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Integrated technology advances towards shorter length transistors with faster operation

frequencies and lower supply and threshold voltages. While these trends are pushed by

digital performance, analog and RF designs do not necessarily benefit from them. Tradi-

tional high gain and high bandwidth operational amplifiers become harder to design, and

thus topologies based on “digital friendly” components such as switches and capacitors

can become preferable. In terms of filter design, these trends favour passive switched-

capacitor networks, where active components (such as operational amplifiers) are not

needed to transfer charge in between capacitors.

This thesis proposes a simplified continuous-time approach for modelling, design, anal-

ysis, and simulation of oversampled switched-capacitor circuits focusing on the passive

switched-capacitor filters. The model provides an intuitive understanding of these struc-

tures by letting designers reach transfer functions and noise characteristics with good

accuracy and without the need to go through complicated charge-balance equations.

The aim of the model is mainly to give designers a tool that can lead to innovations

through intuitive understanding. It is applicable to a variety of topologies including

multi-phase passive switched-capacitor filters, switched-capacitor integrators, as well as

switched-capacitor DC/DC converters.

With the proposed model, for the first time, complex-conjugate poles are integrated

ii



on silicon by using only switches and capacitors. A continuous-time approach is reported

to implement low-pass transfer functions with a sharper frequency profile compared to

the passive switched-capacitor topologies present in the literature. Theory and simulation

results are verified with measurements performed on the filter prototype integrated in a

0.13µm CMOS technology. The prototype has a cut-off frequency of 470 kHz, 150 µW

power consumption from a 1.2 V power supply, 92 dB SFDR, and an active area of

0.06 mm2.
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Chapter 1

Background

1.1 A Very Brief History

1.1.1 Switched-Capacitor Circuits

In the literature, the switched-capacitor implementation and its behaviour as an equiv-

alent resistance can be found as early as 1873, in the book of “A Treatise on Electricity

and Magnetism” by J. C. Maxwell [1]. Maxwell states that if the connections of a con-

denser, which is connected in between the ends of a wire, are reversed at regular intervals

of time, T, then the quantity of electricity transmitted by the wire in each interval is

equal to 2EC, where E is the electromotive force, and C is the capacity of the condenser.

Fig. 1.1 visualizes this behaviour. He also states that this behaviour is only valid if the

interval T is sufficiently long to allow of the complete discharge of the condenser. Thus,

the condenser with the periodically reversing connections acts like an equivalent resistor:

E

R
=

2EC

T
; or R =

T

2C
. (1.1)

Approximately 100 years after Maxwell’s book, switched-capacitor implementations

reached popularity in electronics design due to the invention of MOS integrated cir-

1
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Figure 1.1: A condenser whose connections are reversed at regular intervals of time [1].

cuits [9–16]. Traditionally used active-RC topologies suffered from inaccurate transfer

functions due to the mismatch in between integrated resistor and capacitor values (such

as filter corner frequencies can vary up to 40 % over process and temperature varia-

tions [17]). Passive filters, which are composed of capacitors and inductors, were not

an alternative as inductors were not possible to integrate at that time. On the other

hand, switched-capacitor based filters became attractive due to their characteristics de-

pending on capacitor ratios, which have higher accuracy for fabricated devices (down

to 0.1 % [18]). Fabricated devices based on MOS technology decreased required cost

and area of the circuits, and thus switched-capacitor based circuits and more specifically

filters gained popularity. Since then, switched-capacitor filters have been widely used

in signal processing by replacing the resistors in the equivalent active-RC implementa-

tions [6, p. 417]. Moreover, switched-capacitor based circuits have been used in various

integrated circuits such as analog-to-digital (A/D) [19, 20] and digital-to-analog (D/A)

converters [21,22], mixers and samplers [23,24], and power converters [25,26].

Issues and the Return of Continuous-Time Filters

Inevitably, switched-capacitor circuits came along with some limitations. In terms of

design, the synthesis of filters in z-domain was challenging for circuit designers. More-

over, several issues accompanying switched-capacitor circuits such as signal and noise

aliasing, charge injection, opamp settling time, and slew rate limitations led designers to

continue to work on improving the accuracy of continuous-time filters. There were many

developments in the area of tunable and programmable continuous-time filters, which
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Figure 1.2: 1st-order PSC filter with its clocking scheme [2].

include active-RC [27], MOSFET-C [28], and gm-C [29,30] filters that can address some

of the issues of the early continuous-time filter attempts. Afterwards, around the 1990s,

inductors became practical at 1GHz and above, leading to the use of passive filters.

Today, both continuous-time filters and switched-capacitor filters find applications in

integrated circuit design [31–35], [36–40]. Switched-capacitor filters are preferred due to

their accurate transfer functions depend on capacitor ratios and clock frequency with

no requirement for calibration and tuning over changing process-voltage-temperature

(PVT) variations. However, the existing operational amplifier for the charge transfer

and requirement of oversampling can limit the speed of these filters.

1.1.2 Passive Switched-Capacitor Circuits

Passive switched-capacitor (PSC) circuits, whose variations can be found early as 1978

[41–48], are a particular subset of switched-capacitor networks that do not rely on active

elements to transfer charge between capacitors [3]. As a basic example, the current

input voltage output 1st-order filter is shown in Fig. 1.2 can be considered as a passive

switched-capacitor structure as there is no active component. In other words, there is no

amplifier used to transfer charge between capacitors CI and CS. (Although, the switch is

generally implemented using a transistor, the transistor is biased in triode (linear) region.

Thus, it acts as a passive element, i.e., resistor.)

Elimination of the active elements may allow one to increase the maximum operating

frequency up to the settling time required by the passive charge sharing paths, to reduce
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the consumed power, and to improve the linearity due to the fewer number of active

components. PSC filters also inherit the advantages of switched-capacitor filters such as

the corner frequencies are defined as capacitors ratios. This property also leads to PVT

independent corner frequencies. Moreover, similar to switched-capacitor filters, corner

frequencies can also be easily programmable by changing the clock frequency [3].

In the 1980s, in parallel to the advances in switched-capacitor topologies, passive

switched-capacitor structures also had their fair share of interest. The advantages of

the passive switched-capacitor filters were mainly pointed out as the lower power supply

and power consumption requirements due to the elimination of the operational amplifiers.

Moreover, the simple structure of filters that are only composed of switches and capacitors

were easy to implement using integrated technology. During that time, various filter and

even resonator structures with complex-conjugate poles were studied [41, 44]. However,

having no operational amplifiers resulted in limitations on the number of cascaded stages

as well as limiting the quality factor (Q) of the poles. Thus, realizable filter characteristics

become restricted [44].

1.2 Renewed Interest

As integrated circuit technology advances towards shorter length transistors, analog de-

signers need to reconsider the conventional implementations. Advanced transistors re-

quire lower power supply voltages and make the design of high-gain high-bandwidth

amplifiers challenging to design. However, switch and capacitor based circuits work well

in modern technologies due to lower parasitic components and fast clocking circuits. In

terms of filter design, these trends favour passive switched-capacitor architectures, where

the charge transfer between capacitors do not require the presence of an active element [3].

Passive switched-capacitor circuits are discrete-time circuits that are closest to the digital

implementation. They are composed of switches, capacitors, and phase generators, all of
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which benefit technology scaling. They are generally driven by inverter-based transcon-

ductors (gm-cells), which are compatible with digital technology with improving gm over

bias current [4,5,49]. Moreover, these passive switched-capacitor infinite impulse response

(IIR) filters can be advantageous compared to the finite impulse response (FIR) imple-

mentations, especially for large oversampling ratio applications. For instance, consider

an oversampled filter with a sampling frequency of 160 MHz and 3 dB cut-off frequency

of 500 kHz. An example FIR filter design can need more than 100 taps to approximate

the transfer function of a 3rd-order IIR Butterworth filter (Fig. 1.3a). Although this

design achieves around 40 dB attenuation and mimics the Butterworth behaviour close

to the band-edge, it fails to achieve high attenuation values at higher frequencies. If FIR

filter design is modified to match also the high attenuations at higher frequencies, then

we can end up with a more than 250-tap filter (Fig. 1.3b).

In recent literature, passive switched-capacitor topologies were used as an anti-aliasing

integration sampler [2, 24], a channel-selection filter for receivers [4, 5, 8, 50–54], a deci-

mation filter before an ADC [55], and a charge-based DAC for transmitters [21]. This

section covers the operation and properties of passive switched-capacitor filters from

recent literature.

1.2.1 Integration Sampler

The integration sampler shown in Fig. 1.4a was employed in a software-defined wireless

receiver prototype to create discrete samples of the down-converted signal before fed

into an ADC [24]. This 1st-order sampler integrates the input signal on an integration

capacitor, CI , for a sampling period of TS before sampling it on CS with a gain of

gm/(CI + CS). The integration sampling results in notches at the integer multiples of

the sampling frequency, fS (Fig. 1.4b). These notches attenuate the blockers that are

folding on the desired channel. Moreover, CI and CS form a discrete-time infinite impulse

response (IIR) filter with a single real pole at zp = CI/(CI +CS). This pole leads to the
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(a)

(b)

Figure 1.3: 3rd-order IIR Butterworth filter magnitude response compared with a) 125-
tap FIR filter and b) 260-tap FIR filter.
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(a) (b)

Figure 1.4: a) 1st-order anti-aliasing integration sampler, and b) its transfer function [2].

Figure 1.5: 2nd-order PSC filter with three clock phases [3, p. 228].

attenuation of the adjacent channels due to the discrete-time IIR low-pass filter behaviour

(Fig. 1.4b). Attenuation of the side-lobes releases the dynamic range requirements of

the following ADC. Since both anti-aliasing notches and discrete pole depends on fS,

this integration sampler can be configurable to handle different bands only by changing

fS [2]. This sampler shows that the continuous input current integration on the filter

capacitor, CI , prior to sampling results in build-in 1st-order anti-aliasing filtering, which

is a property that is also inherited by subsequent high-order filters.

1.2.2 2nd-Order Discrete-Time IIR Low-Pass Filter

The anti-aliasing integration sampler discussed above can only realize 1st-order filtering.

However, it is possible to modify the integration sampler to have a 2nd-order discrete-time

IIR low-pass filter characteristics by connecting CS to a second integrating capacitor, CI2,

before resetting it to ground (Fig. 1.5) [3, p. 228]. The transfer function of the filter can

be calculated first by writing charged-domain equations as follows:
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(CI1 + CS)V1[n] =CI1V1[n− 1] +Qin[n]

(CI2 + CS)Vout[n+ 1/3] =CI2Vout[n− 2/3] + CSV1[n+ 1/3]

where Qin[n] =

nTS∫
(n−1)TS

gmVin(t)dt

(1.2)

where n represents any sampling period with φ1, φ2, and φ3, and n − 1 represents the

preceding sampling period. From Eqn. 1.2, z-domain equations can be written as:

(CI1 + CS)V1(z) =CI1V1(z)z−1 +Qin(z)

(CI2 + CS)Vout(z)z1/3 =CI2Vout(z)z−1z1/3 + CSV1(z)z1/3
(1.3)

Then, the z-domain transfer function becomes:

Vout(z)

Qin(z)
=

1

CS

(1− α1)(1− α2)

(1− α1z−1)(1− α2z−1)
(1.4)

where αi = CIi/(CIi + CS). From the transfer function, it can be seen that there exist

two real poles at zp1 = α1 and zp1 = α2. The DC gain can also be found as 1/CS for

z = 1. The bilinear approximation can be used to find the corresponding s-domain pole

locations as:

spi =
2

TS

zpi − 1

zpi + 1
=

2

TS

αi − 1

αi + 1
=

2

TS

−CS
2CIi + CS

∣∣∣∣
CIi�CS

≈ − CS
TSCIi

(1.5)

1.2.3 High-Order Discrete-Time IIR Low-Pass Filter

To further increase the order of the low-pass passive switched-capacitor filter described

in the previous part, a passive charge rotating filter structure was reported [4, 50]. It is

possible to increase the order of the filter by adding more integrating capacitors and clock

phases, such that a single CS shares its charge with integrating capacitors sequentially

before being reset to the ground in the last phase (Fig. 1.6). The number of the inte-
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Figure 1.6: N th-order PSC filter with all real poles [4].

grating capacitors in the filter determines the number of real poles created. The transfer

function can be written similar to the 2nd-order low-pass filter, starting from the charge

balance equations (1.2). Then, the z-domain transfer function becomes:

Vout(z)

Qin(z)
=

1

CS

(1− α1)(1− α2)...(1− αN)

(1− α1z−1)(1− α2z−1)...(1− αNz−1)
(1.6)

where αi = CIi/(CIi + CS). From the transfer function, it can be seen that there exist

N real poles at zpi = αi with i ∈ Z[1, N ]. The DC gain can also be found as 1/CS for

z = 1. The bilinear approximation can be used to find the corresponding s-domain pole

locations as:

spi =
2

TS

zpi − 1

zpi + 1
=

2

TS

αi − 1

αi + 1
=

2

TS

−CS
2CIi + CS

∣∣∣∣
CIi�CS

≈ − CS
TSCIi

(1.7)

This high-order filter can only create real poles.

