
CONTEXT-FLOW SYSTEM-ON-CHIP PLATFORMS

by

Rami Beidas

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Gradudate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2004 by Rami Beidas

Abstract

Context-Flow System-On-Chip Platforms

Rami Beidas

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2004

Recent evolution in system-on-chip (SOC) design methodology demonstrates an important

omission of a design principle that directly contributes to the success of conventional computer

systems: the use of a simple programming model to separate application from architecture. In

an effort to restore the powerful concept of programming in the context of system-on-chip, in

this work we propose a new programming model, called context-flow, that is general-purpose,

simple, safe, highly parallelizable yet transparent to the underlying architectural details. A

high-performance SOC platform architecture is then designed to support this programming

model, while fully exploiting the physical proximity between the processing elements. Using

an architectural exploration framework with a multi-processor simulator, our case studies on

real life applications demonstrate the feasibility of adapting imperative C programs to context-

flow programs, as well as the performance efficiency of our context-flow architecture over bus-

based and packet-switch-based alternatives. Finally, we propose an analytical performance

model, based on queueing networks, for the new SOC platform architecture that is simple,

synthesis-friendly, and as flexible and powerful as queueing theory.

ii

Dedication

To my parents,

who dedicated their life for their family

iii

Acknowledgements

First, I would like to thank my advisor Professor Jianwen Zhu for his advice, guidance, and

support. He was always willing to set aside any amount of time to clarify issues relating to my

work. His continual patience and encouragement were invaluable for the successful completion

of this thesis. I am looking forward for the next few years of work under his wise guidance.

I express my appreciation to Prof. Tarek S. Abdelrahman, Prof. Gregory Steffan, and

Prof. Wai Tung Ng, for their comments and advice, and for serving as members of the thesis

committee.

To my family, thank you for your love, support, patience, and in believing in my ability to

go the distance.

Last but not least, to my friends from lab EA306: Zhong, Fang, Linda, Dennis, and Silvian,

thanks for all your help and support.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 State-Of-The-Art . 5

1.3 Contributions . 6

1.4 Thesis Organization . 8

2 Background and Related Work 9

2.1 Programming Model . 9

2.2 Platforms . 11

2.2.1 Platform Types . 12

2.3 Network-On-Chip . 15

2.4 Performance Estimation . 19

3 Context-Flow Programming Model and Architecture 21

3.1 Context-Flow Programming Model . 21

3.2 Context-Flow Architecture . 25

3.2.1 Macro-Architecture Specifications . 25

3.2.2 Possible Organizations of CFA On-Chip Network 27

3.3 Tunnel-based CFA . 29

3.3.1 Memory System . 30

3.3.2 Interconnect . 33

v

3.3.3 Processing Elements . 35

3.4 Context-Flow SOC Design Example . 35

3.5 Discussion . 36

4 Performance Evaluation Framework 42

4.1 SimpleScalar Tool Set . 42

4.2 Sim-CFA . 45

4.3 Architecture Configuration and Application Compilation 49

5 Queueing-Theoretic Performance Model 53

5.1 Queueing Networks . 54

5.2 Analytical Performance Model . 56

5.2.1 The Modelling Process . 56

5.2.2 Stochastic Model . 56

5.2.3 Derivation of Analytical Performance Metrics 58

5.3 Discussion . 60

6 Case Studies 62

6.1 Target Applications . 62

6.1.1 Overview of MPEG1-LayerIII Decoder 63

6.1.2 Cryptography Accelerator . 64

6.2 Data Transformation . 65

6.2.1 Data Transformation of MP3 Decoder 65

6.2.2 Data Transformation of the SSL Processor 68

6.3 Performance Experimental Results . 69

6.3.1 Simulation Results of the SSL Accelerator 69

6.3.2 Simulation Results of MP3 Decoder 77

6.4 Evaluation of Queueing-Theoretic Performance Estimation Model 78

vi

7 Conclusion and Future Work 84

7.1 Conclusions . 84

7.2 Future Work . 85

Bibliography 86

vii

List of Tables

6.1 Detailed Workload Distribution of SSL Processor (%) 70

6.2 Average Processing Time Per Packet by Each Procedure (cycles) 71

6.3 Effective Processing Time Per Packet by Each Procedure (cycles) 72

6.4 SSL Mappings given as Target PE for Each Procedure 73

6.5 MP3 Decoder Results . 79

6.6 SSL Accelerator Mappings for Performance Model Evaluation 80

6.7 MP3 Decoder Mappings for Performance Model Evaluation 80

6.8 Simulated and Estimated Residence Time for SSL Accelerator 82

6.9 Simulated and Estimated Residence Time for MP3 Decoder 83

viii

List of Figures

1.1 Design Productivity Gap [64] . 3

1.2 Current and Future On-Chip Interconnection Architectures 5

2.1 Platform Types, (a) Full Application, (b) Processor-Centric, (c) Communication-

Centric . 13

2.2 Philips Nexperia Multimedia Platform . 14

2.3 Texas Instruments OMAP Wireless Platform 15

2.4 Sonics’ SiliconBackplane Primary Components 16

2.5 Ring, Mesh, and Torus Topologies . 16

2.6 On-Chip Interconnection Architecture in Raw Microprocessors 18

3.1 Context . 22

3.2 Context-flow API. 23

3.3 Context-Flow Architecture Instruction Set. 27

3.4 Alternative Implementations of Context-Flow Architectures 28

3.5 Tunnel-based CFA Block Diagram . 29

3.6 Memory Management Unit (B: Busy, F: Free) 30

3.7 First-In First-Out Queue (FIFO) . 31

3.8 Memory Module . 32

3.9 Crossbar . 34

3.10 Self-routing Crossbar . 35

ix

3.11 A Simple Design Example . 38

3.12 System Input . 39

3.13 System Behavior to the Input Described in 3.12 (a) 39

3.14 System Behavior to the Input Described in 3.12 (b) 39

3.15 System Behavior to the Input Described in 3.12 (c) 40

3.16 System Behavior to the Input Described in 3.12 (d) 40

3.17 System Behavior to the Input Described in 3.12 (e) 40

3.18 System Behavior to the Input Described in 3.12 (f) 41

3.19 System Behavior to the Input Described in 3.12 (g) 41

3.20 System Behavior to the Input Described in 3.12 (h) 41

4.1 SimpleScalar Tool Set Overview . 43

4.2 State Variables for the sim-safe Version of the Simulator: (a) regs (b) mem . . . 44

4.3 The Original SimpleScalar Simulator Core . 45

4.4 The Modified SimpleScalar Simulator Core 46

4.5 The Actual Simulated System . 47

4.6 SimpleScalar PISA Instruction Format . 48

4.7 Activity Monitoring in Sim-CFA . 49

4.8 An Example Configuration File “config.dat” 51

4.9 A Context-Flow Version of the Simple Array Processor 52

4.10 Sim-CFlow Simulation Process . 52

5.1 A Queueing Network . 55

5.2 An Example of Total Propagation Time for Job Class is a CFA System 61

6.1 MP3 Decoder Stages . 63

6.2 Crypto Accelerator Flow . 64

6.3 MP3 frame format . 65

6.4 Original Data Structures in the Reference MP3 Decoder Implementation 66

x

6.5 Transformed Data Structures in the Context-Flow Implementation of the MP3

Decoder . 67

6.6 Simulation Results for SSL Acceleration Processor: Average Packet Process-

ing Time . 74

6.7 Simulation Results for SSL Acceleration Processor: Average PE Utilization . . 75

6.8 Performance Results of Single-PE and Multi-PE Implementations of the SSL

Accelerator . 76

6.9 Performance Results of Homogeneous and Heterogeneous Implementations of

the SSL Accelerator . 77

6.10 Mapping Effects on System Performance for the SSL Accelerator 78

6.11 Queueing Model Accuracy for SSL Accelerator and MP3 Decoder 81

xi

Chapter 1

Introduction

1.1 Background

In the mid-1990’s, the semiconductor fabrication process technology had achieved the scales

of 0.35 and 0.25 µm, allowing the major components of an electronic product, traditionally

implemented as chip sets on printed circuit boards (PCBs), to be placed on a single die. Al-

though these designs were far from being complete systems, since it was not clear whether

it would be profitable to integrate analog and passive subsystems, the term System-On-Chip

(SOC) was used, arguably as a marketing term [44]. It was by the turn of the mellinium, with

0.18, 0.15, and 0.13 µm technology in hand, when a single-chip implementation of real systems

became possible. SOC technology is currently being utilized in small, increasingly complex

consumer electronic devices, such as digital cameras and mobile phones, and making its way

into higher-performance multimedia and telecommunication designs, such as image processors

and network routers.

According to the 2001 International Technology Roadmap for Semiconductors (ITRS) [29],

SOCs crafted in 45 nm technology will have a 4 billion transistor budget and run at 10 GHz.

Such massive transistor budget and switching speed will enable the realization of complex

applications previously impossible to implement on a single chip, and achieve a high degree of

1

CHAPTER 1. INTRODUCTION 2

integration, parallelization and performance measures.

Along with the great advantages promised by the SOC theme, mapping complex appli-

cations on a single die pose plenty of challenges to designers and and EDA tools develop-

ers. These challenges can be classified into two major categories, silicon complexities and

functional complexities. Silicon complexities refer to the difficulties associated with crafting

synthesized functionality in a target advanced technologies. These challenges include deep

submicron effects – such as interconnect delay, power density, mixed signal integration, etc.

The second category, functional complexities, refers to the difficulties associated with the trans-

formation of functional system specifications into efficient implementations within the overall

design constraints. These challenges include rapidly-shrinking time-to-market (TTM) win-

dows and short product life cycles, performance/area/power estimation, verification, automatic

testing, etc.

The EDA industry has been striving to address silicon complexities with new method-

ologies and tool families such as the Galaxy Design Platform from Synopsys [68] and the

Encounter Digital IC Design Platform from Cadence [12]. However, it is the functional com-

plexities category that was much less defined and understood by the community. These com-

plexities effects are already in realm, worsening what is known as design gap between what

the industry is capable of manufacturing and what design teams are capable of designing (Fig-

ure 1.1). Such challenges could potentially make the development of multi-billion transistor

SOCs infeasible.

To cope with this design productivity crisis, and in search of a scalable design methodol-

ogy that can dramatically reduce design cost and time, the intellectual property (IP) assembly

paradigm was proposed in the mid-1990’s as the solution to overcome SOC functional com-

plexities. IP assembly paradigm advocates the use of pre-designed, characterized, and verified

components with a well-defined functionality and interface in the development of SOC appli-

cations.

Unfortunately, IP reuse alone did not achieve the dreamed revolution. Apart from processor

CHAPTER 1. INTRODUCTION 3

Design Gap

21%/Yr.
Productivity

Growthe Rate

58%/Yr.
Complexity

Growthe Rate

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
04

20
06

100M

0.001M

10M

1M

0.1M

0.01M

Figure 1.1: Design Productivity Gap [64]

core IPs – such as ARM, MIPS, and ARC, third-party IP reuse was, in general, declined by

the industry for several reasons. These reasons include the lack of standard IP models, lack of

standard interfaces, questionable design and verification quality, and most importantly, the lack

of an overall integration methodology and design flow that supports this reuse vision. What we

need is a complete well-defined design methodology based on the concept of design reuse at

higher levels of abstraction, beyond that of IP reuse. As a result, the notion of platform based

design emerged.

The platform-based (PBD) design paradigm has been attracting lot’s of attention in the

recent past. Although we do not have a universal definition of the concept of PBD, it is agreed

that the main idea behind platform-based designs is the shift from from-scratch customized

hardware designs towards flexible, stable, pre-defined hardware architectures that can support

a variety of applications via programmability and/or configurability [20, 61].

The notion of PBD is expected to be the next trend in SOC design. Starting with a pre-

defined, verified, charaterized architectural framework results in an increased likelihood of

CHAPTER 1. INTRODUCTION 4

first-time silicon success, elimination of many of the physical problems encountered in the

ultra-deep submicron technology, and reduced verification cost, while sacrificing very little,

if any, in the performance, power, and area metrics. In fact, several platforms, with various

properties and configurability degrees, have already found their way to successful industrial

applications [59, 28, 79, 2, 4, 67, 78].

One of the major concerns related to the design of future SOCs is the scalability of on-chip

communication architectures for larger systems. The success of future SOC platforms rely on

the ability to interconnect system components in an efficient manner. In fact, it is expected that

the on-chip physical interconnections will present a limiting factor for performance and energy

consumption [9]. So far, the industry has been using common busses and ad-hoc communica-

tion channels to interconnect system components [5, 27]. Such global-wiring communication

architectures are unable to scale with the large dies fabricated in the near future technology

[25]. To overcome this problem and accommodate the massive parallelism requirements of

future applications, researchers proposed the use of interconnection networks-based hardware

platforms, previously used to interconnect the components of high-performance parallel com-

puters with multiple processors, to fulfill on-chip communication requirements.

Several critical issues were ignored in these propositions. In this thesis we propose solu-

tions to essential key issues to provide gains in design productivity and system performance.

In particular, we focus on the development of a programming abstraction and a common

communication-centric performance-oriented SOC platform targeted at massive parallelism,

integrity, and data movements, which will be of central interest for future synthesized applica-

tions.

The subsequent sections of this chapter will briefly describe recent propositions in the in-

dustry and academia to interconnect SOC components. Motivation of the work presented in

this dissertation will be discussed before summarizing our main contributions to the field.

CHAPTER 1. INTRODUCTION 5

1.2 State-Of-The-Art

Ad-hoc Wiring

System Bus

On-Chip
Interconnection

Network

Figure 1.2: Current and Future On-Chip Interconnection Architectures

Todays trend in interconnecting SOC components is the use of system busses and custom

wiring interconnects (Figure 1.2). Several industrial platforms based on this approach were

proposed in the past few years [5, 27, 78, 1].

Researchers in the academia recognized the scalability limitations of today’s on-chip com-

munication architectures. First, a system bus is a communication bottleneck. Contention over

variations of such communication media seriously limits the ability of reaching potential par-

allelisms of target applications. Second, technology scaling is rapidly making wires a critical

performance limiting factor. As a result, contemporary platforms, that depend on global inter-

connects, will suffer with the larger wire delays [14].

