠ + ௖ܶ߱
1 + ௖ܶݏ

(4.8) 

Accelerometer (ߠ௔) 

Gyroscope (߱) 

1

௖ܶݏ
 + ߠ 

− 

 
1
ݏ

 

+ 
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Using the backwards difference equation,  

ݏ =
1

Δݐ
(1 − (ଵିݖ (4.9) 

And a change of variables as defined below,  

Δݐ

௖ܶ
=

1 − ߙ
ߙ

 (4.10) 

The discrete time equation for the complementary filter is expressed as follows: 

௞ߠ = ௞ିଵߠ)ߙ + ߱௞Δݐ) + (1 −  ௔௞ (4.11)ߠ(ߙ

Δݐ, is the sample time. 

 .is the tunable parameter ,ߙ

The tuning parameter is empirically decided as it depends on the inertial sensors used and the 

application of the system. For our testing, it was empirically chosen that an ߙ of 0.97-0.98 

worked best in estimating the attitude with minimal drift.  Solving Eqn 4.10 gives a cross over 

frequency of around 
௙ೞ

ସଽ
→

௙ೞ

ଷଶ
  which is around 8ݖܪ −    .ݖܪ12.5

4.1.4 Kalman Filtering 

The Kalman filter is another useful sensor fusion algorithm for attitude estimation.  However, 

the filter needs to be customized to combine the gyroscope and acceleromter. The following 

equation defines the state dynamics of the system; it is shown in a similar form to equation 2.6 

to highlight the state variable and the control variable.  

ቂߠ
ܾ

ቃ
௞|௞ିଵ

= ቂ1 −Δݐ
0 1

ቃ ቂߠ
ܾ

ቃ
௞ିଵ|௞ିଵ

+ ቂΔݐ
0

ቃ ߱௞ (4.12) 

ቂߠ
ܾ

ቃ
௞
, is the state variable tracked by the Kalman filter.  ߠ tracks one of the three attitude axes 

and ܾ, tracks the bias or offset of the gyroscope   

߱௞, is the current angular change measured by the gyroscope  
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The gyroscope measurement is used as the control variable to update the attitude dynamics. 

From equation 4.12, the initial values of the state variables are needed.  In this case, the initial 

angle and bias of the gyroscopes are determined during the calibration stage.  This process can 

introduce errors as the calibration stages aren’t completely accurate, however, this only affects 

the transition time before the Kalman filter recursively adjusts the parameters.  This was by 

holding the system motionless for s short time before each experiment movement was initiated.  

In addition to the initial values of the states, the covariance matrices needed initial values as 

well. This used a large value and let the filter recursively determine them. Next, the 

measurement (ݖ௞) uses the attitude calculated from the accelerometer measurement.  This is 

then used to determine the residual in equation 2.8.   

The noise covariance matrices (ܳ௞ , ܴ௞) used in the covariance prediction and update stages are 

hard to determine and model, and one of the difficulty of using Kalman filters. In this case, 

they are assumed to not be time-dependant to simplify the system, simplifying equations 2.7 

and 2.9 to the following form. 

௞ܲ|௞ିଵ = ௞ܨ ௞ܲ|௞ିଵܨ௞
் + ܳ (4.13)  

ܵ௞ = ௞ܪ ௞ܲ|௞ିଵܪ௞
் + ܴ (4.14) 

From equation 4.13 and 4.14, Q and R are the tunable matrices which are used to control the 

characteristics of the filter. R is used to control the amount of noise seen from the accelerometer.  

For noisier accelerometers, a higher R value can be used so that the measurement is trusted 

less and the gain will be geared more towards the dynamics.  Q is the noise covariance of the 

dynamics, and tuning this adjusts for the noise from the gyroscope.  For our testing, the Q 

matrix was kept consistent and the R matrix was tuned for each device and fixed for the 

experiments  

4.2 Attitude Estimation Evaluation  

Attitude estimation is a key application of an INS.  It is important for removing attitude errors 

from location estimation, but it is equally as important in robotics and mechatronics, where it 

is used to determine the orientation of systems. This section will conduct tests which will test 
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the two-sensor fusion based attitude estimation algorithms and evaluate their performance in 

measuring attitude.  