1.2.4 Passive Switched-Capacitor Filter with Active Feedback

Complex-conjugate pole implementation leads to sharper roll-off around band-edge and

can lead to lower filter order for the same band-pass and band-stop specifications. A

recent work adds an active feedback path from the output node to the input node of the

passive switched-capacitor filter discussed above to generate complex-conjugate poles
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Figure 1.7: N th-order PSC filter with active feedback. [5]

(Fig. 1.7) [5]. Although this approach achieves better roll-off close to the band edge due

to the realized complex-conjugate poles, it eliminates some of the fundamental properties

of the passive switched-capacitor filters. Most importantly, the transconductance realizes

the active feedback leads to filter characteristics that are no longer only depends on

capacitor ratios. Moreover, the feedback transconductance adds additional noise and

non-linearity to the system.

1.3 Continuous-Time Modelling

Switched-capacitor circuits have linear time-varying characteristics requiring charge bal-

ance equations and z-domain analysis for the exact representation of their behaviour in

discrete-time [6, p. 398]. However, under specific conditions, it is possible to analyze these

structures with good accuracy using linear time-invariant components. For instance, as

mentioned earlier, it is well known that a capacitor, CS, connected to two voltage sources

V1 and V2 in two different clock phases, φ1 and φ2, respectively, can be modelled using

an equivalent resistance as shown in Fig. 1.8 (where R is equal to TS/CS with TS corre-

sponds to the clock period) [6, p. 399] [1]. This equivalence is derived by assuming ideal

DC voltage sources connected to V1 and V2 nodes and by calculating the average current

transfer in one clock period.
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Figure 1.8: Basic two-phase switched-capacitor topology modelled with the traditional
equivalent resistance [6, p. 399].

(a) (b)

Figure 1.9: a) 1st-order PSC filter and b) its continuous-time model with the traditional
equivalent resistance approach [2].

This simple modelling approach helps one intuitively understand the operation of

oversampled switched-capacitor circuits. For example, Fig. 1.9a shows the integration

sampler (shown earlier in Fig. 1.4a) with current input and voltage output by focusing

on the 1st-order filtering. In this filter, CS is switching in between a grounded integrating

capacitor, CI , and the ground node. CI can be treated as a voltage source for CI values

much larger than CS. Thus, the switching parts can be replaced by an equivalent resistor

with a value of 1/fSCS (Fig. 1.9b) [2]. By using this model, the approximate DC

gain (R = 1/fsCs) and bandwidth of the filter (ω3dB = 1/RCI = fSCS/CI) can be

written intuitively without the need of charge-balance equations and z-domain transfer

functions. However, there is no intuitive way to apply the equivalent resistor approach

to the three-phase 2nd-order switched-capacitor filter, which was shown in Fig. 1.5.
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1.4 Motivation

Complex-Conjugate Poles

The passive switched-capacitor filters mentioned in the previous section rely on real

poles preventing the synthesis of sharp filtering profiles such as the ones obtained by

using Butterworth and Chebyshev filters. The one filter that can produce sharp filtering

profile uses active feedback, which eliminated the advantages of the passive structure. In

the literature, there also exists a complex passive switched-capacitor filter; however, it can

only create a single complex pole by making use of an in-phase and a quadrature current

inputs with two gm-cells and four phases [8]. Implementation of complex-conjugate poles

to realize Butterworth and Chebyshev filter responses may result in better suppression

of the blockers compared to the real pole filters with the same orders. These sharper

filtering profiles may help, for example, releasing the dynamic range requirements of the

following stages. Moreover, it can result in lower power consumption as the filter order

can be decreased for the same selectivity of the filter.

A Simplified Continuous-Time Model

Another issue with passive switched-capacitor filters covered so far is that the analysis

of such filters is not intuitive and requires tedious charge-balance equations to obtain

z-domain transfer function. Although rigorous analyses do not create a problem for the

design of known structures, since it is a one-time effort, it can complicate the invention

of new topologies. Moreover, noise analysis becomes even more complicated and requires

long simulation times. A simplified continuous-time model that addresses these issues

can lead to an intuitive understanding of the filter operation as well as the invention of

new structures.
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1.4.1 Organization of the Thesis

This thesis is organized as follows: Chapter 2 describes the proposed continuous-time

modelling approach that can address multi-phase oversampled switched-capacitor struc-

tures together with examples. Chapter 3 shows how to implement complex-conjugate

poles using the proposed model and only with switches and capacitors. Chapter 4 de-

scribes the noise analysis using the proposed model and goes through some of the prac-

tical limitations. Chapter 5 covers the implementation of the 3rd-order passive switched-

capacitor filter prototype with complex-conjugate poles. Finally, Chapter 6 summarizes

contributions, on-going, and future work.



Chapter 2

From Discrete to Continuous-Time

Modelling

In this section, the proposed continuous-time modelling of the oversampled switched-

capacitor circuits is explained. A new model is developed, starting from the traditional

equivalent resistance, for non-reciprocal multi-phase switched-capacitor structures, lead-

ing to an intuitive modelling and design approach. Several examples are also included to

demonstrate the modelling approach and to address common misconceptions.

Figure 2.1: Basic two-phase switched-capacitor topology modelled with the traditional
equivalent resistance [6, p. 399].

14
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Figure 2.2: A reciprocity test for a continuous-time two-port network [7, p. 4].

2.1 Proposed Continuous-Time Model

2.1.1 Theory

It is known that a capacitor, CS, connected to two voltage sources V1 and V2 in two

different clock phases, φ1 and φ2, respectively, can be modelled using an equivalent

resistance, R, as shown in Fig. 2.1 and as discussed in Section 1.1. Although this model

can lead to an intuitive understanding of oversampled switched-capacitor structures [6,

p. 399], it is limited to two-phase topologies with reciprocal low frequency behaviour.

2.1.2 Reciprocity

The reciprocity theorem is traditionally defined for continuous-time circuits. However,

the reciprocity definition can come in handy to understand the shortcomings and appli-

cability of the switched-capacitor equivalent resistor model. A continuous-time two-port

network is defined as reciprocal if a test voltage source, vt, applied to the first port gen-

erates a short circuit current on the second branch, it1, which is the same as the short

circuit current generated on the first branch, it2, if the same test voltage source, vt, is ap-

plied to the second port, as shown in Fig. 2.2 (i.e., Z12 = Z21). A network that contains

only ideal R, L, and C elements is reciprocal [7, p. 6]. In light of the reciprocity definition,

we can conclude that a network of equivalent resistors can only model switched-capacitor

topologies with a reciprocal low frequency behaviour.

Switched-capacitor circuits are time-varying circuits. Thus, a reciprocity test applied
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Figure 2.3: A reciprocity test for the two-phase switched-capacitor circuit.

on a switched-capacitor circuit fails. However, we are interested in the low frequency

behaviour of these structures. We want to understand if this behaviour is “reciprocal”

or not, such that we can have more clues on how to model these structures correctly.

Fig. 2.3 shows one “modified” reciprocity test applied to the conventional two-phase

switched-capacitor circuit (Fig. 2.1). In this “modified” test, applied voltages are DC

sources, and observed currents are average currents. Thus, effectively, we are checking

the reciprocity of these circuits for DC signals.

Two average currents produced (it1 and it2) as the result of the test voltage (vt)

applied to nodes V1 and V2, respectively are derived to be equal to each other:

it1 =
∆Q

TS
=
CS.Vt
TS

(2.1)

it2 =
∆Q

TS
=
CS.Vt
TS

(2.2)

where TS is the sampling period. Thus, the two-phase switched-capacitor circuit can

be defined to have a reciprocal low frequency behaviour. (It should be noted here that

although the averaged behaviour is checked for simplicity, it is also possible to extend this

approach for low frequency behaviour, where the frequency of interest is much smaller

than the sampling frequency.) Thus, using an equivalent resistor to model the reciprocal

low frequency behaviour of a two-phase switched-capacitor circuit makes sense.

Now, we can check the reciprocity of the three-phase switched-capacitor circuit shown
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Figure 2.4: A reciprocity test for a three-phase switched-capacitor circuit.

in Fig. 1.5. Fig. 2.4 shows the reciprocity test applied to the switching parts of the circuit.

Two average currents produced (it1 and it2) as the result of test voltage (vt) applied to

nodes V1 and Vout, respectively can be derived as follows:

it1 =
∆Q

TS
=
CS.Vt
TS

(2.3)

it2 =
∆Q

TS
=
CS.0

TS
= 0 (2.4)

where TS is the sampling period. Although it1 has the same non-zero value as Eqn. 2.2,

it2 has a zero value since CS is reset to the ground in φ3. Thus, the three-phase switched-

capacitor circuit can be defined to have a non-reciprocal low frequency behaviour. Thus,

we can conclude that using only bilateral elements such as R, L, and C to model the low

frequency behaviour of this multi-phase circuit do not work out.

The Proposed Unilateral Model

To develop a new continuous-time model that can address multi-phase topologies with

non-reciprocal low frequency behaviour, we can start by examining the derivation of the

traditional equivalent resistance model in detail.

The resistance equivalence is derived by assuming ideal DC voltage sources connected

to V1 and V2 nodes and by calculating the average current transfer in one clock period

as follows:
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∆Q = CS.(V1 − V2) (2.5)

IA =
∆Q

TS
=
CS.(V1 − V2)

TS
(2.6)

R =
V1 − V2
IA

=
TS
CS

=
1

fS.CS
(2.7)

where IA corresponds to the average current flowing from V1 node to V2 node in one

sampling period, TS. It is straight forward to show that the average current flowing

from node V1 is equal to the average current flowing into node V2. Thus, a single 1/fSCS

valued resistance is enough to model the average current behaviour and the loading of the

nodes. (The derivation of the switched-capacitor equivalent resistance for low frequency

inputs is covered in Appendix A, which results in the same 1/fSCS value.)

If we want to extend this modelling approach to multi-phase or non-reciprocal struc-

tures, a network of resistors is not helpful, as discussed earlier. Thus, a different per-

spective is necessary to address the issue. A unilateral approach is required to model the

non-reciprocal behaviour.

To create a unilateral model, we can start by examining the average current flow

at each node independently from the other nodes in the system. For example, for the

two-phase switched-capacitor topology we have been working on (Fig. 2.1), rather than

considering the average current flowing from V1 to V2, let us first solely model the average

current flowing into V2, which can be written as follows:

IA,2 =
V1 − V2
R

(2.8)

where IA,2 corresponds to the average current flowing into the node V2, and R has the

same value as the one derived in Eqn. 2.7. Basically, we are focusing on the behaviour
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from the end of φ1 until the end of φ2. An ideal voltage buffer can be employed as shown

in Fig. 2.5a to model IA,2 without affecting the other nodes (i.e., V1 node). The ideal

voltage buffer does not load the node V1 and realizes the desired unilateral behaviour.

The loading of the node V1 should also be accounted for to complete the model. The

average current into the node V1 can be written as follows using a similar approach:

IA,1 =
V2 − V1
R

(2.9)

With this equation, we are focusing on the behaviour from the end of φ2 until the

end of φ1 to complete the one sampling period. Thus, a second buffer + R branch can be

placed, as shown in Fig. 2.5b. By combining two branches, the complete continuous-time

model is obtained (Fig. 2.5c).