To overcome these challenges, researchers proposed new hardware platforms that provide

CHAPTER 1. INTRODUCTION 6

high-bandwidth and physical locality with respect to data movement. These platforms were

based on interconnection networks, previously used to interconnect supercomputer compo-

nents [18]. These on-chip networks interconnect equally sized tiles, not necessarily homo-

geneous, using regular interconnection topologies, such as torus and mesh networks [73, 15,

41, 35]. Lot’s of research effort is currently being spent on designing these network micro-

architectures [58], developing simulation environments [75], and analyzing the systems power

and performance [26].

When the whole design flow is defined, a designer would ideally plug in a set of processing

elements and embedded processors in the interconnected tiles of these platforms to arrive at a

stable, parallel, high performance design.

1.3 Contributions

While a burst of efforts have appeared under the banner of network-on-chip, we observe some

common, yet important omissions.

First, while traditional computer architecture is well abstracted with a programming model,

new SOC architectures have not made much progress on that front. An SOC platform is either

modeled in system-level languages, such as SystemC [69] or SpecC [22], where a distinction

between application, architecture and hardware does not exist, or using traditional parallel

programming models, which are usually very complex. For example, the popular Message

Passing Interface (MPI) programming model [51] defines an API with 127 C functions and

there is no easy path to parallelize a sequential program into an MPI program other than the

use of array-oriented scientific applications.

Second, while traditional networks in supercomputers are designed with the bandwidth

limitation imposed by chip pin count, new SOC platforms do not take full advantage of the

much relaxed physical constraints and almost unlimited on-chip bandwidth.

We propose a solution that is both old and new: old in the sense that it restores the impor-

CHAPTER 1. INTRODUCTION 7

tant principle that architectures should be equipped with a simple programming model; new

in the sense that a unique programming model in which SOC applications can be developed,

a unique architecture that delivers high-performance to this programming model, and collec-

tively a complete SOC platform, are proposed for the first time. It is important to note that

in the context of SOC, our application does not imply “software running in user mode”, as in

traditional computer systems or as in [61]; instead, parts of our application can be mapped to

hardware running below the operating system layer in final implementation.

More specifically, we make the following contributions. First, in contrast to the common

practice of extending the C language with new syntax (thus difficult to accept) or APIs (thus

difficult to analyze) with explicit parallelism, or introducing model of computations (MOCs)

that depart dramatically from the imperative programming model, we introduce a new pro-

gramming model revolving around a new concept designed to abstract autonomous data struc-

tures, called context. The model is familiar: its execution semantics add nothing more to the

imperative, sequential programming model – any C program is a special-case of context-flow

program and any context-flow program can be compiled by a conventional C compiler. It intro-

duces nothing more than two additional C library functions for the replacement of malloc, as

well as a discipline of memory accesses that can be enforced by a checker added to the compiler

proper. The model is simple to program. It is significantly easier than parallel programming:

there is no need for explicit parallelism. It is even easier than sequential C programming: there

is no need for explicit memory management. The model is also safe in the sense of Java – it is

free of problems such as free memory access and dangling pointers.

Second, we propose a new SOC platform architecture, called the context-flow architecture,

revolving around an on-chip network infrastructure called a tunnel, which takes full advantage

of the physical proximity of tightly coupled processing elements. The tunnel implements the

on-chip remote procedure call (RPC) abstraction, therefore achieving the transparency of the

programming model, since an application does not have to change with respect to the change

in the underlying architecture, yet with a cost almost as cheap as local procedure calls, thereby

CHAPTER 1. INTRODUCTION 8

achieving performance efficiency.

Third, we build a development suite by extending the popular SimpleScalar environment,

which was designed for single processor architecture evaluation, so that complex applications

can be compiled and simulated on the multi-processor context-flow architecture platform. This

environment enables the architectural exploration of real world applications.

Finally, we developed a static queueing-theoretic performance model for the tunnel-based

on-chip network. The model is simple, fast, and synthesis friendly.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides the reader with the

necessary background on concepts discussed in this thesis and reviews related work in this field.

Chapter 3 describes the newly proposed context-flow programming model and architecture.

The details of our performance evaluation framework are presented in Chapter 4 followed, by

that of queueing-theoretic performance model in Chapter 5. Test cases and experiment results

are described in Chapter 6. Finally, Chapter 7 concludes the thesis along with suggestions of

future work directions.

Chapter 2

Background and Related Work

This chapter provides background information for the material presented in this thesis. It also

summarizes related efforts and compares them to the work done in this study.

First, the concept of a programming model is presented to familiarize the reader with the ideas

behind an important proposition in this work. Second, the recent propositions in the field of

platform based design, with emphasis on communication-centric platforms, are summarized.

And finally, previous work in performance estimation of SOC platforms is briefly outlined.

2.1 Programming Model

A programming model is an abstraction that separates application from architecture. This sepa-

ration is important to allow applications be developed and reused across different architectures,

and vise versa.

A programming model can be defined at different levels of abstraction, and a hardware/software

infrastructure is usually needed to support such abstraction. For example, an instruction set is

a programming model defined at the low level to abstract away architectural details such as

pipelining and out-of-order issue, and a massive amount of hardware logic is used to realize

this abstraction. A programming language is defined at the higher level to abstract away the

differences between different instruction sets, and a compiler is used to realize such abstrac-

9

CHAPTER 2. BACKGROUND AND RELATED WORK 10

tions. For the same programming model, a middleware infrastructure, such as CORBA [53] or

DCOM [48], can be used to abstract away architectural details of a distributed environment to

implement a distributed application the same way as a sequential one.

The concept of programming model, however, has been ignored in the hardware-centric

CAD community. Even though platform-based design is advocated to allow the reuse and

customization of pre-aggregated components, the concept of platform has not been formal-

ized with a programming model for applications. Recent interest in building the communica-

tion infrastructure on massive parallel SOC has led to the concept of network-on-chip (NOC)

[15, 35, 24]. Building a programming model for network-on-chip either has to use explicit

communication with send/receive system calls, a wide departure from the traditional imper-

ative programming model, or has to build another middleware infrastructure, by cloning the

traditional layered protocol stack concept, on top of the network, leading to performance degra-

dation with the number of layers one communication session has to go through.

At the time of writing this thesis, many researchers in academia are raising the point of the

need for a programming model for future SOC platforms. A recent article in EETimes [33]

argued the need for such an SOC abstraction where an application can be developed, based on

the abstraction, without referring to the lower level details.

In spite of all this attention, very little work has been reported regarding this issue. A well-

known work from this perspective is associated with the MESCAL project, which stands for

Modern Embedded Systems, Compilers, Architectures, and Languages [34] developed within

the Gigascale Silicon Research Center (GSRC). The MESCAL project targets all aspects of the

design of programmable, platform-based systems for specific application domains along with

their software development tools. Kurt Keutzer et al. presented some important concepts of

system design within the MESCAL framework in [34]. One of the most crucial concepts dis-

cussed in this article was that of programming model. The authors only gave a description and

discussed an outline of the properties the programming model to be developed. Their approach

in designing the model is to combine a top-down view and bottom-up view. Top-down view en-

CHAPTER 2. BACKGROUND AND RELATED WORK 11

ables the programmer pass his knowledge about bit-level and task-level parallelism along with

some hints on task-level scheduling, binding, and synchronization, which were traditionally

managed by the operating systems. While bottom-up view exports some of the architecture to

enable the programmer to efficiently program the hardware platform. At the time of writing

this thesis, no details are reported on the features of the developed programming model as the

target platform is still under development. Although it is still early to comment on the proposed

model, it is obvious, from the discussed features, that a considerable effort is asked from the

system developer.

We do believe that there is a need for the adoption of programming model concept for

future SOC platforms. This model should be high-level, to insure development productivity and

flexibility, architecture-independent, to insure portability, and optimization friendly, to satisfy

the performance requirements placed upon future systems.

2.2 Platforms

An architecture is an aggregate of components such that an application can be executed or

implemented through a well defined programming model. A micro-architecture is an aggre-

gate of components such as fetch stage, decode stage, execution stage and memory stage to

implement a sequential application in C or other programming languages by its instruction set.

On the other hand, a macro-architecture is an aggregate of components, such as processing

elements (PEs) and memories, to implement a parallel application by a programming model.

The composition of a macro-architecture in the case of SOC is often customized according

to one application or one family of applications. In that case the generic macro-architecture

is referred to as a platform, and its customization is called a platform instance, or platform

configuration. A macro-architecture is said to be homogeneous if all PEs are of the same type,

e.g., processors, and heterogeneous if PEs can be microprocessors, DSPs, ASIPs or custom

hardware cores.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Platform based design is a design methodology proposed for adapting to the increased

challenges in the semiconductor industry. There have been many definitions of the notion of

platform, and the one listed above is what a platform is from our perspective. However, it is

agreed that the main idea behind platform-based designs is the shift from from-scratch cus-

tomized hardware designs towards flexible, stable, predefined hardware architectures that can

support a variety of applications via programmability and/or configurability [20, 61]. In other

words, a design project will start with a hardware architecture that in not fully specified, leav-

ing some degrees of freedom to the system designer to choose/design/configure components

for the final implementation.

With the absence of a universal definition of platforms, Frank Schirrmeister, Martin Meindl,

and Stan Krolikoski identified different classes of platforms [62]. This classification helps in

clearing up some of the confusion when discussing platforms currently under investigation by

the industry and academia. In this work, we report a similar classification which, however,

concentrates on the degrees of design freedoms associated with each category.

2.2.1 Platform Types

We identify three major types of SOC platforms, presented below in an increasing order in

terms of flexibility, cost, design time, and risk (Figure 2.1).

• Full Application Platforms: In these platforms, complete applications can be developed

on top of a fixed architecture using a comprehensive software development environment

with a high-level programming entry, such as C/C++. These platforms usually consist of

one or more embedded processors, such as ARM or MIPS, and a number of application-

specific modules, such as MPEG decoders and peripheral interfaces, connected via a set

of system busses. Examples of such platforms include Philips Nexperia [59] (Figure 2.2)

and Texas Instruments OMAP [28] (Figure 2.3).

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Communication Interconnect

CPU IP IPIP IP

Communication Interconnect

CPU IP IPIP IP

Communication Interconnect

CPU IP IPIP IP

F
le

xi
b

ili
ty

, C
o

st
, R

is
k,

 D
ev

el
o

p
m

en
t

T
im

e

(a)

(b)

(c)

Figure 2.1: Platform Types, (a) Full Application, (b) Processor-Centric, (c) Communication-

Centric

• Processor-Centric Platforms: These platforms are centered around an embedded pro-

cessor, focusing on software access to user-defined hardware modules, such as MPEG

decoders and encryption engines, via system buses or specialized channels. Compared

to full application platforms, these platforms provide the designer with the flexibility

of specifying, and possibly in-house building, the exact type and number of system co-

processors at the cost of development overhead. StarCore [67] and ARM PrimeXsys

platforms [4] are examples of this platform category.

• Communication-Centric Platforms: These platforms only define the communication

fabric to interconnect the components of these platform instances. The system designer

has to provide the storage and processing blocks to implement the target application.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

M
em

o
ry

 A
cc

es
s

B
u

s

Main Mem IF

 D
ev

ic
e

C
o

n
tr

o
l

 &

 S
ta

tu
s

TM-xxxx
I$

D$
PR-xxxx

I$

D$

TriMedia-CPUMIPS CPU

Device IP Block

Device IP Block

Device IP Block

Device IP Block

 D
ev

ic
e

C
o

n
tr

o
l

 &

 S
ta

tu
s

DRAM

Figure 2.2: Philips Nexperia Multimedia Platform

The design does not even need to have a programmable processing core. Sonics’ Smart

Interconnect is an example of such platforms [78], which provides many advantages over

traditional system busses.

One of the major difficulties associated with the design of future SOC platforms is the

scalability of on-chip communication fabrics for larger systems. The success of future SOC

platforms rely on the ability to interconnect system components in an efficient manner. In

fact, it is expected that the on-chip physical interconnections will present a limiting factor for

performance and energy consumption for chips manufactures in the ultra-deep submicron tech-

nologies [9]. This comes from the technology scaling fact that each time line widths halve, the

devices get approximately twice as fast and a minimum width wire of constant length gets four

times slower. State-of-the-art platforms use shared busses and ad-hoc communication chan-

nels to interconnect system components, as shown above. Such global-wiring communication

architectures are unable to scale with the large dies fabricated few years from now [14].

CHAPTER 2. BACKGROUND AND RELATED WORK 15

ARM
TI Enhanced ARC

(TIxxx)

Peripheral Bus

DSP

(C55x)

Peripheral Bus

DSP MMU

A
P

I

System
DMA

Peripherals

Mailbox

SDRAM Traffic Controller
LB MMU

HASB MMU

Memory Buses

Peripheral Buses

Figure 2.3: Texas Instruments OMAP Wireless Platform

To overcome this problem, and to accommodate the massive parallelism requirements of

future applications, researchers started to investigate platforms that deal with the on-chip com-

munication architecture as the design objective. Several platforms were proposed which use

interconnection networks, traditionally used to interconnect supercomputer component, to ful-

fill communication requirements. Since then the term Network-On-Chip (NOC) emerged to

become one of the hottest topics in the design of SOC platforms.

2.3 Network-On-Chip

An interconnection network consists of a set of nodes (or routers) and a set of links (or chan-

nels). Most interconnection networks are buffered, i.e., the routers contain storage for buffering

messages when they are unable to obtain an outgoing channel. An interconnection network can

be defined by four parameters – its topology, the routing algorithm governing it, the flow con-

trol protocol, and the router micro-architecture. First, the topology of a network concerns how

the nodes and links are connected. It dictates the number of alternate paths between nodes, and

CHAPTER 2. BACKGROUND AND RELATED WORK 16

CPU DMA DSP MPEG

SRAM
DRAM
CNTL

PCI USB

S
ili

co
n

B
ac

kp
la

n
e

Agent

Figure 2.4: Sonics’ SiliconBackplane Primary Components

thus how well the network can handle contention and different traffic patterns. Figure 2.5 shows

various topologies which have been adopted commercially. The routing algorithm determines

Figure 2.5: Ring, Mesh, and Torus Topologies

the actual path, among the ones possible within a given topology, traversed by a message. Flow

control dictates when a message gets to leave a router through the desired outgoing channel,

and when it gets buffered and has to wait. Finally, router micro-architecture specifies how a

router is built. This parameter has great effect on the overall performance of the network. See

[18, 16] for further details on interconnection networks.

Interconnection networks were designed to satisfy the high-performance and massive-parallelism

CHAPTER 2. BACKGROUND AND RELATED WORK 17

requirements of demanding supercomputers. These networks are starting to replace global-

wiring architectures of SOC platforms, which pose the same demands, as the latter started to

reach their bounds.