4.2.1 Attitude Estimation – Static change Test 

The first test focuses on the performance of in tracking attitude change where there is a short 

duration of motion.  This test will also minimize vibration and movements except for the 

movement needed to change the angle of the platform.  This setup requires human intervention 

to change angle, so the performance during the angle change isn’t evaluated, but rather the 

accuracy in determining the angle change after it has stabilized.  Attaching an adjustable mitre 

gauge to the stationary bench, the following procedure was used for testing. 

1. System is mounted to a stationary platform 

2. System is kept still at 0° for 10 seconds to use as calibration.  

3. The gauge is move to the next angle position and locked in.  This movement will take 

10 seconds of time.  

4. System is kept still at the angle for 10 seconds.  

5. Steps 3-4 is done for the following angles 

 0°, 15°, 30°, 45°, 30°, 15°, 0° 

6. Steps 1-4 are repeated for the different axis.  

The performance is measured by keeping track of the accuracy of the angle changes – 15° per 

change. To calculate the angle change, the angle in the middle of the stationary time, where it 

isn’t affected by the movements, were used to calculate the attitude changes.  The test will 

measure performance by keeping track of Δ° ± ߪ , where a small Δ, ߪ  indicate a better 

performance.   Δ refers to the average attitude error seen, and the ߪ is the deviation of this error.  

Considering a 0.5° was shown to have a significant impact in a long duration, it is ideal to keep 

the average error and deviation low.  
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Table 4-1- Static change test results across method and device. 

 Accelerometer 

Only [°] 

Complementary 

Filter [°] 

Kalman 

Filter [°] 

AIS328DQ 0.468 ± 0.545 0.211 ± 0.239 0.210 ± 0.238 

MPU6000 0.108 ± 0.183 0.101 ± 0.153 0.103 ± 0.153 

KXTC9 0.114 ± 0.132 0.101 ± 0.122 0.102 ± 0.122 

ICM20689 0.129 ± 0.139 0.122 ± 0.133 0.122 ± 0.132 

KXRB5 0.122 ± 0.134 0.077 ± 0.098 0.078 ± 0.096 

 

From this test, there were two main points of discussion: 

1. Similar performance of the two inertial algorithms. 

2. The ability of using noise density to compare device performance 

Both sensor fusion based algorithms have similar performance in this test. The similarity 

between the two inertial algorithms are unexpected.  In this case, this similarity is due to the 

setup of this test which reduces external movements and has a shorter test time.  As shown in 

the next test, the difference gets exacerbated when more movements are involved.  

The second area of discussion arises from analyzing the results of this test and considering 

specification performances.  From the specification testing and the weighted comparison,  

AIS328DQ was shown to be one of the worst device tested.  This test shows a similar result 

compared to the weighted analysis of the specification.  However, it becomes interesting when 

comparing two relatively similar devices from a noise density stand point.  AIS328DQ has a 

comparable noise density to MPU6000, but their performance in this test is very different.  

Another demonstration of this is in KXTC9, which has the best performance in noise density 

specification, but is not the best performing device after inertial algorithms are applied.  This 

is an indication that noise density, one of the more documented and important specification 

listed across MEMS accelerometers, are not a good indication of performance once inertial 

algorithms are applied.  
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4.2.2 Vibration affected static angle test 

In real applications, mechanical noise and sources of disturbances exists.  This test will test 

attitude estimation again, but it will introduce random vibrations and movement from the 3D 

printer during the test to simulate a noisy environment.  