From this derivation, it follows that each phase change corresponds to a buffer + R

branch, where CS transfers voltage information from the previous node to the present

node (modelled with the buffer), meanwhile charging itself to the present node voltage

(modelled with R). Thus, the number of phases determines the number of buffer + R

branches needed to complete the model. Once the model is complete, each node is

connected to both a buffer and a resistor. (The derivation for low frequency inputs is

covered in Appendix B, which results in the same buffer + R branch based model.)

The two buffer + R branches can be combined into a single R branch by using the

Substitution Theorem, which leads back to the initial single equivalent resistance model

(Fig. 2.1). This combination shows the compatibility of the new approach with the

traditional one. This example also shows that it is possible to create a bilateral network

by using multiple unilateral branches.

Although two buffer + R branches may seem redundant for a two-phase switched-

capacitor topology, the primary motivation of this work is to address topologies with

non-reciprocal low frequency behaviour with multiple phases. Thus, this new approach

provides us the tool that is needed to create unilateral continuous-time models.
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(a)

(b)

(c)

Figure 2.5: Two-phase switched-capacitor topology a) with the average current into V2
is modelled, b) with the average current into V1 is modelled, and c) with its complete
proposed continuous-time model.
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2.1.3 Examples

2nd-Order Passive Switched-Capacitor Low-pass Filter with Real Poles

The 2nd-order passive switched-capacitor filter shown in Fig. 2.6a has three phases, where

CS is connected to CI1, CI2, and ground nodes, respectively [3]. Three phases correspond

to three buffer + R branches, which can be cascaded to create a loop as shown on the left

side of Fig. 2.6b. Because CS is connected to ground during φ3, further simplifications1

can be performed on the model as shown on the right-hand side of Fig. 2.6b. The

resulting continuous-time model clearly shows the low-pass filter operation with two real

poles at 1/RCI1 and 1/RCI2 without the need for any further analysis.

Fig. 2.7 shows the simulated transfer function of the PSC filter discrete-time imple-

mentation and continuous-time model with CS = 200fF,CI = 8pF, fS = 160MHz. PSC

simulations are performed with SpectreRF periodic steady state and sampled periodic

AC analyses [56]. Model simulations are performed with ac simulations. It can be seen

that both transfer function curves closely follow each other until the Nyquist rate, i.e.,

fS/2.

Fig. 2.8 shows the simulated step response of the PSC filter discrete-time implemen-

tation and the continuous-time model. The bottom plot shows the difference between

the discrete-time implementation sampled response and the continuous-time model re-

sponse. The error is dominant (with less than 5mV) during the initial transient phase,

which corresponds to the high-frequency response with limited model accuracy. As the

step response settles, i.e., for the DC response, the error becomes zero.

High-Order Passive Switched-Capacitor Low-Pass Filter with Real Poles

It is possible to increase the order of this filter simply by increasing the number of clock

phases and CI ’s to which CS is connected to before getting reset to ground. Fig. 2.9a

1These further simplifications eliminate a buffer + R branch that is connected to the ground node.
If the ground current of interest, the initial model can be kept as it is.
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(a)

(b)

Figure 2.6: a) 2nd-order PSC filter with three clock phases [3, p. 228], b) its continuous-
time model.

Figure 2.7: 2nd-order PSC filter simulated discrete-time implementation and continuous-
time model frequency responses with logarithmic and linear scale frequency axes.
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Figure 2.8: 2nd-order PSC filter simulated discrete-time implementation and continuous-
time model step responses, and the error between the step responses.
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(a)

(b)

Figure 2.9: a) N th-order PSC filter with N + 1 clock phases [4], b) its continuous-time
model.

shows an N th-order PSC filter schematic [4], and its continuous-time model is presented

in Fig. 2.9b.

It should be noted that in this example, the model is applied to a topology where CS

is not only connected to the zero impedance voltage sources as ground but also to other

capacitors (CI ’s). However, since CI ’s are integrating capacitors with values much larger

than CS [57] [4], they can be treated as low impedance nodes, and the model works with

good accuracy. Chapter 4 provides further details on the applicability and limitations of

the model.

2.2 The Continuous-Time Model for Non-Grounded

Sampling Capacitors

The proposed modelling approach that is defined in Section 2.1 can address multi-phase

switched-capacitor structures, which can also have non-reciprocal low frequency be-
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(a) (b)

Figure 2.10: a) Parasitic insensitive switched-capacitor integrator, and b) its incorrect
continuous-time model.

haviour. However, it relies on grounded sampling capacitors. There are a variety of

switched-capacitor circuit implementations that employ sampling capacitors with both

plates switching in between different nodes. One typical example is the parasitic insen-

sitive switched-capacitor integrator shown in Fig. 2.10a. Conventionally, the switching

parts are modelled using negative resistance, −R, as shown in Fig. 2.10b [6, p. 417].

Although this model can capture the correct positive voltage gain value, −R indicates

that for positive V1 values, the current flows into the V1 node from the virtual ground,

which is not the case. Moreover, if this continuous-time approach is used to analyze the

effect of the finite amplifier gain or the offset voltage, the analysis may result in false

or inaccurate values together with a fictitious right-half plane pole at +1/[(1 + A)RC]

rad/s, where A is the finite amplifier gain defined by vout/(v+ − v−). Apart from the

parasitic insensitive switched-capacitor integrator, DC/DC converters with flying capac-

itors and even passive switched-capacitor filters can include sampling capacitors with

non-grounded switching plates. This section generalizes the proposed continuous-time

model for switched-capacitor circuits with non-grounded sampling capacitors to address

the structures mentioned above.
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(a)

(b)

Figure 2.11: a) Two-phase switched-capacitor topology with non-grounded sampling
capacitor and b) its proposed continuous-time model.

2.2.1 Theory

A two-phase switched-capacitor topology where both plates are non-grounded is shown

in Fig. 2.11a. The average current flows into the port V2 in one clock period, IA2, can

be written using charge balance equations as:

IA2 =
∆Q

TS
=
CS.(V1 − V2)

TS
= (V1 − V2)fSCS (2.10)

This current equation can be modelled using a voltage controlled voltage source

(VCVS) whose value is equal to V1, connected in series with an equivalent resistance

of R with the value of 1/fSCS. Another branch of VCVS and R is necessary to model

the average current flowing into the port V1 to complete the model, as shown in Fig.

2.11b. This model can be easily adapted to multi-phase switched-capacitor structures

by merely increasing the number of VCVS + R branches, similar to the approaches in

Section 2.1. Then, the number of VCVS + R branches should be equal to the number of

clock phases in the topology. A similar model for switched-capacitor structures with two

phases was also previously investigated [58]. (The derivation of the model for voltage
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(a)

(b)

(c)

Figure 2.12: Parasitic insensitive switched-capacitor integrator a) switching parts, b) its
continuous-time model, and c) rearranged continuous-time model.

sources with input frequencies much smaller than the sampling frequency is similar to

the proofs given in Appendices A and B.)

2.2.2 Examples

Parasitic Insensitive Switched-Capacitor Integrator

The generalized continuous-time model can be used to analyze the parasitic-insensitive

switched-capacitor integrator with a non-grounded sampling capacitor. Fig. 2.12a shows

the switching parts of the integrator, where V1 corresponds to the input voltage, and V2

corresponds to the virtual ground of the amplifier shown in Fig. 2.10a.

In Φ1, C1 is connected between V1 and ground nodes; this sampled voltage value,
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Figure 2.13: The continuous-time model of the parasitic insensitive switched-capacitor
integrator.

(V1 − 0), becomes the value of the VCVS on the second branch (Fig. 2.10b). Whereas

during Φ2, C1 is connected between ground and V2 nodes. Thus, the VCVS value in the

first branch becomes −V2. Since there exist two ground nodes, it is possible to rearrange

the continuous-time model, as shown in Fig. 2.12c, where VCVSs can be shown by ideal

inverting voltage buffers to have a more intuitive schematic. Fig. 2.13 shows the parasitic

insensitive integrator, where the switching parts are replaced with the model.

It should be noted that this continuous-time SC integrator model can capture the

correct sign of the voltage transfer function by the use of inverting voltage buffers rather

than having a negative resistance. Furthermore, the model captures the correct input

current direction. Thus, it can also be used to analyze the effects of finite amplifier gain

and offset voltages without resulting in a fictitious right-half plane pole.

Flying Capacitor DC/DC Converter

The switched-capacitor DC/DC converter structure shown in Fig. 2.14a can be analyzed

using the differential continuous-time model to determine the Thévenin equivalent of

the switching parts. This structure involves a flying capacitor, C, and large capacitors,

CM ’s for storing the DC value of the output voltage. The frequency of interest is much

smaller than the sampling frequency [25, 26]. During φ1, C is connected between VDD

and Vout nodes, sampling a voltage of VDD − Vout. Whereas, during φ2, C is connected

between Vout and the ground node sampling a voltage of VDD − 0 across itself. The top
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left schematic in Fig. 2.14b shows the differential switched-capacitor continuous-time

model, where R = 1/fSC. It is possible to further simplify the continuous-time structure

by starting from the initial model and obtaining the Thévenin equivalent circuit shown

in Fig. 2.14c. In order to find vout from 2vout, the open circuit voltage, VDD, and the

output resistance, R/2, are divided by half. The conventional approach is to use a DC

transformer model, as shown in Fig. 2.14d [26]. The conversion ratio, (m:n), and the

output resistance, ROUT , can be calculated to be the same as Fig. 2.14c. However, this

approach is not intuitive, and the derivation is cumbersome.
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(a)

(b)

(c) (d)

Figure 2.14: a) Switched-capacitor DC/DC voltage converter, b) its simplified
continuous-time model, c) the Thévenin equivalent of vout obtained with the continuous-
time model, d) conventionally used switched-capacitor converter transformer model.



Chapter 3

Complex-Conjugate Poles using

Switches and Capacitors

The proposed continuous-time model offers an intuitive understanding of oversampled

switched-capacitor topologies. The intuition provided by the continuous-time approach

can also be used to develop new switched-capacitor topologies. In this section, complex-

conjugate poles are realized using passive switched-capacitor networks with the help of

the continuous-time approach.

3.1 Passive Switched-Capacitor Butterworth Biquad

3.1.1 From Real Poles to Complex-Conjugate Poles

It is well known that passive RC networks can only form real poles [7]. Similarly, the

creation of complex-conjugate poles in switched-capacitor circuits generally involves the

use of active components to create a feedback loop able to move the real poles in the

complex plane. In this section, it is shown that such a feedback loop can be created

with a passive switched-capacitor network by exploiting time-variance and unilaterality

highlighted by the proposed model.

31
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(a)

(b)

Figure 3.1: a) Passive switched-capacitor filter with two real poles and b) its continuous-
time model.

In Fig. 3.1a, a switched-capacitor low-pass filter with two real poles is shown. Al-

though, in this case, two switches and the sampling capacitor, CS, could be substituted

by a simple resistor, the proposed continuous-time model is used to highlight the presence

of a virtual loop (Fig. 3.1b).

The real poles of the circuit shown in Fig. 3.1b can be transformed into complex-

conjugate ones just by inverting the gain of the buffer in the return path (Fig. 3.2). This

inversion creates a non-reciprocal network with a feedback path, which makes it possible

to obtain complex-conjugate poles. These new poles have a natural oscillation frequency

(ω0) and a quality factor (Q) given by:

ω0 =

√
2

R
√
CI1CI2

(3.1)

Q =

√
2CI1CI2

CI1 + CI2
≤ 1√

2
(3.2)
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Figure 3.2: Low-pass filter with complex-conjugate poles involving a negative feedback
loop.

When Q becomes greater than 0.5 (assuming a CI1/CI2 ratio in between 0.17 and

5.83), poles become complex-conjugate. For CI1 = CI2, Q reaches its maximum value of

1/
√

2 that corresponds to a 2nd-order Butterworth filter transfer function. The reason

for an upper bound in the achievable Q is due to the loop gain being limited to 1 in the

given structure.