The MIT Raw machine, a fully programmable platform, was one of the earliest designs

to utilize on-chip interconnection networks [73]. It uses synchronous 2-D mesh networks to

connect an array of identical programmable tiles of RISC processing cores (Figure 2.6). Two

logically distinct networks are multiplexed over the same set of physical wires – one static

and one dynamic. The static network is programmable. It guarantees that the single-word

communicated messages are available when needed, nearly the same speed as register reads,

eliminating the need for explicit synchronization. The dynamic network handles traffic that

cannot be accurately estimated at compile time. Messages routed on the dynamic network

require the addition of message header, which contains flow control data. The Raw compiler

tries to make the maximum utilization of the high-performance static network. The Raw design

team claims the scalability of the proposed architecture to even 32x32 tiles. The basic idea was

pushed further by replacing the RISC processing cores with custom logic processing elements

using a very similar design flow [6].

Dally and Towles in [15] proposed a communication centric platform which used on-chip

interconnection networks for future SOC where traditional interconnection techniques do not

scale. They suggested the use of pipelined regular interconnection topologies, such as torus and

mesh networks, as a means of communication between square tiles of identical dimensions, but

not necessarily homogeneous. It was estimated that the networking overhead will consume a

mere 6% of the overall system resources. Compared to Raw processors, only dynamic networks

routing data packets/messages will be used, as opposed to the static networks on Raw. A similar

architecture, which defines the layers of the protocol stack, was presented in [35, 49].

A different approach to on-chip communication is considered in the MESCAL project. It

maintains a layered view of the custom SOC communication architecture similar to the OSI

reference model to abstract low-level details of the interconnection configuration [65]. In fact,

CHAPTER 2. BACKGROUND AND RELATED WORK 18

Programmable
Router

Compute
Resources

Figure 2.6: On-Chip Interconnection Architecture in Raw Microprocessors

it is one of the very few approaches that currently support the use of irregular interconnection

topologies as on-chip communication architectures even at the system level.

As opposed to the previous efforts which adapt a flat on-chip networks, Hui Zhang et al.

viewed the advantage of hierarchical interconnection networks for low-power DSP chips by

illustrating the power savings of 2-level mesh networks when compared to a single level im-

plementation of similar topologies [83]. A 2-level hierarchical network was also used on Smart

Memories [41].

The adoption of NOC to achieve efficient communication on future SOCs has gained a uni-

versal acceptance, and massive research efforts have appeared under the banner of this notion.

Peh proposed new flow control and micro-architectural mechanisms for extending the perfor-

mance of on-chip interconnection networks [58]. Wang et al. proposed micro-architectural

power optimizations for switching routers [74]. Ye and De Micheli proposed an automated

physical floorplanning methodology suitable for various on-chip network topologies [80]. Jer-

raya et al. defined a complete wrapper-based communication network design flow for SOC

components integration in [31]. Hu and Marculescu investigated mapping algorithms that tar-

CHAPTER 2. BACKGROUND AND RELATED WORK 19

get the power/performance optimization problems for the regular communication architecture

[26]. Dumitras et al. proposed fault-tolerance optimization algorithm through system con-

figuration [19]. Murali and De Micheli proposed mapping algorithms for mesh NOCs under

bandwidth constraints to minimize communication delay [52]. Jalabert et al. presented a tool

for automatically instantiating an application-specific NOC to match communication patterns

among components of heterogeneous SOCs [30]. Pande et al. proposed butterfly fat tree archi-

tecture that also targets the scalability problem of global wiring communication architectures,

but also addresses multicasting requirements [56].

We do believe that the immediate migration of interconnection networks to SOC platforms

ignores the characteristics of the new design environment. Using the available wiring resources

and a better analysis of the applications running on heterogeneous architectures should result

in a more suitable solution

2.4 Performance Estimation

While a rich literature on performance modeling in general has been reported [21, 42, 82, 81,

32, 45, 7], in the field of hardware-software codesign, very little work has been carried out

focusing on the performance modeling of SOC architectures [60]. In this section, we give a

brief review of those efforts. We start by first developing a taxonomy to help categorize these

work.

• A performance model is dynamic, if it relies on the use of simulation. Otherwise, it is

static, relying on some form of theoretical models. In general, a dynamic performance

model is more accurate with respect to specific input trace. A static performance model

is faster to evaluate.

• A performance model is analytical, or architecture-aware, if the result depends not only

on the characteristics of the application, but also the architecture and how application

CHAPTER 2. BACKGROUND AND RELATED WORK 20

is mapped to the architecture. In general, an architecture-aware performance model is

preferred for synthesis.

• A performance model is automatic, if it can be automatically constructed from the ap-

plication and architectural mapping. It is manual otherwise.

• A performance model is validated, if its accuracy has been confirmed by detailed simu-

lation.

Stochastic Automata Networks (SANs) were used in [43] to analyze application and derive

probability distribution for various performance aspects of the target application. This model

is static 1, however, not architecture-aware. Furthermore, the construction of a SAN network

from an application is not yet an automated process.

A static performance model for network packet processing architectures was derived in [70]

using Network Calculus results. The proposed approach uses deterministic bounds to describe

the arrival and service processes of the target system. The model is also analytical. How-

ever, the model is not yet complete in the sense that conflicts over communication resources

are ignored, which could easily result in large errors of the estimated measures. As a result,

estimation results of the test cases were not validated.

The work in [37, 38] proposes a hybrid static/dynamic performance analysis methodology

for bus-based SOC communication architectures. Although the flow was validated and accurate

estimates were reported, a speedup of only 2x over full hardware/software co-simulation was

obtained.

We do believe that there is a great need for a static, architecture-aware, and automatically

evaluated performance model that is usable in a system-level synthesis framework for future

SOC platforms.

1referred to as analytical by the authors.

Chapter 3

Context-Flow Programming Model and

Architecture

A programming model is an abstraction that separates application from architecture. This sepa-

ration is important to allow applications be developed and reused across different architectures,

and vise versa. A programming model can be defined at different levels of abstraction, and a

hardware/software infrastructure is usually needed to support such abstraction. In Section 2.1

we argued the need for a programming model for SOC platforms that is high-level, as op-

posed to explicit send/receive communication approach, but also efficient, as opposed to the

OSI-like multi-layer protocol stacks. In this chapter we describe our new SOC programming

model, called context-flow programming model along with a new SOC architectural platform

that supports this programming model in an efficient manner, taking the drawbacks of recently

proposed communication architectures into consideration.

3.1 Context-Flow Programming Model

Our programming model is based on a new data abstraction that we call a context. A context

is defined as a set of dynamically allocated memory blocks closed under the point-to relation,

21

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 22

which captures the set of storage locations each pointer variable may point to. Figure 3.1

illustrates the invariant associated with the newly defined notion of context.

(a) Context (b) Illegal Context

Constraint
Violations

Figure 3.1: Context

The new programming model is formally defined in Definition 1.

Definition 1 Given a program with a set P of procedures1, operating on a program state con-

sisting of a set B = G ∪ L ∪ H of memory blocks, where G corresponds to the set of global

variables, L corresponds to the set of stack variables, and H corresponds to the set of heap ob-

jects. A block bi ∈ B is said to point to bj ∈ B, if there exists a program point where the content

of bi contains the address of bj . A context-flow program (CFP) is a tuple 〈P, B, C, A〉, where

a set C of contexts forms a partition of the heap H such that any c ∈ C is closed under the

point-to relation, that is, any block bi reachable from block bj ∈ c is also an element of c, and

∀p ∈ P, A(p) gives the set of contexts p accesses. 2

Informally, we can view a context-flow program (CFP) as a set of procedures operating on

a stream of dynamically allocated objects which satisfy the context closure property. And each

context can be accessed by a single procedure at any point of time.

1For convenience, here we distinguish between different invocations of the same procedure written in an
imperative program.

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 23

The programming model is general-purpose. It adds nothing to the traditional imperative

programming model other than an explicit partition of the heap into contexts, each of which

is a data structure formed by dynamically allocated objects. These data structures can be any-

thing ranging from arrays, linked lists, trees, graphs, or the combination of all. Any C program

is therefore automatically a context-flow program with the trivial partition C = {H}. On the

other hand, an application programmer can choose to refine this partition into multiple con-

texts, or multiple data structures. Thanks to the closure property, each of these data structures

is autonomous, therefore any pair of data structures are also disjoint. The benefits of such

partition shall become apparent later in the chapter.

Compared to other proposals, our context-flow programming model offers several impor-

tant advantages. A CFP is extremely simple: it is simply a C program with the same sequential

semantics. Therefore it can be compiled using any conventional compiler and executed on

any conventional machine. Contexts can be implemented using the API shown in Figure 3.2.

While the API consists of only two functions, it is the complete API seen by the application

programmer. Here, cfNewContext creates a context and returns a unique identifier. cfAl-

loc allocates a memory block of certain size from the specified context. These API functions

are intended as replacement of the standard malloc function in C for memory allocation.

int cfNewContext(void); 1

void* cfAlloc(int c, int size); 2

Figure 3.2: Context-flow API.

Given the invariant defined in our programming model, a discipline of context memory

usage has to be imposed. First, an object in one context can only reference objects in the same

context. Second, the context itself can only be referenced by the stack variables associated with

that context. These constraints can be imposed by a program analyzer added to the compiler.

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 24

A discussion on how this analyzer can be constructed is outside the scope of this paper.

It is interesting to note that the API does not include any function to reclaim the memories

allocated by cfAlloc, implying that a garbage collector is assumed. The availability of

garbage collection not only simplifies programming, since the programmers are free of explicit

memory management, but also leads to program safety in the same sense of Java. On the

other hand, the closure property of contexts ensures that cheap implementations of memory

allocation and garbage collection algorithms are available. In fact, our implementation of both

algorithms confines the complexity to constant runtime.

• Garbage collection can be performed at the granularity of context, where all objects be-

longing to the same context will be reclaimed together. This preserves program safety

– for example, there cannot be any references to freed memory blocks, since the mem-

ory containing the reference should belong to the same context, and therefore be freed

already as well.

• Since CFP ensures that the contexts themselves are referenced only by stack variables,

the test of whether a context becomes garbage can be performed at compile time by

simple escape analysis, rather than at runtime. The invocations of context deallocation

algorithm, which runs in constant time thanks to the fixed size of contexts, can be auto-

matically inserted by the compiler.

• Since objects belonging to the same context will always be deallocated at the same time,

the cfAlloc algorithm can again be implemented by a constant time algorithm: it

simply increments a pointer, which points to the start of the current free space, by the

requested amount.

Having described the general benefits of being general-purpose, simple, safe and efficient,

we now discuss how our programming model satisfies the unique requirements and challenges

of SOCs, which contain an unprecedented amount of silicon real-estate that can be exploited

by applications for massive parallelism.

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 25

In contrast to a SpecC/SystemC specification, a CFP is highly transparent to the specific

SOC architecture or circuit fabric chosen to implement the application. Therefore, the same

application can be used for single processor, homogeneous multi-processor, or heterogeneous

architectures. As the applications of SOC become increasingly complex, architecture trans-

parency is key to reduce design cost and enable architectural exploration.

A CFP is considerably easier to program than parallel programming or multi-threading,

since it does not need the explicit specification of parallelism – it just makes the job of identi-

fying coarse-grained parallelism easier. A CFP is in fact highly parallelizable by a compiler:

since data structures maintained by different contexts are disjoint, any procedures which access

different sets of contexts can be run in parallel.

3.2 Context-Flow Architecture

3.2.1 Macro-Architecture Specifications

We consider the design of a macro-architecture, called the context-flow macro-architecture

(CFA), formally defined in Definition 2.

Definition 2 Given a context-flow program 〈P, B, C, A〉, a context-flow architecture (plat-

form) is the set of all its platform instances {〈E, M, F P , F C , F N〉}, where E is a set of pro-

cessing elements (PEs), M is a set of memory banks, and at any time t, F P
t : P 7→ E binds

a procedure to a processing element; F C
t : C 7→ M binds a context to a memory bank, and

F N
t : M 7→ E connects a memory bank to a processing element; such that ∀p ∈ P running at

time t, and ∀c ∈ A(p), we have F P
t (p) = F N

t (F C
t (c)) to ensure that the running procedure can

access its contexts. 2

According to our definition, a CFA instance is a network of processing elements and mem-

ory banks. The set of processing elements P and memories M are always statically deter-

mined, or “customized”, whereas F P , F C , F N can either be time-invariant, in which case they

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 26

are customized statically, or time-variant, in which case they are dynamically configured using

an on-chip network. In this work, we consider that F P , that is, the binding procedures to the

processing elements, time-invariant. In other words, the design space of architecture explo-

ration of CFA is constructed from different choices of P, M and F P . This assumption is used

in our experiments in Chapter 6.

The first requirement of CFA design is to deliver execution efficiency. This is achieved by

the fact that different PEs can be used to run different procedures in parallel. This task is con-

siderably easier to accomplish than the traditional shared or distributed memory architecture

since CFP procedures accessing disjoint contexts can be run in parallel without the concern of

dependency hazard or cache coherence.

The second requirement of CFA design is to deliver the context-flow programming model.

This is achieved by the transparent implementation of procedure call abstraction across differ-

ent PEs, commonly referred to as remote procedure call (RPC), as well as context management.

This task is accomplished by the design of its on-chip network. We start by first defining a pro-

gramming model, which abstracts how it interacts with the PEs that it connects. It is important

to note that this programming model is the “assembly level” model seen by the compiler or

synthesis tools, rather than application programmer. We therefore define the programming

model in the form of an instruction set, as shown in Figure 3.3. The instruction set is simple

enough to contain only 10 instructions. It is encoded by the values of the wires on each port that

connects a PE to the network. From the perspective of the network, it encodes a command or

request from a PE. From the perspective of a PE, the instruction set is a complement of its own,

for which it can assume the availability of a co-processor for actual execution – effectively by

driving the right wires in the corresponding ports.