1. System was connected to the 3-D printer.  

2. System was kept stationary for 10 seconds at 0° for calibration purpose 

3. System was changed to 15° 

4. 3-D printer starts to perform random vibrations and movements for 40 seconds 

5. Steps 1-4 was repeated for every device 

The mean and deviation was evaluated during the period where the system was being moved 

by the 3-D printer.  The metrics calculated are shown below: 

Table 4-2 - Summary of Attitude estimation when affected by external perturbations 

 Accelerometer 

Only [°] 

Complementary 

Filter [°] 

Kalman 

Filter [°] 

AIS328DQ 14.365 ± 8.344 14.353 ± 0.976 14.369 ± 0.914 

MPU6000 15.037 ± 2.521 15.036 ± 0.468 15.036 ± 0.426 

KXTC9 14.891 ± 2.599 14.886 ± 0.450 14.894 ± 0.409 

ICM20689 15.027 ± 2.569 15.024 ± 0.310 15.030 ± 0.284 

KXRB5 14.862 ± 2.568 14.854 ± 0.251 14.862 ± 0.230 

 

There are three main areas of discussion from this test.  

1. Differences between Kalman and Complementary filter 

2. Importance of utilizing an inertial algorithm. 

3. Device specific results. 

The Kalman had consistently lower deviation when compared to the complementary result.  

The difference is small, accounting for ~0.05° difference between the deviation performance, 

however, considering the significance of a small attitude error, this can yield differences when 

looking at dead-reckoning scenario.   
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This test also highlight the importance of using an inertial algorithm. The overall performance 

of post filtering is much better than using only the accelerometer.   Utilizing a 6-axis device 

which includes a gyroscope and an accelerometer, such as the MPU6000, it is much more 

beneficial from a performance and cost perspective when compared to utilizing KXRB5 

directly.   In addition, using the inertial algorithms improves the ability of the INS when there 

are random vibrations and movements, as illustrated by figure 4-6 and 4-7. There is a 

significant deviation of the angle calculated and cannot be used directly when no inertial 

algorithm is used.   

 

Figure 4-7 - Attitude calculation using accelerometer only when affected by vibrations. 
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Figure 4-8 - Attitude Estimation using Kalman Filter when affected by vibrations 

In regards to device specific performance, AIS328DQ is an interesting outlier.  Despite a 

similar motion utilized for all the tests, AIS328DQ’s results are highly affected by vibrations, 

as shown by the higher deviation compared to the other devices pre-processing.  This was also 

noted with two different units of the same chip, and this susceptibility to vibrations and external 

movements is the reason why this device consistently underperforms the other devices 

throughout the inertial tests.  Excluding the AIS328DQ, each device shows a similar level of 

deviation before the processing, but after inertial algorithms are applied, there was a difference 

in performance between the devices.  Approximately 0.2 °rms difference was seen between 

MPU6000 and KXRB5. The KXTC9 has one of the better performances when it comes to 

noise density, but in this test, it has very minimal impact on the accuracy of attitude estimation.  

On the other hand, cross-axis is a much better specification to look at.  It is illustrated by 

MPU6000/KXTC9 and ICM20689/KXRB5, where the both group of accelerometers have 

comparable cross-axis and performance in this test.  The latter group of ICM20689/KXRB5 

show a better cross-axis ratio and thus performance in this movement based attitude estimation 

test.  Cross-axis performance is important in this scenario where the inertial sensors are moved 

and vibrated.  When the sensors are vibrated, and moved, contamination of the movement to 

different axis will affect the attitude estimation by adding errors which are not directly caused 
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by the attitude change, and not as easily removed by filtering.  When a device is less affected 

by cross axis errors, it will have a reduce the impact of linear acceleration contamination on 

attitude estimation.      

4.3 Dead Reckoning Tests 

Dead reckoning is the ability of an INS to determine acceleration, velocity and displacement. 

The purpose of this section is to explore and test the ability to improve acceleration 

measurement and thus velocity calculations after attitude removal techniques are applied.   

4.3.1 Processing Model 

Attitude estimation is important to the removal of the effects of on velocity calculations in dead 

reckoning purposes.  However, attitude estimation cannot be used directly due to limitations 

from only combining a gyroscope and an accelerometer.  This leads to an inability of the 

inertial algorithms to differentiate between very slowly changing accelerations and attitude 

changes.  This is typically mitigated by incorporating a magnetometer which can be used to 

determine an attitude that is not affected by slow movement. However, due to the limitations 

of the daughter boards created, this was not an option in this study.  This limits the ability to 

separate slow moving accelerations and attitude changes, and thus it will affect gravity removal 

during motion. To mitigate this effect, when extended periods of acceleration are detected, the 

gyroscope is without the accelerometer to predict the attitude change during the transient time.  