3.1.2 Implementation of the Passive Switched-Capacitor Filter

At this point, we have the continuous-time model of the filter with 2nd-order Butterworth

characteristics. How can we transfer this idea from the continuous-time model to an

actual discrete-time filter implementation? One way to create the inverting behaviour is

to use a differential structure, where the charge of the sampling capacitor, CS, is cross-

transferred between positive and negative terminals. This operation can be realized by

the circuit shown in Fig. 3.3 based on four phases, two of which are labeled as φ1 and

φ2, and two of which are labeled negatively as φ1N and φ2N . During φ1 and φ2 phases,

the circuit behaves like Fig. 3.1a, while during the negative phases, charge inversion

is obtained. The output is sampled on both φ2 and φ2N . Thus, the circuit behaves as

a two-phase system from the output perspective. This topology is similar to the one

obtained in [44], where, however, four sampling capacitors are used.
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Figure 3.3: Differential 2nd-order passive switched-capacitor filter with complex-conjugate
poles.

Sanity Check with Four-Phase Continuous-Time Model

The filter shown in Fig. 3.3 has four phases and a cross-coupled structure. At first

glance, it is not easy to verify the filter’s operation and intuitively understand that the

filter can give the desired characteristics dictated by the continuous-time model shown

in Fig. 3.2. However, by applying the proposed model, the four-phase filter can be

transformed into a continuous-time topology as a sanity check. A continuous-time model

can be built by using buffer + resistor branches corresponding to each phase change

(φ1 → φ2, φ2 → φ1N , φ1N → φ2N , φ2N → φ1) as shown in Fig. 3.4a. The resistance value,

R, is equal to 1/(fSCS), where fS is defined for two phases, as the output is sampled

at every two phases. This model can be simplified by merging parallel branches (Fig.

3.4b). Moreover, cross-coupled buffer branches can be replaced with inverter branches

to obtain Fig. 3.4c, since the circuit operation is differential. Fig. 3.4c is the fully

differential version of the circuit reported in Fig. 3.2. It should be noted here that if

the common-mode analysis is required, cross-coupled branches should be left as they are

(Fig. 3.4b).
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(a)

(b)

(c)

Figure 3.4: Differential 2nd-order Butterworth biquad continuous-time model: a) Direct
representation of four phases, b) with parallel branches merged, c) cross-coupled buffers
are replaced by inverter branches.
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Conventional Discrete-Time Analysis

The pole locations of the differential 2nd-order Butterworth passive switched-capacitor

filter can be found by first deriving the filter transfer function in the z-domain and

later obtaining the s-domain transfer function by using the bilinear approximation. The

z-domain transfer function can be derived by writing the charge-domain equations as

follows:

(CI1 + CS)V1

[
n− 1

3

]
=CI1V1

[
n− 4

3

]
− CSVout +Qin[n]

(CI2 + CS)Vout[n] =CI2Vout[n− 1] + CSV1

[
n− 1

3

]

where Qin[n] =

nTS∫
(n−1)TS

gmVin(t)dt

(3.3)

where n represents the sampled value at the end of φ2. The resulting z-domain transfer

function can be written as:

Vout(z)

Qin(z)
=

z2[ CS

(CS+CI1)(CS+CI2)
]

z2 − z[
CI1(CS+CI2)+CI2(CS+CI1)−C2

S

(CS+CI1)(CS+CI2)
] + CI1CI2

(CS+CI1)(CS+CI2)

(3.4)

ω0 and Q of the filter can be determined by using the bilinear approximation, z =

1+sTS/2
1−sTS/2

, as follows:

ω0 =
2fSCS√

CI1CS + CI2CS + 2CI1CI2

∣∣∣∣
CI1,I2�CS/2

≈
√

2

R
√
CI1CI2

(3.5)

Q =

√
CI1CS + CI2CS + 2CI1CI2

CI1 + CI2 + CS

∣∣∣∣
CI1,I2�CS/2

≈
√

2CI1CI2
CI1 + CI2

≤ 1√
2

(3.6)

The calculated s-domain ω0 and Q of the discrete-time filter become the same as the

values derived by the continuous-time model in Eqn. 3.1 and 3.2 under the assumption

of CI1,I2 � CS/2.
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Figure 3.5: Simulated magnitude responses for 1dB droop at 1MHz with fS = 160MHz
of the two-real-pole and 2nd-order Butterworth biquads.

3.1.3 Filter Transfer Function Simulations

The 2nd-order Butterworth passive switched-capacitor biquad, the two-real-pole passive

switched-capacitor biquad (Fig. 2.6), and their continuous-time models were simulated

in 65 nm CMOS technology by using SpectreRF periodic steady state (pss) and periodic

AC (pac) analyses. A sampling frequency of 160MHz was chosen for a filter passband

of 1MHz. MOSFET transmission gates were used as switches with on resistances, RSW ,

of 1kΩ and off parasitic capacitance, CPrs, of 1.8fF .

The simulated normalized magnitude transfer function with CI1 = CI2 = 3.56pF and

CS = 400fF for the real-pole filter and that with CI1 = CI2 = 5.14pF and CS = 200fF

for the Butterworth filter are reported in Fig. 3.5. The small discrepancy between

the proposed model and the switched-capacitor implementation is due to the parasitic

capacitances of the transmission gates, which shift the expected pole frequencies and also

the DC gain (∝ 1/(fSCS)) of the filters. Note that the Butterworth filter provides more

than 10dB suppression for frequencies above 7MHz compared to the real-pole filter. This

additional suppression is thanks to the Butterworth’s complex-conjugate poles resulting

in sharper band edge filtering characteristics.



Chapter 3. Complex-Conjugate Poles using Switches and Capacitors 38

3.1.4 Effect of Parasitic Capacitances

The switches and capacitors (CI and CS) introduce parasitic capacitances CPrs to the

circuit. The top and bottom-plate parasitic capacitances of each capacitor are added on

itself. CPrs associated with switches, on the other hand, are added both on CI and CS.

For both of the filters, any CPrs that was added only on CI shifts the desired pole

locations. For the Butterworth filter, as long as CI1 and CI2 values change similarly, the

Q value is not affected by the added CPrs (Eqn. 3.2), whereas the CPrs of the switches

added on CS limits the minimum value of CS. Choosing smaller size switches results in

lower CPrs. However, switch size is also determined by the required switch resistance

RSW , where RSW is limited by the settling error. For a lower settling error, RSW should

be small, which requires larger switches. Thus, there is a trade-off between the settling

error and minimum capacitance value. Moreover, the CPrs of the switches changes with

the signal level and introduces nonlinearity for large signal amplitudes.

The 2nd-order Butterworth filter and the two-real-pole biquad were simulated using

Spectre pss and pac with two tones at 10 and 19MHz in order to compare their non-

linearity performances. The intermodulation tone was placed close to the filter cut-off.

Switch capacitances were the primary source of nonlinearity since ideal gm-cells were

used. The out-of-band 3rd-order input intercept point (IIP3) of the 2nd-order Butter-

worth was simulated at 29dBm, which compares favourably with the out-of-band IIP3

of the two-real-pole biquad that was simulated at 13dBm.

3.1.5 Single Pole Passive Switched-Capacitor Complex Filter

It is interesting to note that the proposed filter structure with complex-conjugate poles

shown in Fig. 3.3 is very similar to the complex filter shown in Fig. 3.6 with quadrature

inputs and a single sampling capacitor. Fig. 3.6a shows the complex passive switched-

capacitor filter reported by Madadi et al. that realizes a single complex pole by exploiting

the in-phase (I), and quadrature (Q), i.e., 90◦ phase shifted input signals [8]. The current
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input of the filter is defined as iin = iin,I + j.iin,Q, whereas the voltage output of the filter

is defined as vout = vout,I + j.vout,Q [8]. The filter has four phases during which CS rotates

in between positive and negative I and Q nodes.

To derive the filter transfer function (vout/iin), the continuous-time model can be

developed as shown in Fig. 3.6b including four branches. Then, Kirchhoff’s current law

can be applied at the positive Vout,I and Vout,Q nodes:

iin,I =
vout,I

2
.sCI + (

vout,I
2
− −vout,Q

2
)

1

R
, iin,Q =

vout,Q
2

.sCI + (
vout,Q

2
− vout,I

2
)

1

R
(3.7)

where R is equal to TS/CS. By using Eqn. 3.7, it is possible to write the filter transfer

function as follows:

(iin,I + j.iin,Q).2R = (vout,I + jvout,Q)sRCI + (vout,I + jvout,Q) + (vout,Q − jvout,I) (3.8)

TF (s) =
vout,I + jvout,Q
iin,I + j.iin,Q

=
2R

sRCI + 1− j
(3.9)

From Eqn. 3.9, the single complex pole of the filter can be written as (−1+j)/RCI rad/s.

Fig. 3.7 shows simulated normalized transfer functions of the discrete-time passive

switched-capacitor filter and the continuous-time model with a sampling frequency of

160MHz, CS of 200fF , and CI of 8pF .
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(a)

(b)

Figure 3.6: Single pole complex PSC filter a) discrete-time implementation [8] and b) its
continuous-time model.

Figure 3.7: Simulated normalized frequency responses of PSC complex filter discrete-time
implementation and its continuous-time model.
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3.2 High-Order Filtering with Complex-Conjugate

Poles

To achieve high-order low-pass filtering, designers traditionally cascade biquads having

complex-conjugate pole pairs with different quality factors. However, for any filter order

higher than 2, complex-conjugate poles with a quality factor greater than 1/
√

2 are

needed to generate for example Butterworth filter characteristics (the same is also valid

for Chebyshev and Elliptic filters). However, this approach is not an option for the

passive switched-capacitor biquad described in the previous section (Section 3.1) because

the maximum achievable quality factor is limited to 1/
√

2. One way to realize high-order

filtering with larger than 1/
√

2 quality factor is to use active devices, for example, gm-

cells, in the feedback path [5]. However, this solution increases the noise and adds non-

linearity to the system along with the increased power consumption. Moreover, it may

not be easy to scale the filter for newer technologies when we start to introduce active

components. Thus, a new approach is needed to realize a sharp higher than 2nd-order

filtering characteristics implemented only with capacitors and switches.

3.2.1 Continuous-Time Design and Optimization

It is known that complex-conjugate poles can be generated by closing a feedback path

around a cascade of stages with real poles. In Fig. 3.8, the feedback is realized by

connecting the output of the cascade to the input through an inverting buffer and an

equivalent resistance, R. This structure is also the N th-order realization of the 2nd-order

Butterworth biquad filter reported previously in Section 3.1. Thanks to the continuous-

time approach, it is easy to analyze how the number of branches affects the pole locations

and changes the associated quality factors. To determine the pole locations, the transfer

function of the filter shown in Fig. 3.8 can be written as follows:
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Figure 3.8: The proposed high-order low-pass PSC filter with complex-conjugate poles.

vout(s)

iin(s)
=

R

(1 + sRCI1)(1 + sRCI2)(1 + sRCI3)...(1 + sRCIN) + 1
(3.10)

Fig. 3.9 shows the locations of the poles generated by a cascade of 2, 3, and 4 ele-

ments with the same valued CI ’s for each stage. For a loop gain equal to one, which is the

maximum achievable with a passive switched-capacitor network, the maximum quality

factor is obtained starting from a cascade of real coincident poles, which demands identi-

cal CI ’s. The generated poles have the same quality factors as the poles of a Butterworth

filter but with different frequencies (Fig. 3.9). The shift in the pole frequencies leads to

in-band peaking in the filter transfer function that increases with the order of the filter.

A recent independent work decreases the feedback coefficient −1 to reduce the in-band

peaking. However, this solution results in a smoother filter transfer function close to the

band edge [54]. Actually, from Fig. 3.8, it can be observed that if the feedback coefficient

−1 is decreased until 0, the resulting filter becomes the same as the previously discussed

all real pole filter (Fig. 2.9b).