It is easy to notice the close correspondence between the abstraction at the two levels of

programming models. cfiAllocBank and cfiMalloc implement context allocation and

objects allocation within a context, mapping to cfNewContext and cfAlloc, respectively.

cfiFreeBank implements context deallocation. cfiLoad and cfiStore perform mem-

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 27

int cfiAllocBank(void); 3

void cfiFreeBank(int bankid); 4

void* cfiMalloc(int size); 5

word cfiLoad(int addr, int size); 6

void cfiStore(int addr, int size, word data); 7

void cfiCnctBank(int bankid); 8

void cfiRPC(int procid); 9

void cfiRet(int procid); 10

word cfiAckRPC(void); 11

word cfiAckRet(void); 12

Figure 3.3: Context-Flow Architecture Instruction Set.

ory access operations. The size parameter defines the accessed data size (8, 16, or 32 bits).

cfiCnctBank is optional, depending on hardware implementation. The remaining instruc-

tions implement the RPC interface, cfiAckRPC and cfiAckRet are optional, dequeuing

the next request available at the PE queue. We distinguish the two functions for the possible

implementation of seperate queues for procedure calls and returns.

3.2.2 Possible Organizations of CFA On-Chip Network

We now consider how to implement an on-chip network that can implement this instruction set

efficiently. There are several alternatives, each employing a different network topology.

We first consider the cases where F C is time-variant, in other words, the context can “flow”

from memory to memory; whereas F N is time-invariant, in other words, each memory is fixed

to a particular PE. As shown in Figure 3.4 (a), a bus-based CFA maintains a private memory

bank for each of its PEs. However, every time a RPC is invoked, the content of the corre-

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 28

PE

M
E
M

PE

M
E
M

PE

M
E
M

PE

M
E
M

PE

M
E
M

DMA

(a) (b)

P
E

M
E
M

P
E

M
E
M

P
E

M
E
M

P
E

M
E
M

P
E

M
E
M

Packet
Switch

(c)

M
E
M

M
E
M

M
E
M

M
E
M

M
E
M

M
E
M

M
E
M

PE PE PEPEPE

 Tunnel

Figure 3.4: Alternative Implementations of Context-Flow Architectures

sponding context needs to be copied to the memory bank that belongs to the callee, and this

data transfer is carried out by a shared bus. As shown in Figure 3.4 (b), a packet-switch-based

CFA is the same as bus-based, except that data transfer can be performed more efficiently:

while a shared bus may invite transfer congestion, a well designed packet-switched network

can distribute the communication traffic evenly.

Like previous efforts, these two alternatives do not take full advantage of the fact that

the network we are designing is on-chip, and the PEs are physically close to each other. We

propose a new on-chip network, called a CFA tunnel, where F C is time-invariant, whereas F N

is time-variant. As shown in Figure 3.4 (c), the tunnel maintains a pool of separate memory

banks, as well as an intelligent crossbar switch. Each context is dynamically mapped to a

single memory until it is deallocated, and the crossbar ensures the access to the memory is

dynamically switched to the callee whenever an RPC occurs. Note that our crossbar should not

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 29

be confused with the crossbars in previous efforts, which is designed still for the purpose of data

transfer. Instead, the goal of our crossbar is to provide the direct, wired access for memories.

RPC, or the flow of contexts from one PE to another, can then be achieved at virtually no cost!

3.3 Tunnel-based CFA

A tunnel-based CFA system consists of a reconfigurable memory system, an interconnection

architecture we refer to as a tunnel, and a set of processing elements. A block diagram of target

architecture is shown in Figure 3.5.

MM5MM3 MM4MM2MM0 MM1

Processing
Elements

Memory
Modules

Tunnel PE1PE0 PE2 PE3

MMU

Figure 3.5: Tunnel-based CFA Block Diagram

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 30

3.3.1 Memory System

The memory system is one of the main design concerns for future SOC and multiprocessor

designs [66]. Our architecture features a high-bandwidth, high-performance, flexible, SRAM-

based memory system that can be optimized statically for the target application and dynami-

cally for variable runtime workload.

Our memory system consists of a centralized memory management unit (MMU) and a pool

of replicated SRAM-based memory modules (MM).

ctrl

Priority Encoder

B F B B B F F B

request

opcodeID

set/clr

bank ID

Figure 3.6: Memory Management Unit (B: Busy, F: Free)

The centralized memory management unit is responsible for context/bank allocation and

deallocation. A block diagram of this unit is shown in Figure 3.6. The management unit keeps

track of the available banks and allocation requests. If an allocation request is received and

one of the context memory modules is available, the bank ID is returned, otherwise the request

that contains the caller ID is queued waiting for the next free bank. This queue could be a

simple first-in first-out (FIFO). Alternatively, a port-based priority scheme could be adopted,

which statically assigns a priority level to each port a request may come from. Similarly,

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 31

a procedure-based priority scheme could be used. Assigning priorities to ports/procedures

should be taken into account when synthesizing the target application. MMU is implemented

using very simple components. The priority encoder circuitry is used to find the index of the

first free “F” memory module. The queue is implemented as a simple 2-port register file with

two wrap-around adders, one for write pointer (tail) and one for read pointer (head) as shown

in Figure 3.7.

+1 +1

dataIn dataOut

push

RegFile

wdata

we

waddr raddr

rdata

pop
we we

Figure 3.7: First-In First-Out Queue (FIFO)

Each memory module contains a single-port SRAM memory bank, a SP/HP management

unit, and module controller (Figure 3.8). Regarding bank size, we use small memories, few

KBytes, targeting the optimal speed and power consumption of SRAMs [3]. The basic SRAM

bank size will be statically determined by the system designer based on the memory granular-

ity needed by the synthesized application. The SP/HP management unit maintains the stack

pointer (SP) of the calling stack and the heap pointer (HP) of the context mapped to the mem-

ory module. SP and HP have analogous semantics to those of traditional computer systems,

pointing to the top of stack and heap within a memory segment. This unit is controlled by

the module controller which decodes and executes the input instructions. The memory mod-

ule can perform read, write, malloc operations. Special management of the SP, similar to that

performed in traditional computer system, is needed when a RPC or Return takes place. For

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 32

example, when a RPC occurs, the old SP of the caller needs to be saved on the stack, and the SP

should be updated with the new stack pointer for the callee after saving call parameters. This

functionality can be optionally embedded within the memory module controller. However, we

currently implement this feature as a macro-instruction running on the PEs.

SP

HP+

MC WEopcode

dataOut

dataIn

sel

selwe

addr

RE

ADDR

DO

DI

SRAM

Figure 3.8: Memory Module

As mentioned before, each memory module or a context can be accessed by a single PE

at any point in time. Some application may require access of data objects common across

procedures/PEs. These objects may be mapped to preallocated memory modules that can be

accessed by any PE. To ensure mutual exclusion of the accesses to the shared memory mod-

ules, a token is used to regulate these accesses. To access a common data object, a PE needs to

acquire that token before the access, access the memory module, and release the token when

done passing it to the next PE. If the procedure running on a PE does not need to access a

common memory module, the PE passes the token immediately to the next module. We as-

sume that the common data objects, usually some control/header information, will be accessed

infrequently, which makes this solution an efficient and adequate one, especially at the scale of

single-cluster designs.

One of the main advantages of the proposed memory system is its flexibility. There is no

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 33

static assignment of memory modules to PEs. So if the distribution of the traffic load changes

at run time such that some PEs remain idle, while others become heavily loaded, more memory

modules will be allocated for the busy PEs, making better utilization of resources and achieving

better performance.

3.3.2 Interconnect

The interconnect architecture, which we refer to as the tunnel, performs two main tasks; it

connects the PEs to the memory modules for data accesses, and it routes the RPCs/Returns to

the target PEs as well as context allocation/deallocation requests to the memory management

unit.

The interconnect fabric that routes the RPCs/Returns and context allocation/deallocation

requests is a low-bandwidth shared bus. We use a single circulating token, the one mentioned

in Section 3.3.1, to control access to the shared channel.

To service memory access requests, a non-blocking point-to-point crossbar is used to con-

nect PEs to memory modules. Such a communication architecture can provide the required

bandwidth to memory, allowing one memory access per clock cycle for each PE. In other

words, if there are n PEs, each issuing one memory access per cycle, then the crossbar must

have a peak bandwidth of n words per cycle.

In spite of their cost (O(n2), where n is the number of interconnected modules), crossbars

are finding their way as an interface to multiple bank memory systems. For example, both

IRAM, a vector processor [57], and Smart Memories tiles, a reconfigurable 64-bit processing

engine [41], use a variation of crossbar to provide access for a single PE, basically a single

programmable processor, to multiple bank memory system. It has also been proposed in [40]

to use a crossbar to provide access for the processors of parallel systems to the L1 cache to

reduce energy consumption of memory accesses.

There are several ways to build a fully-connected interconnection network. The traditional

approach in constructing a non-blocking fully-connected crossbar is shown in Figure 3.9.

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 34

Incoming data

O
u

tg
o

in
g

 d
at

a

Incoming opcode,
address, and data

O
u

tg
o

in
g

 o
p

co
d

e,

ad
d

re
ss

, a
n

d
 d

at
a

sel[i, j]

Figure 3.9: Crossbar

One of the problems with this traditional implementation is the need to route control sig-

nals to all intermediate switches from a centralized configuration unit. Besides, whenever a

RPC/Return takes place, the parameter context ID needs to be sent to this configuration unit to

reconfigure the interconnect.

An alternative implementation was proposed in [23], called self-routing crossbar. Self-routing

crossbar is a decentralized implementation of a non-blocking point-to-point interconnect. The

control signals are not routed from a centralized configuration unit. Instead, they are generated

locally at each switch point by decoding the appropriate address bits and, if there is a match,

activating a tristate buffer which routes the input data to target output lines (Figure 3.10). Sim-

ulation results showed an improvement in delay of 23% while consuming almost the same area

and energy per transmission, when compared to traditional implementations.

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 35

Incoming opcode,
address, and data

O
u

tg
o

in
g

 o
p

co
d

e,

ad
d

re
ss

, a
n

d
 d

at
a

addr[memory module
 select range]

Decoder

Tristate
Buffer

Enable

Enable

Incoming data

O
u

tg
o

in
g

 d
at

a

Figure 3.10: Self-routing Crossbar

3.3.3 Processing Elements

In this work, we target the design of heterogeneous SOCs which provide the system de-

signer with the flexibility in choosing appropriate processing element for each application or

even individual procedures. These processing elements could be anything, ranging from pro-

grammable embedded processing cores to ASIC, ASIP, or even programmable FPGA, as long

as these PEs implement the interface defined in Figure 3.3. As a result, our platform is of a

heterogeneous architecture with a homogeneous programming model.

3.4 Context-Flow SOC Design Example

To illustrate the operation of the tunnel-based context-flow SOC platform, we present a simple,

yet complete design example transformed from its C description to the actual implementation.

Let us assume that we want to build a simple design that performs some arithmetic opera-

tions on a stream of data packets that arrive as inputs to our system. The packets are of variable

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 36

size, and the raw data is an array of floating point numbers to be updated. The input program

is shown in Figure 3.11 (a).

In this design, identifying the contexts is a trivial task; we only have one context which

consists of the data array A.

Let u assume that after some investigation, for example by profiling a typical input traffic,

we came up with the following design decisions:

• Both top and pow2 procedures are mapped to PE0, which is implemented as a simple

RISC processing core – Figure 3.11 (b).

• The sin procedure is mapped to PE1, which is implemented as a costume ASIC –

Figure 3.11 (c).

• We need three context memory modules to cope with input traffic intensity.

The resulting implementation is shown in Figure 3.11 (d).

To see how the data flows within the target application, let us assume we have the sched-

uled input traffic listed in Figure 3.12 (a). This behavior can be captured in the context-flow

behavioral description listed in Figure 3.12 (b).

Figure 3.13 through Figure 3.20 show the system at several time stamps as it progresses in

response to the input harness.

Assuming that no further packets arrive for a while, C0 will finish processing on PE1 and

exit the system. And C1 will follow C0 in its behavior. The remaining stages until both packets

exit the leave are similar to those listed above.

3.5 Discussion

At the end of this section, several points relative to the tunnel-based CFA are worth elaborating

on:

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 37

• Performance Efficiency: Several factors participate in the performance enhancement of

the tunnel implementation when compared to the alternatives mentioned in Section 3.2.

First, data transfer time is saved, as only one clock cycle is needed for the context to flow

from one PE to another using bank switching. Alternative implementations will require

one clock cycle for each data word to be transfered. Second, no contention exists over

shared communication, when compared to the bus-based implementation. And finally,

non-blocking context flow allows requests be sent from caller to callee even if the latter is

busy. Which gives the caller a chance for immediate processing of subsequent requests.

• Energy Efficiency: In the past few years, power/energy efficiency has become a major

design constraints in addition to area and performance, especially for portable applica-

tions [8]. Experiments have shown that in data dominated applications, such as mul-

timedia and network processors, a very large portion of the power consumed is due to

data transfer and storage as each memory access consumes 8 – 30 time more energy

than that of a primitive arithmetic/logic operation. Therefore, extensive research efforts

were spent on the minimization of memory accesses [13]. Our architecture saves two

memory accesses per word per context for each RPC/Return when compared to other

implementations.

• Scalability: We do recognize that there is a physical limit for the scalability of the CFA

tunnel. As the network gets larger, the delay of the crossbar grows quickly, thereby

increasing the cost of each memory access. This can be contained by employing a two-

layer strategy, where PEs are partitioned into clusters based on the communication traffic

among them, and intra-cluster network is based on the tunnel connecting tightly coupled

processing modules. Whereas the inter-cluster network is based on packet switch. In

this work, we focus only on the study of the flat network, which is appropriate for the

applications we are interested in.

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 38

top(float* A, int sz) {
 pow2(A, sz);
 sin (A, sz);
}

 top(float* A, int sz) {
 pow2(A, sz);
 sin (A, sz);
 }

 pow2(float* A, int s) {
 // process data
 }

 sin (float* A, int s) {
 //save A, s on stack
 cfRPC(topID, pow2ID, A, s);
 }

 main() {
 while(TRUE) {
 //wait for request
 if(topID) {
 //read A, s off stack
 top(A, s);
 }
 else if(pow2ID) {
 //read A, s off stack
 pow2(A, s);
 }
 }
 }

(a)

(b) (c)

PE1 (ASIC)

sin()

PE0 (RISC)

top ()
pow2()

C
o

n
tr

o
lle

r

D
at

ap
at

h

sin()

wait for
request

read pars

start
callee

wait for
DONE

(d)

Figure 3.11: A Simple Design Example

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 39

PacketID
Proc T
@ PE0

Proc T
@ PE1

34
46

2000
1540

1600
1230

(a) input() {

 cn = cfNewContext();
 A = cfAlloc(cn, 400*sizeof(float));
 // fill in A
 top(A, 400);

 WAIT_FOR(598);

 cn = cfNewContext();
 A = cfAlloc(cn, 300*sizeof(float));
 // fill in A
 top(A, 300);

}

(b)

Figure 3.12: System Input

P34P46

400500

PE1PE0time = t0
 Packet P34 arrives to the system by

 allocating a new context

Figure 3.13: System Behavior to the Input Described in 3.12 (a)

P46

500

PE1PE0

P34

P34

400

time = t0 + 1

 Context C0 allocated and returned to caller

time = t0 + 2
 Input port allocates array A on the context

 and starts transferring array data from

 packet P34

Figure 3.14: System Behavior to the Input Described in 3.12 (b)

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 40

P46

500

PE1PE0

P34

time = t0 + 402
 Data transfer is completed, and a RPC
 request is sent to target PE

 implementing top() containing a reference

 to C0

Figure 3.15: System Behavior to the Input Described in 3.12 (c)

P46

500

PE1PE0

P34

time = t0 + 403
 PE0 accept RPC request and starts

 processing request.