The second limitation arises from the inability of the attitude estimation algorithms to 

determine the final attitude change – Yaw. This can also be solved with the addition of 

magnetometer, which can provide the yaw angle. Due to this limitation, if a yaw attitude 

change is introduced during these tests, the system will be unable to estimate this without drift 

from the accelerometer.  This issue was mitigated by introducing motion which would not 

introduce a yaw attitude change.    

With these considerations, the algorithm outlined by Figure 4-8 is used in these Dead-

Reckoning tests to determine the acceleration, and subsequently the velocity.   
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Figure 4-9 - Block Diagram of Linear Acceleration Estimation Algorithm 

4.3.2 Reference Generation 

To evaluate the performance of a motion based test, a reference signal was generated using an 

external monitor.  The reference motion signal is constructed using a GoPro camera to 

determine the displacement of the system while it goes though a series of motions on the 3-D 

printer. The position of the system is tracked though the use of two circular markers which is 

then tracked through Hough circle detection used on the video clip.   This is later used to 

determine the velocity and generate the reference that different devices are compared to.  

4.3.3 Testing Method 

There are two main testing runs done to compare the abilities of the devices in Dead Reckoning 

applications.  Both tests operate by introducing a certain amount of attitude change along with 

motion.  

4.3.3.1 Single Attitude Change Test Dynamics 

This test repeats the same attitude change and movement back and forth 10 times. The final 

position angle is empirically determined from the final position.  Due to the nature of the setup, 

the exact attitude change during the movement is unknown. 
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Figure 4-10 - Test dynamics of the single attitude change test 

4.3.3.2 Small-Step Attitude Change Test Dynamics 

This test does small steps which introduces a small attitude change over 7 steps, goes back to 

the initial position and repeats this in the other direction.  

 

Figure 4-11 - Test dynamics of the small-step attitude change test. 

4.3.4 Dead Reckoning Testing Results 

For ease of visual comparison, velocity is used to compare between the reference and the 

device data. The single attitude change was applied across the different devices, and figure 4-

12 and 4-13 are the resulting graphs of the velocity profile.   The RMS of the difference 

between the reference and each devices’ velocity estimation was also computed for a general 

comparison of their performance.  
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Figure 4-12 - Velocity profile of the single attitude change test with the Complementary filter applied 

 

Figure 4-13 - Velocity profile of the single attitude change test with the Kalman filter applied 

There are two main observations from looking at the graphical results. The Kalman filter has 

an observable performance improvement compared to the complementary filter – comparing 

figure 4-12 to 4-13. Secondly, AIS328DQ’s poor performance in attitude estimation is 

translated to the results in the dead-reckoning tests. This was also shown in the step-motion 
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specification, where even in the absence of any attitude change, the AIS328DQ performed 

poorly due to errors during movement which gets magnified by integration to velocity.   

The following table shows the RMS velocity errors, allowing for a per device comparison.  

Table 4-3 - Results of the single attitude change dead reckoning test 

 Complementary 

Filter [
࢓

࢙
] 

Kalman 

Filter [
࢓

࢙
] 

AIS328DQ 0.278 0.296 

MPU6000 0.027 0.017 

KXTC9 0.027 0.013 

ICM20689 0.045 0.020 

KXRB5 0.018 0.017 

 

The same process was applied to the small step attitude change test, and the results are shown 

in Figure 4-14 and 4-15, and the RMS errors are summarized in table 4-4. 