3.2.2 Implementation of the High-Order Passive Switched-Capacitor

Filter

A 3rd-order filter is chosen to be designed as it can approximate the Butterworth filter

behaviour with less than 1dB in-band peaking. Fig. 3.10 shows the continuous-time
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Figure 3.9: Pole locations of the 2nd, 3rd, and 4th -order filters, where the gray circles
mark the same order Butterworth pole locations having the same 1dB cut-off frequency.

model of the 3rd-order filter. An example of a 3rd-order implementation is shown in

Fig. 3.11. In this filter, CS shares charge with CI1, CI2, and CI3 in φ1, φ2, and φ3,

respectively, creating a unilateral signal flow. During the phase change from φ3 to φ1,

CS is flipped to create the negative feedback. Note that Fig. 3.10 also shows the related

phase changes corresponding to each branch.

The pole locations derived from the model can be verified by evaluating the z-domain

transfer function of the filter shown in Fig. 3.11 as follows (assuming equal CI ’s for

simplicity):

Vout(z)

Qin(z)
=

1

CS

z3(1− α)3

(z − α)3 + z2(1− α)3
(3.11)

where α is CI/(CI + CS) and Qin is the amount of charge fed into the filter in one

sampling period, TS. Although the network shown in Fig. 3.11 is periodic with 2TS,

TS is defined for three phases because the output is sampled in every three phases. The

quality factor of the created poles can be found by mapping z-domain poles to s-domain

using the bilinear approximation. As CI/CS ratio increases, Q of the complex-conjugate

pair approaches to 1, which is the Q value predicted by the continuous-time model used

for the synthesis of the filter.

Simulations of the proposed filter and the 3rd-order Butterworth response (with the

same DC gain and 1dB droop frequency) are compared in Fig. 3.12. Although the pole
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Figure 3.10: The continuous-time model of the 3rd-order filter with complex-conjugate
poles.

Figure 3.11: The PSC implementation of the 3rd-order filter with complex-conjugate
poles.



Chapter 3. Complex-Conjugate Poles using Switches and Capacitors 45

Figure 3.12: The transfer function of the PSC filter with complex-conjugate poles com-
pared with the same order Butterworth and the 7th-order real pole filter having the same
1dB droop frequency.

locations deviate from the ones of a Butterworth, the 3rd-order filter maintains similar

in-band flatness and selectivity. The figure inset shows that the response of the proposed

filter deviates from the ideal Butterworth filter’s response less than 1dB close to the filter

band edge. Fig. 3.12 also compares the proposed solution with the 7th-order all real pole

passive switched-capacitor filter reported by Tohidian et al. [50] by assuming a maximum

in-band drooping of 1dB. Even though the proposed filter has a lower order, a higher

selectivity is achieved over a decade close to the filter pass-band thanks to the presence

of complex-conjugate poles.



Chapter 4

Noise Analysis and Practical

Limitations of the Model

The proposed continuous-time model inherits the assumptions of the traditional two-

phase switched-capacitor resistor equivalence: The driving node voltage should determine

the voltage sampled by the sampling capacitor, CS. As the sampling frequency goes to

infinity, and the sampling capacitor value goes to zero, the equivalent resistor model works

correctly. However, under practical conditions, limited settling time and charge sharing

paths disturb this ideal behaviour. Moreover, as previously discussed in Chapter 2,

the continuous-time model is only valid for input voltage sources with frequencies much

smaller than the sampling frequency, i.e., for oversampled circuits. In this chapter,

these limitations are studied to determine the accuracy of the proposed model when the

conditions are only partially met.

4.1 Settling Time

A resistor in series with the sampling capacitor creates a non-zero time constant, which

leads to settling error. This series resistance can be due to the switch on resistance or

the source resistance. For a conventional switched-capacitor topology shown in Fig. 4.1,

46
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Figure 4.1: Basic two-phase switched-capacitor topology with series resistances.

when switches have on resistances of RSW , the equivalent resistance seen can be derived

as follows:

R =
V1 − V2
IA

=
(V1 − V2)TS

∆Q
=

(V1 − V2)TS
C∆V

with ∆V = (V1 − V2)
1− e−

1
2fSRSWCS

1 + e
− 1

2fSRSWCS

(4.1)

R =
1

fSCS

1 + e
− 1

2fSRSWCS

1− e−
1

2fSRSWCS

(4.2)

where fS is the sampling frequency and ∆V is the voltage difference on CS between

the end of φ1 and the end of φ2 phases. As RSW goes to zero, R becomes 1/fSCS, as

expected. For example, if the settling time constant, (RSWCS), is set to 15% of the

sampling period, 1/fS, the error in the equivalent resistance becomes 7.40%, while if the

time constant is set to 5% of the sampling period, the accuracy becomes 0.01%.

One way to relax this problem without requiring a higher clock frequency is to increase

the sampling frequency of the switched-capacitor by introducing time-interleaved stages

[46], as done in the presented prototype described in Chapter 5.

While the maximum clock frequency is limited due to the settling time of the switched

capacitor circuit, the model’s accuracy increases as the oversampling rate increases.

Specifically, in the case where the clock frequency is fixed and satisfies the settling time

requirement, then as the oversampling rate increases, the filter’s bandwidth decreases

and the accuracy of the model improves. However, a practical limitation here is that as
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(a) (b)

Figure 4.2: a) 1st-order PSC filter and b) its continuous-time model with the traditional
equivalent resistance approach [2].

the oversampling rate increases, the ratio of the sampling capacitors to the integrating

capacitors will decrease and may lead to unreasonably small sampling capacitors.

4.2 Charge Sharing

In the case CS is connected to a capacitive driving impedance, there is an issue of charge

sharing between two capacitors that leads to an error in the equivalent resistor behaviour.

For example, Fig. 4.2a shows the 1st-order passive switched-capacitor filter with current

input and voltage output, where CS is switching between an integrating capacitor, CI ,

and a ground node. As mentioned in Chapter 1, CI capacitor can be treated as a voltage

source for CI values much larger than CS, and thus the switching parts can be replaced

by an equivalent resistor with a value of 1/fSCS (Fig. 4.2b). However, when CS becomes

comparable to the driving impedance, CI , the charge stored in CS is not an accurate

representation of the initial voltage on CI . Moreover, the pole created (proportional to

CS/CI) moves toward the higher frequencies, where the model accuracy is limited.

It is possible to investigate the continuous-time model accuracy for this 1st-order pas-

sive switched-capacitor filter. Fig. 4.3 shows the frequency transfer functions simulated

using SpectreRF periodic steady state and periodic AC analyses for a sampling frequency
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Figure 4.3: 1st-order PSC filter discrete-time implementation and continuous-time model
simulated frequency responses for CI/CS = 40 and CI/CS = 4 with logarithmic and
linear scale frequency axes.

of 160 MHz, CS = 200fF , and with CI/CS ratios of 40 and 4. For CI/CS = 40, the error

in the 3dB cut-off frequency is 1%, whereas for CI/CS = 4 the error becomes 12%. (The

notch at fS is due to the inherent anti-aliasing property of the integration sampler [2].)

Fig. 4.5 shows the percentage error in the simulated 3dB cut-off frequency for chang-

ing CS/CI and f3dB/fS ratios. In Fig. 4.5a, the error approximately follows CS/2CI for

lower values of CS/CI , and as CS becomes comparable to the driving impedance, CI , the

model accuracy decreases. For Fig. 4.5b, the error increases, as f3dB becomes closer to

the sampling frequency, fS.

Fig. 4.4 shows the simulated step response of the PSC filter discrete-time imple-

mentation and the continuous-time model for CI/CS ratios of 40 and 4. The bottom

plot shows the difference between the discrete-time implementation sampled and the



Chapter 4. Noise Analysis and Practical Limitations of the Model 50

Figure 4.4: 1st-order PSC filter discrete-time implementation and continuous-time model
simulated step responses for CI/CS = 40 and CI/CS = 4.

continuous-time model responses. The error is dominant during the initial transient

phase, which corresponds to the high-frequency response with limited model accuracy.

As the step response settles, i.e., for the DC response, error approaches to zero. As

expected, the error is smaller for the CI/CS ratio equal to 40, when the model accuracy

is better.

4.3 Accuracy of the Model in PSC Filter Response

The continuous-time model is valid for bandlimited sources with frequencies much smaller

than the sampling frequency. However, it is shown that passive switched-capacitor filter

frequency responses obtained using the continuous-time model closely follows the discrete-

time analysis up to Nyquist frequency, fS/2, as long as the pole frequencies are much
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(a)

(b)

Figure 4.5: Error in the 3dB cut-off frequency calculation of a 1st-order PSC filter using
the continuous-time model for changing a) CS/CI and b) f3dB/fS ratios.
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smaller than the sampling frequency [57, 59]. An example of this behaviour can also be

seen in Fig. 4.3, where even at frequencies close to the sampling frequency of 160MHz,

the −20dB/dec slope of the 1st-order filtering profile continues. This is because when

the model accuracy starts to decrease at higher frequencies, the dominant impedance is

determined by the large integrating capacitors present in the system. As CI � CS and

f3dB � fS, the model can predict the pass-band gain and the pole frequency with high

accuracy. For the input frequencies closer to fS/2, i.e., for frequencies higher than the pole

frequency, CI impedance starts to be the dominant impedance determining the overall

frequency response. Thus, although at those frequencies the continuous-time model of

the switching parts is not accurate, the continuous-time model of the filter results in the

correct transfer function.

4.4 Noise Analysis and Simulation Using the Model

The proposed continuous-time model can also be used to analyze noise without the

need for complex discrete-time charge balance analysis like the one used in [3]. The

noise introduced by each buffer + resistor branch, i.e., in each phase change, is equal

to the noise associated with the equivalent resistance REqv (i.e., 4kTREqv). However,

since, in each phase change, two switches are involved, 4kTREqv noise must be divided

into two uncorrelated noise sources with a power spectral density equal to 2kTREqv.

Furthermore, the noise created by the same switch in two consecutive phase changes

must be represented by two correlated noise sources with inverse polarity. This inversion

can be explained by considering the noise injected during a clock phase when a switch is

conducting. When the switch is on, it connects two capacitors, which store the injected

noise with opposite polarities, as shown in Fig. 4.6.
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Figure 4.6: Correlated noise charge stored in two capacitors with opposite polarities.

Figure 4.7: 2nd-order PSC filter and its continuous-time model.

4.4.1 Examples

Passive Switched-Capacitor Low-pass Filter with Real Poles Analysis

As an example of the noise analysis, the 2nd-order passive switched-capacitor filter with

real poles is investigated. The filter’s continuous-time model shown in Fig. 4.7 includes

two resistors: one associated with the phase change from φ1 to φ2 and one associated

with the phase change from φ3 to φ1.

Fig. 4.8 shows noise modelling. Each resistor is associated with two uncorrelated

2kTREqv noise sources, which are generated by the switches that CS is connected to

during the three related phases. Note that the noise associated with the φ1 switch

appears in both of the branches, and the two φ1 noise sources are fully correlated with

inverse polarity. From the circuit in Fig. 4.8, the output noise spectral density can be

written as follows:
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Figure 4.8: 2nd-order PSC filter and its continuous-time model with noise sources, where
the two φ1 noise sources are fully correlated with inverse polarity.

V 2
N,out =2kTREqv

[ φ1︷ ︸︸ ︷∣∣∣∣ 1

(1 + jωREqvCI1)(1 + jωREqvCI2)
− 1

1 + jωREqvCI2

∣∣∣∣2

+

φ2︷ ︸︸ ︷
1

|1 + jωREqvCI2|2
+

φ3︷ ︸︸ ︷
1

|1 + jωREqvCI1|2|1 + jωREqvCI2|2

] (4.3)

There are a couple of interesting observations that can be extracted from this output

noise spectral density equation. First of all, φ1 switch does not contribute to the in-band

noise spectral density, where f < f3dB. Only φ2 and φ3 switches contribute to the output

noise at those frequencies to a total value of 4kTREqv. Moreover, this observation

can be extended to the all real pole high-order passive switched-capacitor

filter shown in Fig. 2.9. The in-band noise spectral density is always equal

to 4kTREqv with equal contributions from φN and φN+1 switches, where N

is the filter order. Noise contribution from the other switches cancelled by inversely

correlated noise sources in consecutive branches. This is also one of the advantages

of the high-order charge-rotating passive switched-capacitor filter structure, i.e., as the

filter order increases the noise contributions stays the same [4]. The second observation

is that at higher frequencies, filter noise is dominated by the φ2 and φ1 switch noises,

2kTREqv each, with a 1st-order decaying behaviour. Again, this observation can

be extrapolated for the N th-order filter, where dominant out-of-band noise
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Figure 4.9: 2nd-order PSC filter discrete-time noise analyzes signal flow diagram.

sources become the N th and N − 1st switches.