Figure 3.16: System Behavior to the Input Described in 3.12 (d)

PE1PE0

P34 P46

P46

500

(e)time = t0 + 1000
 Packet P46 arrives to the system and

 allocates new context.

time = t0 + 1001
 Context C1 allocated and returned to caller.

time = t0 + 1002
 Input port allocates array A on the context

 and starts transferring array data from

 packet P46

Figure 3.17: System Behavior to the Input Described in 3.12 (e)

CHAPTER 3. CONTEXT-FLOW PROGRAMMING MODEL AND ARCHITECTURE 41

PE1PE0

P34 P46

time = t0 + 1302
 Data transfer is completed, and a RPC

 request is sent to target PE implementing
 top() containing a reference to C1

 Request will be blocked as PE0 is still

 running top()/pow2() on C0

Figure 3.18: System Behavior to the Input Described in 3.12 (f)

time = t0 + 2404
 top()/pow2() running on PE0 finish
 processing C0 and call the the local

 implementation of sin(), a proxy, which

 sends a RPC request to PE1

PE1PE0

P34 P46

Figure 3.19: System Behavior to the Input Described in 3.12 (g)

PE1PE0

P34 P46

time = t0 + 2405
 Both PEs are available, therefore both RPC
 requests will be accepted at the same clock

 cycle

Figure 3.20: System Behavior to the Input Described in 3.12 (h)

Chapter 4

Performance Evaluation Framework

To evaluate new architectures and design methodologies in the field of SOC, we target com-

plex applications which are usually described in C using high-level language features such as

pointer references and complex data structures. The speculated performance advantage of new

propositions can only be validated on such applications. A performance evaluation environ-

ment that can simulate CFA with reasonable architectural details for any CFP applications is

therefore needed.

In this section, we introduce our context-flow performance evaluation framework. The

developed environment is based on the SimpleScalar Tool Set [11]. We start by giving a brief

overview of the SimpleScalar tool set. Then we introduce how the SimpleScalar infrastructure

is extended into a multi-processor, CFA performance evaluation environment. Finally, we show

how a C program is mapped onto a CFA in our environment by a simple, yet complete example.

4.1 SimpleScalar Tool Set

SimpleScalar tool set is a good example of an architectural evaluation environment [11]. It is

designed to study new innovations in micro-architecture such as pipelining, branch prediction,

out-of-order issue etc. The environment provides a complete compiler tool chain that can

compile a C application into a binary in the PISA instruction set, MIPS-like ISA. An instruction

42

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 43

set simulator can then be used to simulate the binary executable, while collecting performance

metric of interest.

The SimpleScalar tool set provides the user with several versions of simulators ranging in

complexity from functional (sim-safe), which executes instructions serially assuming a perfect

hazardless pipeline, to a detailed simulator (sim-outorder), which models a detailed pipeline

with out-of-order issue and execution. An overview of the tool set is shown in Figure 4.1.

Simulator

Results

SimpleScalar
GCC

SimpleScalar
GAS

SimpleScalar
GLD

Host C Compiler

C Benchmark
Source

SimpleScalar
Assembly

Object files

SS Libs

Simulator Source
eg. sim-safe.c,

main.c, etc.

SimpleScalar
Executable

Figure 4.1: SimpleScalar Tool Set Overview

For the purpose of modeling processing elements in our systems, we only need a simulator

that models the functionality of a PE, which could be a simple RISC processor as well as

ASIC. From this perspective, we do not need the detailed simulation model of a possible micro-

architecture of a superscalar processor, such as that implemented in sim-outorder. The simple

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 44

serial execution with a single cycle per instruction performance is all we need. Therefore, we

decided to use the functional simulator, sim-safe, especially that it delivers several orders of

magnitude in simulation speed when compared with sim-outorder.

Figure 4.3 shows the pseudo code of sim-safe, a fast simulator provided in SimpleScalar,

which maintains the processor state by a simulated set of registers (regs) and memory system

(mem). These two state variables are shown in Figure 4.2 (a) and (b), respectively.

Simulation starts by loading the application binary into the simulated memory, and then enters

a loop which fetches an instruction from the simulated memory one at a time, decodes it, and

performs an action that is consistent with the instruction semantics, while updating simulated

registers and memory accordingly 1.

r0
r1
r2

.

.

.

r31 FCC

LO

HI

PC

f0
f1
f2

.

.

.

f31

Unused

Text
(code)

Data

Stack

Int Reg File

FP Reg File

Virtual Memory
0x00000000

0x7fffffff

0x00400000

0x10000000

(a) (b)

Figure 4.2: State Variables for the sim-safe Version of the Simulator: (a) regs (b) mem

1Please note that the actual implementation spans several files, e.g. loading the application binary into a
simulated memory takes place in main before calling the simulator core which implements the execution loop.
However, for the sake of clarity, the code was presented as a single block.

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 45

/* memory space and register file (state variables) */
RegsType regs;
MemSpaceType mem;

void simCore()
{

/* create memory space & load target program */
memCreate(mem);
loadProg(prog, mem);

while(TRUE)
{

/* fetch next instruction to execute */
inst = Fetch(mem, reg.PC);

/* decode, execute, and commit the instr */
switch (opcode(inst))
{

case ADD: perform_add;
case SUB: perform_sub;

.

.

.
}

/* go to next instr */
reg.PC = reg.NPC;
reg.NPC++;

}
}

Figure 4.3: The Original SimpleScalar Simulator Core

4.2 Sim-CFA

We consider a homogeneous CFA where each PE is implemented by a processor equipped

with the PISA instruction set complemented by the context-flow instruction set defined in Sec-

tion 3.2.1.

The simulator was modified to run multiple SimpleScalar processors simultaneously, mod-

eling the multiple threads executing in parallel on the system PEs. For this purpose, the proces-

sor state of memory space and register file in the single processor environment was replicated,

one per PE, as shown in Figure 4.4. The main execution loop of the simulator was modified to

execute one instruction from each PE code at each simulation cycle.

While each PE has its own private address space, the unused memory space segment of

each PE, from address 0x00000000 to 0x03FFFFFF as shown in Figure 4.2 (b), was mapped

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 46

RegsType regs[NUM_OF_PES];
MemSpaceType mem [NUM_OF_PES];

void simCore() {
/* create memory space and load target program for each PE */
for(each PE p) {

memCreate(mem[p]);
loadProg(prog[p], mem[p]);

}

while(TRUE) {
for(each PE p) {

/* fetch ... */
inst = Fetch(mem[p], reg.PC[p]);
/* decode, execute, and commit */
if(annotated(inst)) {

/* context-flow instruction */
switch (annotation(inst)) {

case RPC: perform RCP;
case AllocBank: perform alloc;

.

.
}

}
else if (memAccess(inst) && addr<0x04000000) {

access context flow memory banks;
}
else { /* normal code */

switch (opcode(inst))
case ADD: perform add;
case SUB: perform sub;

.

.
}

/* go to the next instruction */
reg.PC[p]=reg.NPC[p]; reg.NPC[p]++;

}
/* for none-tunnel implementations */
execute one DMA cycle;

}
}

Figure 4.4: The Modified SimpleScalar Simulator Core

to the context memory pool. For example, if the CFA contains 8 context banks each of which

is 4 Kbytes, the memory space ranging from 0x00000000 to 0x0000FFFF is partitioned into

8 equal sub-segments, each representing a context memory bank. With this approach, high-

level language features, such as array references, pointer indirection, and structure member

references can still be used directly in the source code to access objects within the context.

The actual simulated environment is shown in Figure 4.5.

SimpleScalar suite provides a very useful annotation interface where unused bits in the in-

structions can be used to introduce new instructions without the change of compiler tool suite

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 47

Interconnect

ctrl
cntxt
mem

ctrl
cntxt
mem

ctrl
cntxt
mem

Figure 4.5: The Actual Simulated System

(Figure 4.6). A new instruction is defined by giving a non-zero annotation value to predefined

instruction opcodes. This annotation value can be detected at runtime and executed by emulat-

ing the corresponding behavior. We use this feature to introduce the context-flow instruction

set to each PE.

As shown in Figure 4.4, the simulation engine starts by loading the binary executables for

each PE into the simulated memories. At each simulation cycle, for each PE, the simulator

fetches an instruction from memory and decodes it. If its annotation field is non-zero, meaning

that it is a context-flow instruction, it will invoke the corresponding on-chip network simulation

to process a request on one of the ports of the network. If it is a memory access whose address

falls into the range from 0x00000000 to 0x03FFFFFF, the corresponding location inside the

context memory pool will be accessed. Otherwise, it will interpret the instruction the same

way as SimpleScalar does.

We implemented the networks defined in Section 3.2, namely bus-based, packet-switch-

based, and tunnel-based. Note that at this stage of implementation, our packet switch network

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 48

63 48 32 24 16 8 0

16-annote 16-opcode 8-ru 8-rt 8-rs 8-rd

16-imm

Figure 4.6: SimpleScalar PISA Instruction Format

is very preliminary: we assume a perfect network where no congestion can ever occur (equiv-

alent to point-to-point), which can nevertheless give the performance upper bound. The actual

implementation includes a parameterized direct memory access (DMA) engine. The main pa-

rameter is the number of DMA channels the engine can run simultaneously. This way we can

provide a cycle accurate simulation for single-channel bus, multi-channel bus, and perfect-

packet switch network.

Another simplification we use for now to obtain a first order approximation of heteroge-

neous CFA, where processing elements can be custom hardware, is to include a linear speedup

number for a PE intended for non-RISC implementation, thereby getting an approximate ex-

ecution time. In our experiments, we used some recursive training, by changing the speedup

and using the simulation results as a feedback to improve the accuracy of that speedup for

various job sizes. Future versions of the simulator will consider a better approximation for

heterogeneous systems.

To collect performance statistics during simulation, each request that enters the system

is assigned a unique identifier. The simulator keeps track of the movements of each context

within the system by eavesdropping on the interconnect activities, recording the begin and end

of queuing, in case of tunnel-based CFAs, and processing times at each port, as well as the

overall system (Figure 4.7).

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 49

The collected performance figures are translated into useful performance statistics. These

statistics include average, minimum, and maximum processing/busy time for each PE; average,

minimum, and maximum waiting/queuing time for each PE, in case of tunnel-based network;

utilization, which measures the percentage at which the PEs are busy computing rather than

idling; and throughput, which measures the rate at which CFA can accept the top-level RPC.

System
Boundry

PEi PEj

ID time

ID timeID time

Input
Port

Output
Port

Context Flow
Eavesdropping

Figure 4.7: Activity Monitoring in Sim-CFA

4.3 Architecture Configuration and Application Compilation

To illustrate various aspects of our simulation environment, consider the simple design example

presented in Figure 3.11, which calculates f(A) = sin(A2) : A ∈ Rn. As we did before, we

will be running the application on two PEs, mapping top and pow2 to PE0 and sin to PE1.

A description of the application procedures and various architectural parameters are de-

fined in a procedure stamps file, "pstamps.cfg", and a configuration file "config.cfg".

"pstamps.cfg" specifies the format of each procedure in our application simply through

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 50

procedure declarations. "config.cfg" needs to completely specify the target implementa-

tion. These specifications include:

• Number of PEs (NUM PORTS)

• Size of each RPC/Return queue of each PE (PORT FIFO SIZE)

• Number of memory modules (NUM BANKS)

• Bank size of each memory module (BANK SIZE)

• Number of procedures to be mapped (NUM PROCEDURES)

• Procedure mappings (PROC.ID PE)

• Procedure speedup, relative to some custom implementation (PROC.ID SU)

• Interconnect architecture (INTERCONNECT)

• Number of DMA channels in case of bus-based implementation (NUM DMA CHNLS)

An example of "config.cfg" is presented in Figure 4.8. It specifies that our implementa-

tion has 2 PEs, each of which has a 3 slot queue, and 3 memory modules, each of which has

a 2K memory bank. We map procedures top and pow2 to PE0 with no speedup, assuming

a simple RISC processing core, and top to PE1 with a speedup of 20, which we got after

comparing the performance of SimpleScalar with that of a custom hardware implementation.

Finally, our CFA is tunnel-based.

Both "pstamps.cfg" and "config.cfg" are used by an automatic code generator

that was developed to generate proxies or stubs for mapped procedures, to be used when a

remote procedure call occurs in a manner similar to that used in middleware systems. The

generator also returns a main function for each PE. An example of the returned code is shown

in Figure 4.9, where part (a) belongs to PE0 and (b) belongs to PE1. Note that the main

for each PE simply runs an infinite loop waiting for a call to the procedures it implements.

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 51

/* system configuration */
#define NUM_PORTS 2
#define PORT_FIFO_SIZE 3
#define NUM_BANKS 3
#define BANK_SIZE 2048
#define NUM_PROCEDURES 3

/* procedure ID definition */
#define TOP_FUNC 0
#define POW2_FUNC 1
#define SIN_FUNC 2

/* procedure mapping */
#define TOP_PE 0
#define POW2_PE 0
#define SIN_PE 1

/* procedure speedup */
#define TOP_SU 1
#define POW2_SU 1
#define SIN_SU 20

/* implementation */
#define INTERCONNECT TUNNEL

Figure 4.8: An Example Configuration File “config.dat”

WAIT FOR RPC and READ 2 ARGS are simply macros that use cfiAckRPC and cfiLoad,

respectively.