 

Figure 4-14 - Velocity profile of the small step attitude change test with the Complementary filter applied 
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Figure 4-15- Velocity profile of the small step attitude change test with the Kalman filter applied 

Table 4-4 -  Results of the small step attitude change dead reckoning test 

 Complementary 

Filter [
࢓

࢙
] 

Kalman 

Filter [
࢓

࢙
] 

AIS328DQ 0.0859 0.0324 

MPU6000 0.0113 0.0092 

KXTC9 0.0110 0.0063 

ICM20689 0.0174 0.0101 

KXRB5 0.0133 0.0049 

 

The importance of the inertial algorithms are shown in this test.  In the simulation with 0.5° 

error over a duration of 60 seconds, over 5
௠

௦
 of velocity error resulted. The first test with a 

fixed angle applied consistently over 140s showed a significant reduction, showing significant 

improvement over calibration techniques alone. In addition, the two inertial algorithms show 

a consistent result across the different tests, with the Kalman filter performing better than the 

complementary filter.  The Kalman filter is especially better with longer movement and higher 

amounts of vibrations, as shown in the second attitude estimation test and in the first dead-
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reckoning test which both introduce a larger amount of motion and movement.   The better 

performance of the Kalman filter is considerable in dead-reckoning scenarios, but considering 

the larger amounts of tuning needed, it is much simpler to maintain and tune the 

complementary filter which is based off a single parameter. 

Another purpose of the dead-reckoning based movement test is to see if there are different 

specification considerations when looking at different applications.  To do this, device specific 

performance was considered across the two dead-reckoning based tests.   

Looking at the error deviation, it reconfirms the observations from the graphs, where 

AIS328DQ has a much higher error.  Similar to the attitude estimation tests, there is no 

relationship between the noise performance and the inertial test performances. This interesting 

notion is shown in AIS328DQ and MPU6000, which have very similar noise density 

performance, but the two very different inertial test performance.  On the contrary, looking at 

the step motion and bias variation specifications should provide a better performance indicator 

as both these tests capture the effect of errors that get exacerbated by integration during motion 

and static periods.  In this case, MPU6000 has a much better performance in the step motion 

test, while having a similar noise density to AIS328DQ. Another device which highlight this 

is ICM20689, which have poorer performance in step motion and bias variability compared to 

MPU6000 but has a much better noise performance.  This shows that noise density does not 

impact performance as much as cross axis and bias variability when inertial algorithms, such 

as the Kalman and complementary filter, are applied.   Cross axis specification was important 

in attitude estimation, however, in dead-reckoning purposes, where acceleration is integrated, 

the impact of the bias variations and step motion scores are much more significant.    This is 

seen with the cross-axis performance of the ICM20689, which is better than the MPU6000 and 

KXTC9. However, the ICM20689 performs worse than both those devices in dead-reckoning 

tests.  

Both tests introduced attitude changes in the movement, but the second test broke the motion 

into shorter durations, which decrease the timescale of the movement and reduces the influence 

of using a gyroscope. This subsequently reduces the amount of error which is seen across the 

two tests, where the smaller changes caused a much smaller error.  
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Chapter 5 Conclusions and Future Works 

 

5.1 Conclusions 

The use of inertial sensors and accelerometers is widespread for military and transportation 

purposes and is motivation for continued research into better the understanding of how to 

improve their performance for their navigational purposes.  Despite the increased use of 

MEMS accelerometers in these fields, their testing methodology isn’t clearly defined, and 

often not specified between manufacturers.  This difference makes spec sheets hard to be 

utilized to compare between devices and make judgement in the utilization of these devices.  

Although it is possible to test these devices, it is often costly and measure specific 

specifications which may not impact the specific application.  