Fig. 4.9 shows the discrete-time noise analysis signal flow graph for the 2nd-order

passive switched-capacitor filter with real poles [3, p. 237] (where αi = CIi/(CIi + CS)

and βi = 1− αi). It can be shown that the output noise spectral density obtained using

the model is approximately equal to the value calculated using the discrete-time noise

analysis when REqv is replaced by 1/(fSCS).

Passive Switched-Capacitor Low-pass Filter with Real Poles Simulation

The continuous-time noise model can also be used for simulations. Especially for the

design phase, the proposed noise modelling approach can shorten simulation times con-

siderably.

Fig. 4.10 shows the schematic for the noise simulation. At first, noiseless resistors

are used on the branches to generate two uncorrelated noise sources for a single resistor.

Later, three separate noisy resistors are used to generate noise associated with each

switch. Those noises are added to the model with the help of voltage controlled voltage

sources. The polarity of the added noise sources only matters if the same noise source

appears on more than one branches. In that case, it is important to reverse the polarity

of the noise source on one of the consecutive branches. This inversion can be seen in

between φ1 noise sources in Fig. 4.10.
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The model is simulated using ac noise analysis for CI = 8pF and R = 1/(fSCS) with

a sampling frequency of 160MHz and CS = 200fF . The simulation took 1.06 seconds.

Fig. 4.11 shows the simulated output noise spectral density, which closely follows passive

switched-capacitor filter noise simulations.

Passive switched-capacitor noise simulations are performed using SpectreRF periodic

steady state (pss) and periodic noise (pnoise) analyses [56]. Switches are implemented

as ideal switches with resistors in series. Switch resistances are chosen to be 1.3kΩ, such

that clock phase over settling time constant (∼ RSW .CS) ratio equals to 8, which leads to

a low settling error of 0.03%. Although this simulation is mainly for verification purposes,

choosing the switch resistance, RSW , value is important. RSW cannot be very large as

that hurts the settling of the switched-capacitor. Also, for noise simulations, they cannot

be too low. The reason is that to simulate the noise correctly for a sampled circuit,

the folded noise should be accounted for correctly up to a couple of decades after the

noise cut-off frequency (1/2πRSWCS). Thus, small RSW values require long simulations

times, or they may lead to incorrect results if simulation specifications entered poorly.

With the given specifications, pss and pnoise simulations took around 12 minutes and 40

seconds. Compared to the previous 1.06 seconds, this simulation time is around 700 times

longer (717 times longer to be exact), and with high-order filtering and time-interleaved

structures, it can be even longer.

Table 4.1 shows the simulated spot noise contributions of each switch. 10 kHz and

6 MHz frequencies are chosen as values well below and well above the 3 dB cut-off

frequency of the filter (410 kHz). Both ac noise and pnoise simulation results are aligned

with the expected dominant noise sources.
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Figure 4.10: The continuous-time model of the 2nd-order PSC filter for noise simulation.

Figure 4.11: Simulated output noise power spectral densities of 2nd-order PSC filter and
its continuous-time model.

Table 4.1: Percentage spot noise contributions of switches.

ac noise using CT model pnoise using DT circuit
In-Band (10 kHz) Out-of-Band (6 MHz) In-Band (10 kHz) Out-of-Band (6 MHz)

φ1 0.01 49.44 0.01 49.09
φ2 50.00 50.00 50.33 50.37
φ3 49.99 0.56 49.66 0.54
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Figure 4.12: The 2nd-order complex-conjugate-pole filter proposed model with noise
sources, where noise sources associated with the same switch are fully correlated with
inverse polarity.

Passive Switched-Capacitor Butterworth Filter Noise Analysis and Simula-

tion

The noise analysis of the proposed 2nd-order Butterworth biquad (Fig. 3.3) is performed

by using the model in Fig. 4.12, which is developed as described in Section 4.4. Two of

the four resistors presented in the model are associated with the phase change φ1 → φ2

(for four-phase representation: φ1 → φ2 or φ1N → φ2N), and the other two resistors are

associated with the phase change φ2 → φ1 (for four-phase representation: φ2 → φ1N

or φ2N → φ1). Due to the differential nature of the filter, it is sufficient to investigate

the noise associated with one of the φ1 switches and one of the φ2 switches. Later, the

derived noise power can be multiplied by two to find the differential noise.

In Fig. 4.12, the noise sources associated with the φ1 switch are placed in two consec-

utive branches that are connected to the V1 positive terminal. Note that the two φ1 noise

sources are fully correlated with inverse polarity. Similarly, the noise sources associated

with the φ2 switch are placed in two consecutive branches that are connected to the Vout

positive terminal. Note that the two φ2 noise sources are fully correlated with inverse
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Figure 4.13: Simulated output noise spectral densities of the two-real-pole and 2nd-order
Butterworth biquads for 1dB droop at 1MHz with fS = 160MHz.

polarity. Using Fig. 4.12, the noise analysis is straightforward, and the output noise

spectral density can be written as follows:

V 2
N,out =2.2kTREqv

[ φ1︷ ︸︸ ︷∣∣∣∣ jωREqvCI1
2− ω2R2

EqvCI1CI2 + jωREqv(CI1 + CI2)

∣∣∣∣2

+

φ2︷ ︸︸ ︷∣∣∣∣ 2 + jωREqvCI1
2− ω2R2

EqvCI1CI2 + jωREqv(CI1 + CI2)

∣∣∣∣2 ]
(4.4)

The coefficient 2 is added to include the effect of the differential switches’ noise. It

can be shown that, when REqv is replaced by 1/(fSCS), the output noise spectral density

obtained using the continuous-time model is approximately equal to the value calculated

using discrete-time noise analysis.

The simulated output noise spectral densities are shown in Fig. 4.13 with both the

two-real-pole biquad and the 2nd-order Butterworth discrete-time biquad sized the same

as in the previous subsection. For both the real-pole and Butterworth biquads, simulated

noise spectral densities in the passband are approximately equal to each other. Moreover,

the simulation results closely follow the calculation results.
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Figure 4.14: 2nd-order PSC filter and its continuous-time model with noise sources, where
two φ1 noise sources are fully correlated with an inverse polarity.

Two-Phase Switched-Capacitor Structure

The proposed noise model can be applied to the conventional two-phase switched-capacitor

structure. In this case, the model involves two uncorrelated noise sources, each having

2kTREqv noise spectral density, as shown in Fig. 4.14. The resulting total 4kTREqv noise

spectral density value is different from the well-known 2kT/C integrated noise value of

this structure. However, it is possible to reconcile these two values by calculating the

noise spectral density over 0− fS/2 bandwidth as below:

V 2
N =

2kT

C

1

fS/2
=

2kT

C

2

fS
=

4kT

fSCS

∣∣∣∣
1

fSCS
=REqv

= 4kTREqv (4.5)



Chapter 5

Prototype Filter Design and

Implementation

This chapter describes the implementation of a passive switched-capacitor filter prototype

with complex-conjugate poles, whose theory was previously laid out in Chapter 3. The

3rd-order filter has a transfer function resembling that of a Butterworth filter. To the

author’s knowledge with this prototype, for the first-time, switched-capacitor complex-

conjugate poles were integrated on silicon without the need of any amplifier and only using

switches and capacitors. Moreover, the proposed continuous-time model in Chapter 2 is

verified with the provided measurement results.

5.1 Prototype Filter Differential Implementation

Chapter 3 described how complex-conjugate poles can be generated using only switches

and capacitors. An example 3rd-order low-pass filter implementation was also shown

in Fig. 3.11. Due to practical purposes, a differential implementation is preferred for

the prototype filter. A fully differential 3rd-order passive switched-capacitor filter was

designed and fabricated in 0.13µm TSMC CMOS process.

Fig. 5.1 shows the passive switched-capacitor filter implementation. The charge

61
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Figure 5.1: The fabricated 3rd-order PSC low-pass filter schematic and the timing dia-
gram.

inversion of CS is realized by exploiting the differential structure and cross-coupling of

positive and negative nodes. The filter uses six phases: Three non-inverting phases (φ1,

φ2, and φ3), when top CS is connected to the top CI ’s sequentially, while the bottom

CS is connected to the CI ’s on the bottom differential side. During the following three

inverting phases (φ1N , φ2N , and φ3N), CS’s are connected to CI ’s, on the opposite sides.

In order to increase the sampling rate, three time-interleaved blocks, which consist of

CS’s and switches, are employed. Thus, the effective sampling period becomes the same

as the period of a single phase.

The z-domain transfer function of the time-interleaved filter can be written as:
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Vout(z)

Qin(z)
=

2

CS

z(1− α)3

(z − α)3 + (1− α)3
(5.1)

where α is CI/(CI + CS), the coefficient 2 is due to the differential structure, and Qin

is the amount of charge that is fed into the filter in one sampling period. The z-domain

transfer function reported in Eqn. 5.1 seems considerably different than the previously

derived transfer function in Eqn. 3.11. The reason is that the sampling period, TS, in

Eqn. 5.1 is defined for a single phase due to the time-interleaved structure, whereas in

Eqn. 3.11, TS is defined for three phases. However, once mapped back to s-domain, it

can be seen that Eqn. 3.11 and Eqn. 5.1 result in similar filtering characteristics for the

same TS.

The quality factor of the complex-conjugate pole pair can be calculated as 1 by map-

ping z-domain poles to s-domain using the bilinear approximation (assuming CI/CS = 10

and all CI ’s are equal to each other). As CI/CS ratio increases, Q of the complex-

conjugate pair approaches to 1. For a sampling frequency of 160MHz, the filter 3dB

bandwidth was designed to be 470kHz. CI ’s were chosen to be equal for a maximum

Q. All capacitors, CI ’s and CS’s, were used as MIM capacitors with values 12.6pF and

225fF , respectively, together with the added parasitic capacitances. Each sampling ca-

pacitor, CS, is directly connected to six switches (Fig. 5.1), and 20% of the CS’s are

made of switch parasitic capacitances that are added on top of MIM capacitances. Al-

though each integrating capacitor, CI , is also directly connected to six switches, the

effect of switch parasitic capacitances on CI ’s is negligible due to larger capacitance

sizes. Smaller switches can lead to lower switch parasitic capacitances; however, there

is a minimum limit on switch sizes due to the settling. The switches in this prototype

were implemented using transmission gates and sized for 1.5kΩ maximum on resistances

for the operation range. A ring counter was implemented to produce six non-overlapping

clock phases using an external clock signal at 160MHz. A gm-cell was not included

in the design in order not to dominate the noise and linearity responses of the passive
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switched-capacitor filter. Thus, the noise model can also be verified. In the prototype,

the passive switched-capacitor filter is followed by an on-chip open drain output buffer

to drive the probe used for the measurements. In order not to affect the noise measure-

ment, the output buffer was designed to have lower noise spectral density compared to

the filter.

5.1.1 Component Mismatch Effect on the Quality Factor

Component mismatch in between CI ’s or CS’s can affect the filter transfer function by

changing the filter cut-off frequency and the quality factor of the poles. It is possible to

analyze these effects using the continuous-time model. As an example, a single-ended 2nd-

order passive switched-capacitor filter can be investigated using the ω0 and Q expressions

previously derived in Section 3 as below (3.6):

ω0 =
2fSCS√

CI1CS + CI2CS + 2CI1CI2

∣∣∣∣
CI1,I2�CS/2

≈
√

2

R
√
CI1CI2

(5.2)

Q =

√
CI1CS + CI2CS + 2CI1CI2

CI1 + CI2 + CS

∣∣∣∣
CI1,I2�CS/2

≈
√

2CI1CI2
CI1 + CI2

≤ 1√
2

(5.3)

From the above equations, it can be calculated that for example for a 10% mismatch

in between CI1 (+5%) and CI2 (−5%), Q decreases by 0.13%, which corresponds to a

change from 0.707 to 0.706, i.e., the phase of the complex-conjugate poles changes from

45◦ to 44.93◦. CS mismatch in between the time-interleaved stages affects the R value.