Once coded/generated, the source files of each PE along with proxies’ definition are com-

piled by the SimpleScalar gcc compiler ss-gcc. Sim-CFlow then can simulate the modeled

system by running the generated binary files to return detailed performance reports. This flow

is shown in Figure 4.10.

CHAPTER 4. PERFORMANCE EVALUATION FRAMEWORK 52

pow2(float* A, int sz) {
 for(i=0; i<sz; i++)
 A[i] = (A[i]*A[i]);
}

main() {
 while(1) {
 WAIT_FOR_RPC();
 if(callee==TOP_ID) {
 READ_2_ARGS(A, n);
 top(A,n);
 }
 else if(callee==POW2_ID) {
 READ_2_ARGS(A, n);
 pow2(A,n);
 }
 else
 ERROR();
 }
}

sin (float* A, int sz) {
 //save parameters
 cfiRPC(SIN_ID);
}

top (float* A, int sz) {
 pow2(A, sz);
 sin (A, sz);
}

main() {
 while(1) {
 WAIT_FOR_RPC();
 if(callee==SIN_ID) {
 READ_2_ARGS(A, n);
 sin(A,n);
 }
 else
 ERROR();
 }
}

sin(float* A, int sz) {
 for(i=0; i<sz; i++)
 A[i] = sin(A[i]);

 output(A, sz);
}

(a) (b)

Figure 4.9: A Context-Flow Version of the Simple Array Processor

procedures
src code
(*.c,*.h)

cflow.h

ss-gcc
sim-cflow

config.cfg
pstamps.cfg

performance
reports

main.c

proxies.h

proxies.c

PE2

pe2.ss
pe1.ss
pe0.ss

pe5.ss
pe4.ss
pe3.ss

code
generator

Figure 4.10: Sim-CFlow Simulation Process

Chapter 5

Queueing-Theoretic Performance Model

So far, simulation-based approaches have been the dominant choices by the industry for perfor-

mance analysis of SOC designs. These approaches are highly accurate, but also prohibitively

time consuming for large systems, which prevents the evaluation of a large number of possible

system configurations. Intuition is usually used to decide what configurations to simulate out of

the feasible ones. However, intuition-based decisions become less accurate the larger the prob-

lem, which could result in performance degradation when compared with the target system

potentials. What is badly needed is a performance model that can give insight on how per-

formance metric is related to implementation and architectural mapping decisions, commonly

referred to as analytical performance models.

In recognition to the limitations of experimental evaluation and intuition approaches in

the field of SOC design, we developed an analytical performance model to statically model

systems implemented using our tunnel-based context-flow architecture. Our model is based

on Queueing Networks, a field that received extensive research over many years, and whose

models were used extensively in computer systems and networks modelling. Queueing network

models were proved to be general, simple, and detailed, reporting various aspects of the target

system and application performance measures.

In contrast to the previous work reported in the area, the following contributions are made.

53

CHAPTER 5. QUEUEING-THEORETIC PERFORMANCE MODEL 54

First, the proposed performance model is extremely simple. In fact, the solution of important

metrics involves only simple equations. Second, the proposed performance model is synthesis-

friendly. An optimization procedure based on this model can be readily developed, in contrast

to the manual “architectural exploration” approach commonly practiced. Third, the proposed

model is flexible. In fact, our model is as flexible, accurate, and powerful as queueing theory

itself. Fourth, our performance model is validated against real-life applications with a detailed

multiprocessor simulator. The credibility and applicability of the proposed model is therefore

guaranteed.

5.1 Queueing Networks

Queueing Networks are an efficient and accurate approach to computer system modelling.

They have been used in the design of systems ranging from single network servers to wide area

communication networks [39].

A queueing network consists of a set of communicating nodes of service providers. Jobs

or customers arrive at a node, waits in the corresponding queue when all servers are busy, gets

processed, and departs for another node or out of the system 1. Figure 5.1 shows an example

of a simple queueing system with some feedback flows.

A key feature and reason to the success of queueing network models is that they abstract

away many of the low level details associated with the various modelled system. All it needs

is a set timed parameters that affect the system performance.

The basic characterization entities of queueing network models are service providers, which

represent the modeled system processing resources, and jobs, which represent the system jobs

(contexts in our case). A typical set of inputs of a queueing model are [39]:

• λ, arrival rate, specifies the arrival intensity in customers per unit time.

1Unless explicitly states otherwise, when we talk about Queueing Networks we always refer to Open Queueing
Networks, as opposed to Closed Queueing Networks which does not interact with the outside world.

CHAPTER 5. QUEUEING-THEORETIC PERFORMANCE MODEL 55

System
Arriving

Jobs

System
Departing

Jobs

Figure 5.1: A Queueing Network

• Demi, service demand at server i, which specifies the time service time for each cus-

tomer.

The outputs obtained by solving the system are:

• R, average system response time, which specifies the travel time between the system

input and output.

• Ui, utilization of server i, i.e. the percentage of overall time the server is busy.

• Wqi, queueing time of server i, which specifies the average waiting time at server i

before a job gets serviced.

• Lqi, queue length of server i.

If the jobs arriving to the system have some classification, usually referred to as Multi-Class

Systems, the model’s inputs need to specify the job mix and required services, and the outputs

will be returned per class as well as overall system measures.

CHAPTER 5. QUEUEING-THEORETIC PERFORMANCE MODEL 56

5.2 Analytical Performance Model

5.2.1 The Modelling Process

The close correspondence between the attributes of queueing networks and those of our CFA

suggests that queueing networks could be ideal modeling tools to describe our system.

The modelling process could be viewed as a conversion from system specifications in the

Context-Flow domain to those recognized by queueing systems. The output of this stage

would be a fully specified queueing network that can be easily solved using simple equations.

Whether the resulting system is single-class or multi-class depends on the application being

mapped on a CFA.

The inputs of our modelling process are:

• Workload Specification, defining the arrival job mix and their corresponding arrival rates.

This can be obtained by a process called workload characterization, which is a complex

process of profiling to arrive at a typical workload. A second possibility is that a typical

workload would be defined initially as part of the system specifications [39].

• Procedure Frequency, defining the number of calls made to each CF procedure per unit

time. Again, this measure can be obtained by profiling of a typical workload, or by static

prediction of the probability of edges of the application call graph for a typical workload.

• Mapping, describing the assignment of procedures to target system processing elements.

The output of our modelling is a fully characterized queueing network. Solving the model

returns the performance estimates of various aspects of the system.

5.2.2 Stochastic Model

Traditional applications of queueing networks to model computer systems assumed the ar-

rival of a Poisson process at the system inputs, and exponentially distributed service times at

CHAPTER 5. QUEUEING-THEORETIC PERFORMANCE MODEL 57

the service centers [39]. These assumption implies that the resulting interconnection of our

processing elements forms a Jackson Network. In this class of networks each queue can be an-

alyzed separately as M/M/m queues. This model is parameterized only by the average arrival

rate and average service rate, returning average waiting time, average queue length, and server

utilization. This approach was proved quite successful in modelling such systems. For exam-

ple, requests sent by users to a mainframe did have a random arrival pattern that was captured

using a Poisson process. And the size of jobs to be serviced was also a randomized process.

However, the immediate application of the same simplifying assumptions to model our archi-

tecture was unsuccessful. In a SOC, the arrival process and/or service times could easily be

deterministic! For example, arrival rate for an MPEG decoder is usually deterministic, and

service rate for ATM packet processing stages is also deterministic.

In [76], W. Whitt described the Queueing Network Analyzer (QNA), a software package

developed at Bell Laboratories to analyze complex queueing networks. The package uses a

GI/G/m approximation models to describe and analyze the given system. The arrival process

is assumed to be a generalized inter-arrival (GI) process, and the service may have any general

(G) distribution. The approximation made by this approach is that only the mean and squared

coefficient of variance (SQV = var/(mean)2) of the arrival and service processes are required

for the our calculations (a two-moment model). In addition to the basic input parameters de-

scribed in Section 5.1, we need to provide the SQV of inter-arrival time of the external arrival

process to each node i, c2

0i, and the SQV of the service time, c2

si. The analysis process calcu-

lates the parameters of internal nodes, which enables the calculations of all required system

measures. The model is capable of handling even more complicated system features, including

superposition and splitting, which is outside the scope of this paper.

For our purpose, the proposed model seamed to be a suitable fit. The additional required pa-

rameters could easily be driven by workload characterization. The question left is the model

accuracy, which will be reported in Chapter 6. In the sequel, we provide our approach to

transform our CFA and application description into a fully described queueing network model.

CHAPTER 5. QUEUEING-THEORETIC PERFORMANCE MODEL 58

5.2.3 Derivation of Analytical Performance Metrics

Let’s assume that our system consists of N procedures with execution frequency [f0f1 . . . fN−1]
T ,

implemented on an M-port tunnel-based CFA. We define an MxN mapping matrix, MAP ,

where MAPi,j represents the mapping of procedure j to PE i.

MAP =

m0,0 . . . m0,N−1

...
. . .

...

mM−1,0 . . . mM−1,N−1

(5.1)

For example, if we have an application realized in five procedures [p0p1p2p3p4] an implemented

on a 3-port CFA such that p0 and p2 run on PE0, p1 and p4 run on PE1, and p3 runs on PE2,

then the mapping matrix is:

MAP =

1 0 1 0 0

0 1 0 0 1

0 0 0 1 0

(5.2)

Note that in this model
∑M−1

i=0
mi,j must add to 1. Values less that 1 imply logic/functionality

replication and workload distribution. For example, if we want to replicate the procedure p3

and divide the arrival requests such that one third of the requests go to PE4 and the rest to PE3,

then the new mapping matrix will be:

MAP =

1 0 1 0 0

0 1 0 0.33 1

0 0 0 0.67 0

(5.3)

To force single instantiation of procedure’s logic, we allow mapping figures to take only

binary values, {0, 1}.

Using the summing rule, when two procedures are assigned to a single PE, the arrival rate

will be the sum of their frequencies. This conversion from the abstract domain to the queueing

CHAPTER 5. QUEUEING-THEORETIC PERFORMANCE MODEL 59

system domain can be captured using an mapping matrix, as shown in 5.4.

m0,0 . . . m0,N−1

...
. . .

...

mM−1,0 . . . mM−1,N−1

f0

...

fN−1

=

λ0

...

λM−1

(5.4)

After deriving the arrival rate for each PE/queue, we can calculate all performance measures

that fully characterize the system behavior. The average execution time at each PE can easily

be obtained using the equation:

Di =

∑N−1

j=0
(mi,j · fj · Dpj)

∑N−1

k=0
(mi,k · fk)

(5.5)

Where Dpj is the average processing time of job by procedure j. Although Dpj is assumed

to be constant, the model can be easily extended to make procedure delays a function of the

mapping. On heterogeneous systems, a single procedure could be mapped to different embed-

ded processors with different micro-architectural features, or even to custom logic. To take that

into account we define Dpj in terms of di,j; the average processing time of job by procedure j

when running on PE i, as follows:

m0,0 . . . m0,N−1

...
. . .

...

mM−1,0 . . . mM−1,N−1

d0,0 . . . d0,M−1

...
. . .

...

dN−1,0 . . . dN−1,M−1

=

Dp0

...

DpN−1

(5.6)

In Queueing Theory it is a common practice to use service rate instead of service or pro-

cessing time:

µi =

∑N−1

k=0
(mi,k · fk)

∑N−1

j=0
(mi,j · fj · Dpj)

(5.7)

Using these numbers we can derive major performance measures of processing elements

using very simple formulas. The equation describing processing element utilization would be:

Utilizationi = ρi =
λi

µi

=
N−1
∑

j=0

(mi,j · fj · Dj) (5.8)

CHAPTER 5. QUEUEING-THEORETIC PERFORMANCE MODEL 60

Using equations 5.7 and 5.8, and c2

ai and c2

si for each node i, we can calculate further estimates

of PE statistics. For example, the average waiting time at PEi is:

AveWaitingT imei = Wqi = (
(c2

ai + c2

si)

2
)Wq

M/M/1

i (5.9)

Where:

Wq
M/M/1

i =
ρi

µi(1 − ρi)
(5.10)

AveQueueLengthi = Lqi = λiWqi (5.11)

We can also derive performance estimates of the overall system. An average processing

elements utilization is:

Utilization = ρ =

∑M−1

i=0
ρi

M
(5.12)

And the average service time for a request is:

AveServiceT ime = D =

∑M−1

i=0
λi · (Di + Wqi)

λ
(5.13)

Further processing is needed if the more detailed probability distribution of the above quan-

tities is required, which is outside the scope of this work.

5.3 Discussion

Using this simple model we can easily derive performance estimates for each procedure, for

each processing element, each job class, as well as the overall system.

For each procedure running on each PE, the total residence time is the sum of average

processing time for that procedure on the PE implementing the procedure, which is an input of

the system model, and the average waiting or queueing time at that PE.

For each PE, the total residence time is the sum of average processing time and the average

waiting or queueing time, both of which are explicitly calculated in our model.

We can also calculate performance measures for each job class, where a class can be defined

CHAPTER 5. QUEUEING-THEORETIC PERFORMANCE MODEL 61

as the set of requests that traverse a specific path within our system. In this case, the total

propagation time of each job class is the some of average residence time for all the procedures

on its calling path. For example, let’s assume that we have the system presented in Figure 5.2,

and a certain percentage of the packets that enter the system traverse the path shown in dotted

lines. The total propagation time of this class can be given by:

TotalPropagationT ime = (d0,A+Wq0)+(d2,B+Wq2)+(d3,C+Wq3)+(d0,D+Wq0) (5.14)

Finally, measures of the overall system performance are either explicitly calculated in our

model, or can be calculated using the ones explained above.

A()
D()

... B() C()

1
2

3

4

5

PE0 PE1 PE2 PE3

Input
Port

Output
Port

System
Boundry

Figure 5.2: An Example of Total Propagation Time for Job Class is a CFA System

The model will enable the use of general-purpose optimizers, such as genetic programming,

simulated annealing, linear programming for some constraints, and non-linear programming,

in a system-level synthesis flow of single or multi-objective optimization problems.

Chapter 6

Case Studies

The goal of our empirical studies is three fold. First, to check whether the proposed model and

data structure transformations can be applied to real-life applications. Second, to examine the

feasibility of the process of program transformation into context-flow ones. Third, to compare

the performance of various CFAs and quantify the advantages, if any, of tunnel-based CFAs.

Finally, to study the strengths and weaknesses of the proposed queueing-theoretic performance

model.