To address the inconsistencies, a scalable IMU testing board was created to support a variety 

of communication protocols.  This system allows new MEMS devices to be implemented on a 

daughter board and plugged into the testing board.  This removes any inconsistencies resulting 

from the different testing platforms and gives a consistent comparison base between different 

devices.  To address the inconsistent testing methodologies, the dynamics and movement of 

the accelerometer were controlled with a retrofitted Rostock 3D printer. The printer served as 

a low-cost movement platform for the IMU testing platform, and the flexibility allowed for 

movement based specifications which highlight different aspects which are not testable using 

traditional shaker or rate tables.   Utilizing this system, five specifications were evaluated 

across seven different DUTs.  Through this evaluation process, it was shown that several of 

the devices do not conform to their specifications, with some devices having an incorrect 

reliance on output data rate. Also, we show that two different methods of calculating a similar 

specification can yield vastly different results, and by not clearly indication the methodology 

it can hinder the comparison of devices. In addition, we show the comparative performance of 

the different MEMS accelerometers. Finally, a proposed scoring system and weighting system 

was introduced to provide an example of how these testing results can be utilized to 
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differentiate between devices Specifically, the MPU6000, KXTC9 and KXRB5 are 3 devices 

which were identified to be better accelerometers when looking at specifications in a dead-

reckoning scenario.   

The accuracy and consistency of these testing methodologies are crucial to comparing different 

MEMS accelerometers. However, in practice, MEMS accelerometers are mostly used in 

conjunction with other devices due to their susceptibility to vibrations and external effects. 

This leads to a disconnect between the performance evaluated from looking at specifications 

alone and the actual performance when utilized   There are multiple studies which explore the 

application of inertial algorithms to improve the inertial navigation system’s accuracy in 

determining the attitude and location of a system.  However, most of these algorithms use other 

sensors, such as gyroscope, magnetometers, Wi-Fi or even GPS in conjunction with the 

accelerometer. To explore this, the complementary and Kalman filter were utilized to combine 

each accelerometer with a gyroscope, MPU6000.  Magnetometers, Wi-Fi and GPS were not 

included in the algorithm due to the limitation of the daughter boards created. These 

accelerometer and gyroscope pairs were tested by looking at specific applications that inertial 

sensors are commonly used in – attitude estimation and dead reckoning.  Tests involving 

attitude estimation and velocity estimation were used to benchmark the results of the different 

accelerometers.  

This section showed that inertial algorithms are vital to accurately determine velocity and 

attitude.  The Kalman and complementary filters are real-time filters that allow a much more 

accurate velocity and thus displacement to be calculated.  The Kalman Filter consistently 

outperformed the complementary filter in tests which includes vibrations or movements.  From 

the two application based tests, the impact of accelerometer specification on the inertial test 

results were evaluated. Noise density, which is one of the most common methods used in 

comparing performance of accelerometers, is shown to be a poor indicator of performance 

when inertial algorithms are applied.  Bias variability and step motion, were better indicators 

of performance for dead reckoning purposes when inertial algorithm were applied.  On the 

other hand, cross-axis is better for attitude estimation where motions are limited.  

To summarize, this study achieved the following: 
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 An inertial sensor measurement platform was designed and implemented to provide a 

low-cost and consistent testing system for inertial sensors.  

 A strict methodology was outlined to test five different specifications.  These 

specifications exercise different aspects of a MEMS accelerometer, giving a more well-

rounded comparison of accelerometers than just noise density.  

 Real time inertial algorithms, real time Kalman and complementary filters, were shown 

to be necessary and much better than simply using a better accelerometer in most cases.  

 A common specification of accelerometers, noise density, is a poor indicator of 

performance after inertial algorithms are applied.  Specifications such as step motion, 

cross-axis and bias variabilities were more important depending on the specific 

application the system is used in.  

5.2 Future Work 

In this study, common specifications and testing methodologies were explored.  To address 

this a testing platform and system was built and used to ensure consistency. However, this 

platform still has limitations that hinder the testing methodologies, such as the small testing 

platform that limited the range of movement.  This subsequently limits the accelerations and 

the way the devices are moved.  Secondly, analog inertial sensor inputs into the processor are 

limited to ensure a good accuracy and speed can be achieved.  This limited INS implementation 

when more sensors were involved, thus making it difficult incorporate a magnetometer for 

some of the boards.  By improving the testing platform, it will allow for a more realistic testing 

platform that will be closer to how these accelerometers are implemented in practice.  