However, it does not affect the quality factor (see Eqn. 5.3).

5.2 Measurement Results

For transfer function measurements, a voltage source was fed into the filter through large

external resistors (RExt) in series (a similar practice was reported in [60]). The voltage
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Figure 5.2: The fabricated 3rd-order PSC low-pass filter chip micrograph.

source together with RExt models the Thévenin equivalent of a gm-cell with a finite

output resistance (Fig. 5.1). The total external resistance is 200kΩ (where the filter

input resistance is 27.8kΩ, REqv = 1/fSCS). The filter consumes 125 µA from a 1.2V

power supply, which is the power consumed by the phase clock generator. Fig. 5.2 shows

the fabricated chip micrograph, where the active area of the chip is 0.06mm2 dominated

by the integrating capacitors.

Fig. 5.3 shows the normalized transfer functions of the prototype measurements,

post-layout schematic simulation, and the continuous-time model simulation. A good

agreement is obtained between measurements, simulations, and the theory. For compar-

ison, 7th-order all real pole passive switched-capacitor filter simulation response is also

added to the figure. The 7th-order filter reported in [50] was designed to have the same

DC gain and 1dB droop frequency. It can be observed that the 7th-order filter transfer

function has a much smoother roll-off around the cut-off frequency compared to other

filter transfer functions, which causes more than 10dB attenuation loss around the band

edge. Towards 10MHz, the measured filter response shows a flattening caused only by

leakage on the PCB used for testing. External resistors lead to around 18dB attenuation

on the PCB, which worsen the filtering profile by elevating the leakage level.
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Figure 5.3: Transfer functions of the simulated and measured 3rd-order low-pass PSC
filter and the simulated 7th-order all real pole filter.

Figure 5.4: Measured low-pass prototype filter transfer functions for changing sampling
frequencies, fS.

Fig. 5.4 shows the normalized measured transfer function of the filter for changing

sampling frequency, fS. It can be seen that the filter passband gain decreases for in-

creasing fS values, because the equivalent switched-capacitor resistance, R(= 1/fSCS),

decreases, which is proportional to the low frequency gain of the filter as previously de-

rived in Eqn. 3.10. Whereas, the filter cut-off frequency, which is proportional to the

1/RCI(= fSCS/CI), increases for increasing fS values. Fig. 5.5 shows the first (vin), the

second (v2P − v2N), and the third (vout) order filtering nodes normalized measured trans-

fer functions together with the continuous-time model simulation results, which match

with very good agreement.

Output noise spectral density measurement results are shown in Fig. 5.6 with a
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Figure 5.5: Measured low-pass prototype filter transfer functions for 1st, 2nd, and 3rd

-order output nodes for fS = 160MHz.

resolution bandwidth of 1Hz. The noise is measured at the output of the buffer and later

referred to the output of the filter, vout. At low frequencies, noise is equal to the noise

of REqv (i.e., 4kT/fSCS). The solid black line shows the simulation result of the passive

switched-capacitor filter, and the dashed line shows the continuous-time model simulation

result. The noise spectral density was reported up to 1MHz due to the comparable noise

floor of the spectrum analyzer. However, this measurement can show the in-band noise

spectral density as well as the out-of-band decay close to the filter band edge. It can be

seen that measured noise spectral density closely follows the simulations and the theory.

The measured input referred noise is 15.8 µV, integrated between 10kHz and 470kHz.

Out-of-band IIP3 is extrapolated using two blockers at 3.4MHz and 6.7MHz, creating

an intermodulation product at 100kHz. Fig. 5.7 shows the input signal power and the

3rd-order intermodulation distortion measurement results referred to the chip input (Vin

in Fig. 5.1). The out-of-band IIP3 extrapolated is 55.1dBm leading to 92dB spurious-free

dynamic range (SFDR).

Table 5.1 summarizes the measurement results and compares them with the 7th-

order passive switched-capacitor filter [50] and also with the recently published 4th-order

passive switched-capacitor filter that uses an active feedback structure [5]. The SFDR

obtained with this work is more than 20dB better with a much lower power consumption
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Figure 5.6: Measured output noise spectral density over the prototype filter bandwidth.

Figure 5.7: Out-of-band IIP3 measurements of the prototype filter with two tones.

partially thanks to the presence of complex-conjugate poles, which allowed to reduce

the filter order without compromising the filter selectivity close to the cut-off frequency.

However, it should be noted that both other works employ a transconductance at the

input, and [5] also uses another transconductance as the active feedback, which degrades

filters’ linearity and increases power consumption. Although the transconductance on

the feedback path is not needed in this work thanks to the passive feedback topology,

the input gm-cell is only avoided due to testing purposes. Thus, Table 5.1 should be

reviewed considering these differences. However, it can be possible to come up with an

analytical comparison in between the reported 3rd-order filter and the 7th-order all real

pole filter [50] when the gm-cell is omitted, i.e., both filters are considered as current

input - voltage output.

Analytical Comparison

The reported differential 3rd-order filter with passive feedback and the differential 7th-

order all real pole filter have the same input resistance, passband gain, in-band output
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noise spectral density, if the sampling capacitor of the 3rd-order filter is set half of the 7th-

order filter’s sampling capacitor. This comparison is valid assuming the same sampling

frequency for both of the filters with time-interleaving (Table 5.2).

Filters’ noise and linearity performances should be considered to compare the SFDR.

The same gain and output noise spectral density result in the same input referred noise.

Moreover, since the current input filters both have the same input resistance and gain,

they can be assumed to have similar linearity performance since the first-stage limits the

linearity. Thus, the SFDR can be assumed to be the same for both of the filters.

As the final step, power consumption can be compared. The digital power consump-

tion is proportional to the size and the number of switches and the sampling frequency

assuming the same technology for both of the filters. The number of switches depends

on the topology, and it is listed in Table 5.2 for differential implementations. The size of

the switches can be assumed proportional to CS, because CI ’s are much larger than CS,

i.e., the settling is determined by the CS. Thus, digital power consumption is propor-

tional to CSV
2
DDNSWfS, where NSW is the number of switches. For our case, VDD and fS

are the same for both of the filters. Thus, CSNSW multiplication determines the power

consumption, which results in around 86% power savings in the waveform generator

for the proposed 3rd-order filter compared to the 7th-order all real pole implementation.
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Table 5.1: Summary results and comparison.

This Work [50] [5]
Technology (nm) 130 65 180
Order 3 7 4
Poles 1 real, 2 comp.-conj. 7 real 4 comp.-conj.
Power (mW) 0.15 1.98 4.3
Wavegen. power (mW) 0.15 1.68 2.4
Gm-cells power (mW) - 0.3 1.9
Voltage supply (V) 1.2 1.2 1.8
3dB cut-off (MHz) 0.47 0.4-30 0.49-13.3
Sampling rate (MS/s) 160 800 65-300
OB IIP3 (dBm) 55.1 11.7 15.03
Int. noise (µV) 15.8* 13.7** 13.6***

IRN (nV/
√
Hz) 23.3 4.57 6.54

SFDR (dB) 92’ 64 68
Active area (mm2) 0.06 0.42 2.9

Integrated over *10k-470kHz, **50k-9MHz, ***100k-4.4MHz
’ SFDR=2/3.(IIP3-Int. Noise)

Table 5.2: Analytical comparison of 3rd-order filter with passive feedback and 7th-order
all real pole filter.

This Work [50]
Sample frequency fS fS
Sampling capacitor C/2 C
Diff. input resistance 2/fSC 2/fSC
Gain (vout/iin) 2/fSC 2/fSC
Output noise (V 2/Hz) 8kT/fSCS 8kT/fSCS
# of interleaved stages 3 8
Total # of switches 36 128
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Conclusions

This thesis reports a simplified model for oversampled passive switched-capacitor filters

where the sampling parts of the circuit are replaced with continuous-time equivalents

consisting of resistors and ideal buffers. The main advantage of the model is that it is

composed of unilateral branches, and thus, it can address structures with non-reciprocal

low frequency behaviour. Moreover, it can also be applied to structures with sampling

capacitors with both terminals switching. The reported continuous-time model results

in easy and intuitive analysis compared to the conventional charge-balance equations

and leads to transfer function and noise analysis with good accuracy. Furthermore, the

model can also be used for transfer function and noise simulations, which can require

much shorter simulation times compared to conventional discrete-time simulations. An

example noise simulation comparison in SpectreRF (pss+pnoise) and Spectre results in a

decrease in the simulation time from 12 minutes 40 seconds to 1.06 seconds (around 700

times improvement). This thesis also covers some of the limitations and applicability of

the model.

Through the use of this model, a passive switched-capacitor filter with complex-

conjugate poles is realized, which results in a sharper filter profile compared to its real-

pole counterparts. A 3rd-order filter prototype with complex-conjugate poles was de-

71
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signed and fabricated in 0.13µm CMOS process. Measurements performed on the filter

prototype result in state-of-the-art performance meanwhile verifying the continuous-time

modelling and design approach. Noise measurements and model simulations matched

with less than 1dB accuracy. With this prototype, for the first time, switched-capacitor

complex conjugate poles have been integrated on silicon without the need of any active

circuitry. This represents a remarkable result that makes it possible to obtain sharp

filtering profiles using passive switched-capacitor filters while showing that the design

approach can lead to the invention of novel structures.

6.1 Contributions

The contributions of this thesis can be summarized as below:

• A new continuous-time modelling approach for oversampled switched-capacitor cir-

cuits was introduced [59]. The model can be used for analysis, design, and simula-

tions.

• The continuous-time modelling approach was generalized for topologies with non-

grounded sampling capacitors [61].

• Limitations of the model were studied [61].

• A 2nd-order passive switched-capacitor filter with passive feedback was introduced

to realize complex-conjugate poles [59]. (Although, later we realized that there was

a similar approach in the literature back in 1980 [44].)

• A 3rd-order passive switched-capacitor filter prototype with complex-conjugate

poles was designed, fabricated, and tested [57].

• The continuous-time modelling approach was verified with signal and noise mea-

surements on the fabricated prototype [57].
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(a)

(b)

Figure 6.1: a) A symbolic passive switched-capacitor filter with a gain of 2 charge pump,
and b) its continuous-time model.

6.2 On-Going and Future Work

6.2.1 Increasing Configurability and Linearity of the PSC Filter

There is on-going work together with Da Kang and QingNan Yu to increase the config-

urability and linearity of the passive switched-capacitor filter. As a capstone project, Da

and QingNan (and also Yueqi Chen) designed a prototype passive switched-capacitor fil-

ter. The filter is configurable for 2nd and 3rd-order by only changing the clocking scheme

and with the use of an external digital control bit. Moreover, the filter has gain and

attenuation by two control, which is realized by making use of charge-pump structures

within the sampling capacitor. Fig. 6.1a shows a symbolic passive switched-capacitor

filter with the charge pump structure, where two sampling capacitors switch in between

parallel and series configurations to provide a passive voltage gain of two from node v1

to vout. Fig. 6.1b shows the associated continuous-time model.

In order to increase the linearity of the filter, we focused on the input transconduc-



Chapter 6. Conclusions 74

Figure 6.2: A voltage input voltage output passive switched-capacitor band-pass filter
continuous-time model and its discrete-time implementation.

tance. Since the passive switched-capacitor filter is highly linear, the input transcon-

ductor becomes the linearity bottleneck. To address this issue with the contributions

from Javid Musayev, we quantized the input gm-cell and also the configurable passive

switched-capacitor filter itself similar to the approach reported in [62].

The chip was fabricated in 0.18 µm CMOS process, and at this point measurements

are on-going.