In this section, we carry out our experiments using two real-life applications, namely, an

MPEG1-LayerIII decoder from the multimedia domain, and a cryptography acceleration co-

processor from the networking domain. We start by describing each application in Section 6.1,

followed by a description of the process of data and computation transformation in Section 6.2.

Section 6.3 presents simulation results of various system configurations and parameters for

each application. Finally, performance estimation results are compared with simulation figures

in Section 6.4.

6.1 Target Applications

Although synthetic benchmarks were used in the intermediate stages of the design flow of

the programming model and context-flow architectures, more realistic applications need to be

62

CHAPTER 6. CASE STUDIES 63

considered when targeting SOC designs.

6.1.1 Overview of MPEG1-LayerIII Decoder

Huffman
Decoding

Synch
CRC

Huff. Tbl.
Scalefac

Requantize Reorder
Stereo

Decoding

Alias
Reduction

IMDCT Frequency
Inversion

Subband
Synthesis

Output
Stream

Input
Stream

Figure 6.1: MP3 Decoder Stages

In the past few years, MPEG1-LayerIII, commonly referred to as MP3, has become the

de-facto standard of high-quality high-compression of digital audio data streams. It emerged

as the main tool for Internet audio delivery [10]. MP3 decoders became of central interest after

their popular use in portable multimedia devices. The decoding process is computationally

demanding, and power consumption is a critical constraint.

An overview of the decoder stages is presented in Figure 6.1. A detailed description of the

algorithm and decoder stages was presented in [36], which implemented a portable reference

MP3 decoder in C. This source code was used as the base for our pipelined implementation of

the decoder. The highlighted stages were implemented in our test case. Each stage operates on

data granules, one at a time, and passes these granules to the next stage in a sequential manner

for further processing.

Each decoder stage is implemented in a single procedure processing one data granule at

a time. Due to the absence of accurate hardware implementation performance numbers, the

delay of each method is determined using the number of memory accesses per call, assuming

a perfect pipeline implementation of the processors and that memory bandwidth is the primary

CHAPTER 6. CASE STUDIES 64

bottleneck. Current datapath synthesis tools, such as Module Compiler by Synopsys, can be

used to pipeline computational parts of the target algorithms.

6.1.2 Cryptography Accelerator

RSA

MD5

SHA1

DES
ECB

3DES
ECB

DES
CBC

3DES
CBC

RC4

IN Packets
(encryption)
OUT Packets
(decreption)

IN Packets
(decryption)
OUT Packets
(encreption)

Figure 6.2: Crypto Accelerator Flow

Cryptography acceleration processors are becoming of central interest with the increase of

SSL-based traffic over the Internet. Such traffic consumes a large percentage of the processing

time of server CPUs to do the required mathematical/logical operations. The current trend,

to avoid the expensive server replication, is to use dedicated coprocessors custom designed to

accelerate such calculations and remove the load off the server processors.

In our test case, we implemented a number of symmetric and asymmetric algorithms com-

monly used in SSL and IPSec. A detailed description of each engine can be found in [46]. Our

implementation was based on the OpenSSL project [55].

The implemented functions and the possible flows of packets are shown in Figure 6.2. Each

engine was implemented as a single procedure. Delay of these processing procedures were

obtained from actual RTL implementations [71] and comparison results [63]. The longest path

of an input packet is to go through all three categories of processing, namely hashing (MD5 or

SHA1), symmetric or private-key encryption (DES ECB, DES CBC, 3DES ECB, 3DES CBC,

CHAPTER 6. CASE STUDIES 65

or RC4), asymmetric or public-key encryption (RSA). Packets could skip hashing, public-key

encryption, or both.

6.2 Data Transformation

6.2.1 Data Transformation of MP3 Decoder

Header Side Info Main Data User Def.

Frame
Main Data

Granule 0

Granule 1

Channel 0

Channel 1

Channel 0

Channel 1

18 freq lines

18 freq lines

18 freq lines

18 freq lines

Subband
Blocks

0

29

30

31

. . .

. . .

(a)

(b)

. . .

118 freq lines

18 freq lines 28

Figure 6.3: MP3 frame format

The frame is a central concept when decoding MP3 bitstreams. It consists of four parts;

header, side information, main data, and some user-defined ancillary data, as shown in Fig-

ure 6.3 (a). Figure 6.3 (b) presents the logical partitioning of the frame main data. It consists

of 1152 mono or stereo frequency-domain samples, divided into two granules of 576 samples

each. Each granule is further divided into 32 subband blocks of 18 frequency lines apiece. The

CHAPTER 6. CASE STUDIES 66

reader is directed to [36] for a detailed definition and description of these components.

/* MPEG1 Layer 1-3 frame header */
typedef struct {
 UINT32 id;
 t_mpeg1_layer layer;
 UINT32 protection_bit;
 UINT32 bitrate_index;
 UINT32 sampling_frequency;
 UINT32 padding_bit;
 UINT32 private_bit;
 t_mpeg1_mode mode;
 UINT32 mode_extension;
 UINT32 copyright;
 UINT32 original_or_copy;
 UINT32 emphasis;
} t_mpeg1_header;

/* MPEG1 Layer 3 Side Information */
typedef struct {
 UINT32 main_data_begin;
 UINT32 private_bits;
 UINT32 scfsi[2][4];
 UINT32 part2_3_length[2][2];
 UINT32 big_values[2][2];
 UINT32 global_gain[2][2];
 UINT32 scalefac_compress[2][2];
 UINT32 win_switch_flag[2][2];
 UINT32 region0_count[2][2];
 UINT32 region1_count[2][2];
 UINT32 preflag[2][2];
 UINT32 scalefac_scale[2][2];
 UINT32 count1table_select[2][2];
 UINT32 count1[2][2];
} t_mpeg1_side_info;

/* MPEG1 Layer 3 Main Data */
typedef struct {
 UINT32 scalefac_l[2][2][21];
 UINT32 scalefac_s[2][2][12][3];
 FLOAT32 is[2][2][576];
} t_mpeg1_main_data;

(a) (b)

(c)

Figure 6.4: Original Data Structures in the Reference MP3 Decoder Implementation

The original data structures of the header, side information, and main data of the reference

MP3 decoder implemented in [36] are listed in Figure 6.4 (a), (b), and (c), respectively. In

the listed code, any [2][2] refers to [NUM OF GRANULES][NUM OF CHANNELS]. A

single instance of each of these structures is statically allocated as a global variable in the

reference implementation. To process an input audio file, frames are read into these objects,

processed, and the decompressed audio data is returned before overwriting these objects with

the next frame.

This programming methodology presented above is quite common in multimedia applications

CHAPTER 6. CASE STUDIES 67

and is suitable for sequential programming model of traditional computer systems.

/* MPEG1 Layer 1-3 frame header */
typedef struct {
 UINT32 id;
 t_mpeg1_layer layer;
 UINT32 protection_bit;
 UINT32 bitrate_index;
 UINT32 sampling_frequency;
 UINT32 padding_bit;
 UINT32 private_bit;
 t_mpeg1_mode mode;
 UINT32 mode_extension;
 UINT32 copyright;
 UINT32 original_or_copy;
 UINT32 emphasis;
} CF_mpeg1_header;

(a)

/* MPEG1 Layer 3 Side Information */
typedef struct {
 UINT32 main_data_begin;
 UINT32 private_bits;
 UINT32 scfsi[2][4];

 UINT32 part2_3_length;
 UINT32 big_values;
 UINT32 global_gain;
 UINT32 scalefac_compress;
 UINT32 win_switch_flag;
 UINT32 region0_count;
 UINT32 region1_count;
 UINT32 preflag;
 UINT32 scalefac_scale;
 UINT32 count1table_select;
 UINT32 count1;
} CF_mpeg1_side_info;

(b)

/* MPEG1 Layer 3 Main Data */
typedef struct {
 UINT32 scalefac_l[21];
 UINT32 scalefac_s[12][3];
 FLOAT32 is[576];
} CF_mpeg1_main_data;

(c)

Figure 6.5: Transformed Data Structures in the Context-Flow Implementation of the MP3

Decoder

Obviously, the static objects used in the original implementation are not efficient for par-

allelization. We no longer have the simple sequential processing mode with a single thread

of execution and non-distributed memory system. Instead, we aim to end up with a pipelined

implementation at the system level running on a CFA. On a SOC, a stream of requests will

be arriving at the input port of the system. Each request will be allocating a separate context,

and objects of these requests, that correspond to frame components, need to be dynamically

allocated on that context. Pointers to the allocated objects are passed as parameters.

CHAPTER 6. CASE STUDIES 68

The total size of the data corresponding to all channel in the side information and main

data parts of the frame, shown inside white boxes in Figure 6.5, is more then 10 KBytes. This

data can be partitioned into four parts, each corresponding to a separate channel, as in general

each decoder stage processes one channel per granule per frame at a time. However, some

read-only data shared between channels, shown inside dark grey boxes in Figure 6.5, need to

be replicated. Shared data cannot, in this case, be placed in a global context with mutually

exclusive access, as more than one frame may be present in the system at any point in time.

The final data structures in our context-flow implementation are shown in Figure 6.5.

This data transformation results in a deeper implementation pipeline. Note that no perfor-

mance is gained, as each request was replaced by four, each of which takes about one forth

of the processing time at each pipeline stage. However, smaller memory banks, almost one

fourth in size, can be used to gain the same performance speedup when compared to sequential

processing.

6.2.2 Data Transformation of the SSL Processor

Compared to that of multimedia applications, data transformation of network applications is

in general a simpler process. The main data to be processed is usually already packetized in

arrays a few KBytes in size.

In the case of our cryptography accelerator, the data to be encrypted/decrypted is an array

of variable size dynamically allocated at the input port for each packet to be processed. The

same applies to the encryption/decryption keys.

It is worth noting that network applications are evolving towards higher levels of abstrac-

tion, and networks routers are increasingly expected to do more than simple packet forwarding.

Boundary routers, which lie on the borders between organizations, must often prioritize traffic,

translate network addresses, tunnel or filter packets, or act as firewalls, among other things. In

other words, network routers and processors need to handle more complex functionalities than

simple data transfers and array manipulation [50]. Therefore, in addition to the other benefits

CHAPTER 6. CASE STUDIES 69

of our programming model such that safety and transparency, an efficient handling of complex

data structures is still important in this domain.

6.3 Performance Experimental Results

After demonstrating the applicability and the feasibility of context-flow programming model

on real-life applications, in this section we consider the performance efficiency of the proposed

architecture. Several performance aspects of the proposed architecture will be illustrated:

• The importance of pipelining at the architectural level.

• Performance efficiency of tunnel-based CFA when compared with alternative implemen-

tations.

• Memory requirements of tunnel-based CFA when compared with alternative implemen-

tations.

• Performance efficiency of heterogeneous implementations when compared with homo-

geneous ones.

• The importance of procedural mapping/system configurations on the overall system per-

formance.

These aspects will be illustrated separately on our test cases, starting with the SSL acceleration

processor as more performance aspects could be discussed. We will arrive at similar but less

diverse results for the MP3 decoder later in this section.

6.3.1 Simulation Results of the SSL Accelerator

In this application, different packets will be using different processing paths, where a path is

the ordered set of procedures a specific packet follows, according to packet types. To carry out

the experiment, we implemented a packet generator that generates a workload, or packet mix,

CHAPTER 6. CASE STUDIES 70

which uses various processing paths according to given distribution parameters. Table 6.1 and

Table 6.2 lists the various workloads used to carry out our experiment.

In Table 6.1, each subcolumn under Workload ID presents the percentage of packets pro-

cessed by each procedure in the Procedure column. For example, 52% of the packets in work-

load 1 are hashed using the MD5 procedure, while 47% are hashed by the SHA1 procedure.

The remaining 1% skip this optional first stage of processing. Note that the figures for each

workload corresponding to Stage 2 processing procedures must add up to 100%, while the

other two stages are optional, and will sum up to ≤100%. Table 6.2 presents the average

packet processing time, in cycles, for each procedure. For example, hashing each of the 52%

of the packets in workload 1 MD5 takes, on average, 436.5 clock cycles.

Procedure Workload ID

1 2 3 4

Stage 1 MD5 52 74 47 21

SHA1 47 12 41 79

Stage 2 RC4 22 43 27 27

DES ECB 11 9 32 10

3DES ECB 33 19 6 29

DES CBC 23 19 22 19

3DES CBC 11 10 13 15

Stage 3 RSA 9 3 11 14

Table 6.1: Detailed Workload Distribution of SSL Processor (%)

For each workload distribution, we calculate what we call the expected processing time

(EPT) for each procedure. This is defined as:

EPTi = ProcessingT imei × Frequencyi (6.1)

For example the EPT for procedure RSA in workload 1 is: 5056.2 × 0.09 = 455.1 cycles.

CHAPTER 6. CASE STUDIES 71

Procedure Workload ID

1 2 3 4

Stage 1 MD5 436.5 382.9 391.0 353.4

SHA1 438.4 350.0 324.5 414.9

Stage 2 RC4 1254.8 1225.4 1183.0 1154.2

DES ECB 837.6 838.7 1046.5 1049.1

3DES ECB 1063.8 764.7 747.6 1075.2

DES CBC 2550.3 1922.5 1094.9 1516.8

3DES CBC 6628.4 5946.7 3397.6 5462.2

Stage 3 RSA 5056.2 5051.3 5051.3 5051.3

Table 6.2: Average Processing Time Per Packet by Each Procedure (cycles)

This value represents the average processing time of procedure i on every input packet. The

calculated effective processing times for each workload are listed in Table 6.3.

We use these EPT values to optimize our pipeline implementation. The pipelining process

is similar to that of datapath pipelining in behavioral synthesis [47]. The main difference is that

the order of procedure execution is not defined. Other than that, we use a similar technique to

chaining, a commonly performed scheduling technique by considering the propagation delay,

EPT in our case, of the datapath resources, procedures in our case. The corresponding mapping

of each workload is presented in Table 6.4.

It is important to note, however, that this optimization process is only a heuristic for finding

the architectural mapping that achieves efficient load balancing while minimizing implemen-

tation costs. It ignores the queuing time at each PE. It also considers a limited design space of

two dimensions, average packet processing time, and design size. More advanced optimization,

such as minimizing the processing and queuing time for a specific packet type, requires a more

aggressive solution based on a detailed performance analytical model such as our queueing

theoretic performance model described in Chapter 5.