The first part of the study evaluated five specifications and testing methodologies associated 

with them.  In this case, there were two other specification that are important to consider – 

temperature and vibrations.  However, the platform was limited and unable to test these in a 

repeatable manner due to the inability to control the temperature precisely. These specifications 

are important for navigation purposes and should be evaluated in a future study.  Another 

aspect which can be explored is comparing the current test results to existing testing equipment.  

The available testing platforms are very bulky and costly and weren’t an available means to 

compare with the 3D printer platform.   
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Finally, in regards to the applications and inertial algorithms test, one of the limitations was 

the exclusion of the magnetometer.  As a magnetometer has a similar role as the accelerometer 

and gives a more stable attitude calculation, the inclusion of a magnetometer can have a big 

impact upon whether the accelerometer choice affects applications.  From evaluating just an 

accelerometer and gyroscope pair, the choice of accelerometer is important, but there are other 

more significant factors such as utilization of inertial algorithms.  

To summarize, there are several suggestions for future considerations in this study. 

 Utilize a movement platform with a bigger range of movement 

 Utilize a new processor to improve speed and accuracy limitations with analog devices.  

 Develop a platform where temperature and frequency of motion can be controlled in a 

precise manner so temperature and vibration performance can be evaluated.  

 Utilize a shaker table and rate table to compare with the results from the 3D printer 

based platform 

 Investigate the impact of accelerometers with magnetometers in the INS 
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Appendix A – Testing Board Implementation 

 

This appendix will cover the construction of the IMU testing platform and the specifications 

of the system.  The first section will discuss in detail the hardware created while the second 

section will cover the software drivers implemented.  

A.1 Motherboard  

This section highlights the motherboard details – including the block diagram, PCB and 

specifications.  The main processor chosen was a Cortex M4 from ST Microchip – 

STM32F302R8. The chip supports a variety of protocols needed for communication with the 

sensors and storage solutions.  The following figure shows processor’s functional blocks and 

how they are connected to data storage (Computer/SD Card), sensors, and Board IO.  Details 

regarding major blocks will be discussed in the subsequent sections.  
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Figure A-0-1 This figure highlights the functional blocks within the processor and their use for different aspects of the 
data logging system. 

A.1.1 Power Domain 

The IMU platform can be supplied power through two different means – micro-USB input and 

external DC input.  External DC inputs supports voltages ranging from 6V to 16V. The power 

inputs are used to drive two different power domains through the use of two 3.3V LDO 

regulators: 

 Analog/Sensor Board Power (VDDA) 

 Processor and Motherboard Power (VDD) 
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The two power domains are separated to isolate supply noise from the high speed digital 

processor and the sensors/analog components.  The two domains share a common ground on 

the board to ensure continuity.   

The board also has a “reset” button that will reset the processor, however, it will not bring 

down the 3.3V line for the sensors or analog blocks. Sensor reset is done through software 

during the software initialization stage.   

A.1.2 Oscillators and Clocking 

There are two components which require clocking – Sensor Board and Processor. For the 

processor, the logger has two crystal oscillators – 8 MHz and 32.768 kHz.  The STM32F302R8 

processor has two options for clocking – an internal RC resonator or an external oscillator 

supplied to an on-processor resonator circuit.  For typical applications, the internal solution is 

enough, however, an external 8 Mhz crystal oscillator is used to improve speed and reduce 

clocking errors for clock signals generated by the processor PLLs.  The clocks supplied to the 

sensor board is generated by processor timer.  

Using the external oscillators, the Data Logger core runs at 72 MHz.  The platform is capable 

of generating a clock up to 36 MHz for the sensor board.  

A.1.3 Board Input Output Methods 

The following input/output methods are available on the motherboard: 

 SWIO/JTAG 

 USART 

 SD Card 

 Micro-USB 

 GPIO 

SWIO/JTAG are the debugging and programming protocols supported on ST processors. It is 

mainly used for development purposes, but can be used for communication with the processor 

when needed.   
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USART is implemented for data collection purposes – allowing the motherboard to interface 

with computerized scripts or serial port loggers.  However, due to the speed limitation of the 

protocol, it limits the data collection rate of the platform when using this protocol to a single 

3-axis IMU at less than 500 Hz sampling rate.  