6.2.2 Band-Pass and High-Pass Passive Switched-Capacitor Fil-

ters

It is possible to obtain real pole band-pass and high-pass filters starting from the continuous-

time model and then designing the passive switched-capacitor structures. An example

band-pass filter with voltage input voltage output is shown in Fig. 6.2. If the output

is defined as the current through CI2, the structure shown in Fig. 6.2 becomes a volt-

age input current output 2nd-order high-pass filter. These filters may find applications in

biosensing, especially for applications where large undesired DC signals accompany small

desired AC biosignals at the IC input. However, it should be noted that since these are

voltage input filters, they do not have inherent anti-aliasing property, which is different
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from the current input passive switched-capacitor filters (see Fig. 1.4).

6.2.3 Passive Switched-Capacitor Digital-to-Analog Converter

It is possible to use the passive switched-capacitor filter as a digital-to-analog converter

with reconstruction filtering. The simple idea is shown in Fig. 6.3, which is comparable

to the RF-DAC receiver reported in [21], but possibly may result in better performance

due to the high-order passive switched-capacitor filtering. The number of gray boxes

including CS and switches depends on the number of bits in the DAC. In the first step,

CS’s are either connected to the ground node or VDD node depending on the digital

control signals. In φ2, all CS’s are connected to CI1. Since all CS’s are also connected

to each other at this phase, the charge sharing in between CS’s leads to the digital to

analog conversion. Moreover, CS’s are connected to CI1 led to 1st-order filtering of the

resulting analog signal. By increasing the number of phases and CI ’s, the filter order can

be increased. In Fig. 6.3, the topology has 3rd-order characteristics with all real poles.

Konstantinos Vasilakopoulos has been expanding this idea for an RF-DAC in his Ph.D.

thesis.

6.2.4 High-Order Butterworth Passive Switched-Capacitor Fil-

ter

To realize complex-conjugate poles, in this thesis, we have added a single global feed-

back path to the passive switched-capacitor structure. As a result, although we can get

complex-conjugate poles with large quality factors for high filter orders (Fig. 3.8 and

Fig.3.9), the in-band peaking limits the use of those high-order filters. However, using a

single-feedback can be just the beginning. It may be possible to obtain Butterworth filter

characteristics for higher than 2nd-order filters by using multiple feedback and feedforward

paths and by adding charge-pump structures. Fig. 6.4 shows an example continuous-
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Figure 6.3: The basic idea for a passive switched-capacitor DAC with 3rd-order recon-
struction filtering.

time model drawing for a 3rd-order filter with multiple feedback loops. Multiple feedback

and feedforward loops are implementable using multiple CS’s. Also, the analysis can be

possible using the reported continuous-time model rather than going through rigorous

charge-domain analyses. Moreover, it may even be possible to use supervised learning to

reach to a transfer function that can approximate the Butterworth filter behaviour. The

author is planning to continue working on this idea as a hobby project.

Figure 6.4: Passive switched-capacitor filter continuous-time model with multiple feed-
back loops.



Appendix A

Equivalent Resistance Derivation for

Low Frequency

In Section 2.1 Eqn. 2.5 - 2.7 derive the equivalent switched-capacitor resistance by

assuming ideal DC voltage sources connected to V1 and V2 nodes and by calculating the

average current transfer in one clock period. While this derivation is quite well known for

DC signals, to the author’s knowledge, there is no equivalent derivation for low frequency

ac signals. In this appendix, the equivalent impedance is derived for ac voltage sources

with an input signal frequency much lower than the sampling frequency, fS.

Assume that V1 and V2 nodes in Fig. 2.1 are connected to two voltage sources with

maximum frequencies well below the sampling frequency, fS, and switches are ideal with

zero on resistances. Then, the current supplied by V1 can be written as follows:

i1(t) = i1pulse(t) + i1cap(t) (A.1)

where i1pulse(t) is the current pulse occurs at the instant the switch is closed at φ1, and

i1cap(t) is the current supplied to the capacitor during φ1, as the voltage V1 slowly varies.

These two components can be written as below:
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i1pulse(t) = CS[v1(t)− v2(t)]
∞∑

n=−∞

δ(t− nTS)

i1cap(t) = CS
dv1(t)

dt

∞∑
n=−∞

ane
jnωSt

with an =



2
nπ

(−1)
n−1
2 n is odd

0 n is even and n 6= 0

0.5 n=0

(A.2)

where i1pulse(t) is a series of current pulses whose area is equal to CS.∆V (= CSv1(nTS)−

CSv2(nTS)), and i1cap(t) is the capacitor current equation multiplied by the rectangular

pulse train, which is represented by its Fourier series. Note that the rectangular pulse

train has the same phase of φ1 with an amplitude of 1.

To define an impedance to model the topology as a linear time-invariant (LTI) system,

the resulting current in response to the V1 and V2 voltages should be examined. From

equations A.1 and A.2, it is possible to write the Fourier transform of the produced

current as:

I1(ω) =
CS
TS

∞∑
k=−∞

[V1(jω − jk2πfS)− V2(jω − jk2πfS)]

+ jωCS

∞∑
k=−∞

akV1(jω − jk2πfS)

(A.3)

where ak are the Fourier series coefficients and equal to an for n = k. It can be observed

from Eqn. A.3 that the current produced has a fundamental harmonic and also higher

harmonics at the multiples of fS. To model the circuit behaviour for low frequencies,

only the fundamental harmonic would be of interest [63], which can be written as below:

I1Fund(ω) = fSCS[V1(jω)− V2(jω)] + jω
CS
2
V1(jω) (A.4)

It can be seen that I1Fund results in 1/fSCS resistance in between V1 and V2 nodes
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and CS/2 capacitance in between the V1 node and ground. Although CS/2 is needed for

the exact representation at the fundamental frequency, for simplicity, it is ignored in the

body of this thesis, as all the cases that are covered, sampling capacitors are connected to

low impedance nodes, where the effect of CS/2 becomes negligible. Moreover, it should be

noted that 2/jωCS impedance is much greater than 1/fSCS for the frequencies of interest

(πf << fS). For a small set of cases where CS is comparable to CI , including CS/2 might

help to get results with better accuracy, which is briefly covered in Appendix C.

The impedance seen from the V2 node can be derived similarly by writing the current

equation sunk into the V2 node, i2(t). In this case, the Fourier Transforms of the current

produced can be written as follows:

I2(ω) =e
− jω

2fS
CS
TS

∞∑
k=−∞

[V2(jω − jk2πfS)− V1(jω − jk2πfS)]

+ jωCS

∞∑
k=−∞

bkV2(jω − jk2πfS)

with bk =



2
nπ

(−1)
n+1
2 n is odd

0 n is even and n 6= 0

0.5 n=0

(A.5)

whose fundamental component becomes:

I2Fund(ω) = e
− jω

2fS fSCS[V2(jω)− V1(jω)] + jω
CS
2
V2(jω) (A.6)

The exponential term in I2Fund expression is due to the sampling phase shift, and it

can be ignored for the frequencies of interest (πf << fS). Once the exponential term is

ignored, it is seen that I2Fund expression results in a 1/fSCS resistance in between V1 and

V2 nodes and a CS/2 valued capacitance in between V2 node and ground. This capacitance

can be ignored as well because the impedance of 2/jωCS is much greater than 1/fSCS

for the frequencies of interest (πf << fS). Thus, the voltage and current relationship
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between V1 and V2 voltage sources can be modelled by an equivalent resistance of 1/fSCS

in between those two nodes. (As mentioned earlier, for a small set of cases where CS is

comparable to CI , including CS/2 might help to get results with better accuracy, which

is briefly covered in Appendix C.)



Appendix B

Continuous-Time Model Derivation

for Multi-Phase Topology

In Section 2.1, buffer + R model is derived by assuming ideal DC voltage sources

connected to V1 and V2 nodes and by calculating the average current transfer in one

clock period (Eqn. 2.9). In this appendix, the proposed multi-phase switched-capacitor

continuous-time model is derived for ac voltage sources with an input signal frequency

much lower than the sampling frequency, fS.

Assume that V1, V2, and V3 in Fig. B.1a are all connected to ideal voltage sources

with input frequencies much smaller than the sampling frequency, fS, and switches are

ideal with zero on resistances. Then, the current supplied by V1 can be written as follows:

i1(t) = i1pulse(t) + i1cap(t)

i1pulse(t) = CS[v1(t)− v3(t)]
∞∑

n=−∞

δ(t− nTS)

i1cap(t) = CS
dv1(t)

dt

∞∑
n=−∞

cne
jnωSt

with cn =


− 2
nπ

sin(nπ
3

) n ∈ Z

1
3

n=0

(B.1)
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(a)

(b)

Figure B.1: A three-phase switched-capacitor topology, and b) its continuous-time model.

It can be shown that these current equations lead to a resistor between V1 and V3

nodes with a value of 1/fSCS for the frequencies of interest. Moreover, Eqn. B.1 also

leads to a CS/3 valued capacitance in between the V1 node and ground (the derivation

and assumptions are similar to the ones discussed previously in A).

To complete the model and to replace the switching parts, all current components

(i1, i2, and i3) should be considered. It can be shown that, for the frequencies of interest,

there is a general current equation valid for i1, i2, and i3 that can be written as follows

in the Fourier domain:

Ik(ω) = fSC[Vk(jω)− VPrev(jω)] (B.2)

where Ik represents the Fourier transform of the current component sourced by Vk volt-

age source (where k = 1, 2, and 3), and VPrev represents the voltage source that CS is

connected to in the prior phase before connecting to Vk. It is important to note that

although there exist three voltage sources, the current component related to each node
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only depends on two voltage sources that CS is connected (one is at the relevant phase,

and the other one is at the phase prior to the relevant phase).

Fig. B.1b shows the schematic representation of Eqn. B.2 employing ideal voltage

controlled voltage sources (VCVS) in series with the 1/fSCS valued equivalent resistances.

This schematic can be modified to have a more intuitive view, where VCVS’s are replaced

with ideal voltage buffers.



Appendix C

The Continuous-Time Model with

Capacitance

As discussed in Appendices A and B, adding capacitance to the continuous-time model

may lead to more accurate results, especially for the cases when CS values are comparable

to CI . In this appendix, the two-phase 1st-order passive switched-capacitor filter is

investigated with and without the added capacitance to the model. Fig. C.1 shows the

filter’s discrete-time implementation together with the two continuous-time models. Due

to the two-phase structure of the filter, CS/2 valued capacitance is added in between

node Vout and ground (see Appendix A).

Fig. C.2 shows the frequency transfer functions simulated using SpectreRF periodic

steady state (pss) and periodic AC (pac) analyses for a sampling frequency of 160 MHz,

CS = 200fF , and with CI/CS ratios of 40 and 4. For the equivalent resistance model

shown in Fig. C.1b with CI/CS = 40, the error in the 3dB cut-off frequency is 1%,

whereas for the model with CS/2 (Fig. C.1c), this error becomes almost 0%. For the

equivalent resistance model with CI/CS = 4, the error in the 3dB cut-off frequency

becomes 12%, whereas for the model with CS/2, this error becomes 0.4%.

Fig. C.3 shows simulated step responses of the PSC filter discrete-time implementa-
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(a) (b) (c)

Figure C.1: a) 1st-order PSC filter, b) its equivalent resistance continuous-time model,
and c)its equivalent resistance continuous-time model with CS/2 capacitance added.

Figure C.2: 1st-order PSC filter simulated frequency responses of discrete-time imple-
mentation and continuous-time models with and without CS/2 for CI/CS = 40 and
CI/CS = 4 (logarithmic scale frequency axis on top and linear scale frequency axis on
bottom).
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tion and continuous-time models with CI/CS ratios of 40 and 4. The mid and bottom

plots show the difference between the discrete-time implementation sampled and the

continuous-time model responses. The error is dominant during the initial transient

phase, which corresponds to the high frequency response with limited model accuracy.

Also, it should be noted that the model with CS/2 results in a much smaller error com-

pared to the equivalent resistor model without CS/2.
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Figure C.3: 1st-order PSC filter simulated step responses of discrete-time implementation
and continuous-time models with and without CS/2 for CI/CS = 40 and CI/CS = 4.
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