SD cards are supported using the SPI protocol and is mainly used for data collection purposes. 

To support this, an open-source FatFs filesystem with an SPI interface was implemented.  This 

interface enables higher speed data collections – supporting up to 2 devices (3-Axis) up to a 

sample rate of 1 kHz. 

Micro-USB is currently used to power the whole system. However, the USB data lines are 

connected as well, allowing a future firmware/driver upgrade to enable a tethered high speed 

data collection method.  

GPIOs are available for user configuration.  There are a total of 4 user-programmable IOs - 2 

active high push buttons and 2 LEDs.  In addition to the user programmable IOs, there is a 

power indicator LED and a reset button for processor reset which are not configurable.  

A.2 Sensor board 

This section will cover the sensor board details, including details on the communication 

protocols available, example PCBs and pinouts for reference sensor boards.  

A.2.1 Sensor Communication 

To support a variety of IMUs, the motherboard supports the following protocols for interfacing 

with a variety of sensors: 

 SPI communication 

 I2C communication 

 Analog input 

SPI protocol implemented on the data logger platform supports SPI clock speeds of up to 

18Mhz, making it sufficient for most commercially available IMUs on the market.   

I2C protocol implemented on the data logger platform supports bit rates of up to 400kBits/s.  
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Analog input is supported by the use of the Analog Digital Converter (ADC) in the 

motherboard.  It supports 12-bit conversions at speeds up to 5 Msps.   

A.2.2 Example Analog PCB and Pinout Utilization 

The next example shows a board which utilizes the analog inputs as well as the digital 

communication protocols. The board was designed such that it can be populated with several 

different combination of analog and SPI devices, only requiring a different population of the 

board.   

 

Figure A-0-2 Example of pinout for SPI/Analog devices (Left) Picture of implemented PCB (right) 
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Appendix B – Testing Board Software Flow 

 

B.1 Data Logger Execution Flow 

The software API previously outlined lets the user tailor the 

program for their specific application.  It provides the tools 

needed to log the data or process it for the specific metrics 

needed.  This section will cover the specific program that 

was implemented for our testing platform, where the main 

purpose is to log the data in an accurate and consistent 

manner.  

The program for the testing is broken down into three main 

stages.  

 System Initialization stage 

 Data capture stage 

 System Reset Stage 

 

The flow chart to the left highlights the main process and 

decision making in the execution flow of the data logging 

software.  

 

B.1.1 Initialization Stage 

This stage is meant to initialize the components necessary to sample and read from the sensor 

boards.  It will perform the following routines: 

1. Board Configuration – Pin configuration and the sensors on the board are set.  

2. Device Initialization – Initialization for each device on the board.  
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3. Data Capture Initialization – Initialize the sampling frequency and interrupt routine.  

4. Data Buffer/Storage Solution Initialization – Prepare the buffer and the storage solution.  

At the end of this stage, it will wait for a user input before continuing on the capture process. 

This also alleviates the varied delays which may occur from the SD card initialization which 

may cause synchronization issues.  

B.1.2 Data Capture Stage 

There are two sections in the data capture stage – main loop 

and interrupt routine.  In the main work loop, the data logger 

continuously counts the time elapsed and monitors the data 

buffer for any dirty data.   When dirty data exists, it is written 

over the data storage API, and the flag is removed.    

The interrupt routine is triggered by the internal timer at the 

specified sampling rate.  The devices are then read sequentially 

using the board level API.  Each value is saved in the circular 

data buffer and flagged appropriately.  The buffer is necessary 

to ensure timely processing of the data every time the interrupt 

is triggered, and to enable the data to be saved in time at the 

main loop.  

 

B.1.3 Reset Stage 

This stage is meant to reset the components - it will perform the following routines: 

1. Board/Device level reset – This will trigger the reset conditions for the sensors 

2. Data Storage reset – This will flush the data and ensure all the data are written and 

saved.  
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