CHAPTER 6. CASE STUDIES 72

Procedure Workload ID

1 2 3 4

Stage 1 MD5 227.0 383.3 183.8 74.2

SHA1 206.0 42.0 133.1 327.7

Stage 2 RC4 276.1 526.9 319.1 311.6

DES ECB 92.1 75.5 334.9 104.9

3DES ECB 351.1 145.3 44.9 311.8

DES CBC 580.6 365.3 240.9 288.2

3DES CBC 729.1 594.7 241.7 819.3

Stage 3 RSA 455.1 151.5 556.2 707.8

Table 6.3: Effective Processing Time Per Packet by Each Procedure (cycles)

The simulation results of our application for workloads specified in Table 6.1 and mappings

described in Table 6.4 for various CFA implementations are shown in Figure 6.6 and Figure 6.7.

The three network architectures, namely bus, perfect packet-switch (PPS), and tunnel, were

evaluated. The basic configuration of each implementation has (#PEs + 2) memory modules.

In case of bus-based and perfect packet-switch-based interconnects the extra two banks are used

as input and output buffers of the system, as the input traffic has no direct access to memory

modules at target PEs. We also varied the number of banks for each implementation to study the

usage of extra memory modules. For bus-based and perfect packet-switch networks the added

banks are used as extra input buffers which could be a bottleneck for the inbound traffic. For the

tunnel implementation, banks are simply added/removed from the memory pool. The number

of added/removed banks of each implementation is included between parenthesis in Figure 6.6.

For example, BUS (+2) refers to a bus-based implementation of the target application with

(#PEs + 4) memory banks, while Tunnel (-1) removes one bank from the original memory

module pool.

From Figure 6.7 we can see that when using the same number of memory banks for all

CHAPTER 6. CASE STUDIES 73

Procedure Workload ID

1 2 3 4

Stage 1 MD5 PE1 PE0 PE1 PE1

SHA1 PE1 PE0 PE2 PE1

Stage 2 RC4 PE2 PE1 PE3 PE1

DES ECB PE2 PE2 PE1 PE2

3DES ECB PE2 PE2 PE1 PE2

DES CBC PE3 PE2 PE3 PE2

3DES CBC PE4 PE3 PE2 PE3

Stage 3 RSA PE0 PE0 PE0 PE0

Table 6.4: SSL Mappings given as Target PE for Each Procedure

implementations, the tunnel-based implementation provides an average speedup of 2.08X when

compared to bus-based implementation, and 1.80X when compared to packet-switch-based

one. Adding more memory banks to the bus-based implementation was hardly beneficial,

while adding 1 bank to the packet-switch-based implementation caused the speedup to drop to

1.53X, and adding 2 bank caused the speedup to drop to 1.17X. Even after removing 2 memory

banks from the tunnel implementation and adding banks 2 to the bus-based one, we still obtain

an average speedup of 1.62X. Removing 2 banks from the tunnel implementation and adding

2 banks to the packet-switch-based one, we obtain almost equally capable designs, i.e. in these

experiments to achieve the performance of PPS (+2), we can save 4 memory banks simply by

using the tunnel interconnect architecture.

To illustrate the importance of system-level pipelining of multi-PE implementations, we

calculated an upper bound of the single PE performance. We assumed the single PE has all

the processing power of custom hardware used in our heterogeneous implementations. Packets

are always available for processing, and context switching happens in zero cycles. In short,

the average packet processing time for the single PE implementation is simply the sum of the

CHAPTER 6. CASE STUDIES 74

Average Packet Processing Time

0

500

1000

1500

2000

2500

1 2 3 4

Workload

P
ro

ce
ss

in
g

 T
im

e
(c

yc
le

s)
 BUS

BUS (+1)

BUS (+2)

PPS

PPS (+1)

PPS (+2)

Tunnel

Tunnel (-1)

Tunnel (-2)

Tunnel (-3)

Figure 6.6: Simulation Results for SSL Acceleration Processor: Average Packet Processing

Time

processing times of each packet by each procedure divided by the number of packets. A com-

parison between single-PE implementation and our tunnel-based context-flow implementation

is illustrated in Figure 6.8. Results show the importance of parallel designs and system-level

pipelining.

To illustrate the importance of custom-logic design of heterogeneous architecture, we sim-

ulated the same application running on a homogeneous architecture of identical superscalar

processors, each of which is assumed have an instruction level parallelism (ILP) of 8 instruc-

tions per cycle, with perfect branch prediction, and infinite bandwidth to the memory system.

One of these theoretical processors was dedicated to each procedure. Obviously, these assump-

tions provide a very loose upper bound for the possible performance of near-future embedded

processors. To ensure the accuracy of our heterogeneous performance figures, we only run our

experiments utilizing crypto engines with documented performance measures of actual RTL

implementations [71, 54]. Figure 6.9 reports the results of both implementations with the same

interconnect and memory resources for various workloads. Reported results with speedup rang-

CHAPTER 6. CASE STUDIES 75

Average PE Utilization

0

10

20

30

40

50

60

70

80

1 2 3 4

Workload

P
er

ce
n

ta
g

e
(%

)

BUS

PPS

Tunnel

Figure 6.7: Simulation Results for SSL Acceleration Processor: Average PE Utilization

ing from 4.8X to 14.4X over an optimistic superscalar implementation reflects the importance

of heterogeneous implementations

And finally, to illustrate the importance of procedural mappings on overall system perfor-

mance, we simulated several tunnel-based configurations of the SSL accelerator, each of which

is optimized for a specific workload; Mapping 1 was optimized for Workload 1, Mapping 2 for

Workload 2, and Mapping 3 for Workload 3. The effects of workload rotation is shown in

Figure 6.10, showing the result of ignoring a crucial design decision of using a non-optimal

mapping for a given workload.

To conclude, we can derive several observations from simulation results:

• Our fastest pipelined implementation has an average of 2.68X speedup when compared

to the single PE implementation with the same processing power. This gap shows the

importance of pipelined implementations.

• Our tunnel-based implementation provides an average speedup of 43% when compared

CHAPTER 6. CASE STUDIES 76

Average Packet Processing Time

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4

Workload

P
ro

ce
ss

in
g

 T
im

e
(c

yc
le

s)

Single-PE

Tunnel

Figure 6.8: Performance Results of Single-PE and Multi-PE Implementations of the SSL Ac-

celerator

to bus-based implementation, and 23% when compared to perfect packet-switch network

implementation with the extra memory banks.

• Several memory banks can be saved when compared to bus-based and perfect packet-

switch network implementations to arrive at a comparable or even better performance.

• The heterogeneous implementation is 11X faster than our optimistic homogeneous one,

which shows that the programmable regular homogeneous solutions pose serious perfor-

mance disadvantages.

• Mapping has a great effect on the overall system performance, which necessitates system-

level architectural exploration for synthesis.

CHAPTER 6. CASE STUDIES 77

Average Packet Processing Time

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4

Workload

P
ro

ce
ss

in
g

 T
im

e
(c

yc
le

s)

Homogeneous

Heterogeneous

Figure 6.9: Performance Results of Homogeneous and Heterogeneous Implementations of the

SSL Accelerator

6.3.2 Simulation Results of MP3 Decoder

Although it was a more interesting test case when considering context recognition and data

transformations, the MP3 decoder is a simpler design when compared to the SSL processor in

terms of configurability. There is only one well-defined linear path traversed by each frame that

enters the system, starting with huffman decoding all the way to subband synthesis (Figure 6.1).

Besides, no interesting variability in workload could be used to arrive at an optimum design

mappings.

To carry out our experiment, we use some of the input files distributed along with the

standard MP3 software. We use the same pipelining technique described in Section 6.3.1 to

arrive at a suitable procedural mapping that optimizes average frame processing time.

Simulation results are shown in Table 6.5, where the second column reports the throughput

in cycles per request. The third column reports the average PE utilization. Similar observations

to those of the previous section could be drawn. For multi-PE configurations, PE0 implements

CHAPTER 6. CASE STUDIES 78

Average Packet Processing Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3

Mapping

P
ro

ce
ss

in
g

 t
im

e
(c

yc
le

s)

Workload 1

Workload 2

Workload 3

Figure 6.10: Mapping Effects on System Performance for the SSL Accelerator

stages 1, 2, and 3, PE1 implements 4 and 6, PE2 implements 5, and PE3 implements stage 7.

We did not carry out a homogeneous vs. heterogeneous experiment in this case due to the

lack of accurate cycle count estimates of a custom hardware implementation of the decoder

stages.

6.4 Evaluation of Queueing-Theoretic Performance Estima-

tion Model

To evaluate our performance estimation model, we use experimental setups similar to those

used in Section 6.3. The only difference is that we do not assume saturated input traffic to

measure the maximum possible throughput, where a request is always available at the system

input port for processing. Instead, we assume what we call jittered-periodic traffic, where

requests arrive at the input port periodically with some variance specified by the user.

A GI/G/1 network analysis tool similar to that reported by W. Whitt in [76] was imple-

CHAPTER 6. CASE STUDIES 79

Architecture Throughput PE Util.

Tunnel 3439 71%

Tunnel (-1) 3515 70%

Tunnel (-2) 3537 69%

Tunnel (-3) 3655 67%

Single-PE 9800 100%

Shared-bus 5944 41%

Perf. Packet Switch 5043 48%

Table 6.5: MP3 Decoder Results

mented to become the core of our estimation model. We ran several experiments for each test

case. For each of these experiments, we compare the residence time for each PE given by sim-

ulation to that of our estimation. Waiting/queueing time is the only basic performance measure

where considerable errors in estimation could result. Other measures are either directly depen-

dent on the accuracy of input statistics, or composite measures directly dependent on queueing

time. We report the total residence time as it is the measure of most interest to us. Besides,

large errors in queueing time estimated could be negligible when compared to the overall resi-

dence time. For example, if the actual average queueing time at a given PE is 10 cycles, and the

average processing time is 5000 cycles, and the estimated queueing time is, say, 40 cycles, then

the estimation error with respect to queueing time is 300%! However, this error is not really

an issue when compared to the overall residence time of 5010 cycles. Other measures such as

queue size, total residence time for each packet type, etc. are simply composite measures.

In case of the SSL accelerator, for a given workload we used the different mappings de-

scribed in Table 6.6. The corresponding estimation results are reported in Table 6.8, and the

average estimation errors for each mapping over all PEs are presented in Figure 6.11. Simi-

larly, for the MP3 decoder we tried the mappings described in Table 6.7, and the corresponding

estimation results are reported in Table 6.9 and Figure 6.11.

CHAPTER 6. CASE STUDIES 80

Mapping Target PE

RSA MD5 SHA1 RC4 DES ECB 3DES ECB DES CBC 3DES CBC

1 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

2 PE0 PE1 PE1 PE2 PE3 PE3 PE4 PE5

3 PE0 PE1 PE1 PE2 PE2 PE2 PE1 PE3

4 PE0 PE1 PE1 PE0 PE2 PE2 PE1 PE3

Table 6.6: SSL Accelerator Mappings for Performance Model Evaluation

Mapping Target PE

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

1 PE0 PE0 PE0 PE1 PE2 PE1 PE3

2 PE0 PE1 PE2 PE3 PE3 PE4 PE5

3 PE0 PE1 PE1 PE1 PE2 PE3 PE4

Table 6.7: MP3 Decoder Mappings for Performance Model Evaluation

From the reported results, we can see that the estimation results were accurate in some

cases, and varied (either high or low) in others, but correctly reported the relative waiting time

values at different PEs with acceptable average error (Figure 6.11). It turned out that the way

the solver handles multi-class networks through simple aggregation could potentially be im-

proved. To illustrate this issue, mapping 3 of the SSL test case was intentionally configured

such that procedures with largely different processing times were mapped to the same PEs.

Also, the use of a single variability parameter to characterize the variability of an arrival pro-

cess to a queue was not optimal. More advanced solutions were reported in [77], and further

enhancements to queueing network solvers are being proposed in this active area of research,

which is outside the scope of this work. However, as we observed in our experiments, the used

solver still serves as a first order approximation of the queueing time at each PE. For example,

the solver does not report a waiting time in thousands of cycles while the actual value is only

in hundreds, or vice versa.

CHAPTER 6. CASE STUDIES 81

Residence time Estimation Error

0

10

20

30

40

50

60

70

80

90

100

SSL 1 SSL 2 SSL 3 SSL4 MP3 1 MP3 2 MP3 3

E
rr

o
r

(%
)

Figure 6.11: Queueing Model Accuracy for SSL Accelerator and MP3 Decoder

Although higher accuracy levels would have been appreciated, our proposed model is still

valid, and it gets as accurate, flexible, and powerful as queueing theory itself. Even at the

reported accuracy measures, the model will provide important optimization directions as part

of a system-level optimization framework.

CHAPTER 6. CASE STUDIES 82

Mapping Proc. Element Sim. Residence Time Est. Residence time Error

1 PE0 10255.5 7027.6 31.5%

PE1 462.1 413.6 10.5%

PE2 547.8 510.5 6.8%

PE3 1864.9 1844.9 1.1%

PE4 1144.5 1270.2 11.0%

PE5 1244.4 1360.1 9.3%

PE6 3396.5 3968.6 16.8%

PE7 7645.9 7209.9 5.7%

2 PE0 8360.8 7020.0 16.0%

PE1 650.9 453.9 30.3%

PE2 1843.5 1840.1 0.2%

PE3 2450.6 1923.6 21.5%

PE4 3561.0 3736.5 4.9%

PE5 8189.6 6164.9 24.7%

3 PE0 5646.9 6360.2 12.6%

PE1 2399.0 2119.0 11.7%

PE2 4020.1 2890.8 28.1%

PE3 6459.6 4850.8 24.9%

4 PE0 46772.2 84003.1 79.6%

PE1 2147.8 1206.3 43.8%

PE2 1349.3 1265.0 6.2%

PE3 6150.7 3595.8 41.5%

Table 6.8: Simulated and Estimated Residence Time for SSL Accelerator

CHAPTER 6. CASE STUDIES 83

Mapping Proc. Element Sim. Residence Time Est. Residence time Error

1 PE0 3621.8 2544.7 29.7%

PE1 1301.9 1781.6 36.8%

PE2 9246.7 9891.0 7.0%

PE3 2756.0 4925.3 78.7%

2 PE0 1271.4 1288.6 1.4%

PE1 832.5 972.6 16.8%

PE2 1417.4 1576.9 11.3%

PE3 11519.9 5918.8 48.6%

PE4 764.8 786.0 2.8%

PE5 2868.6 3340.9 16.5%

3 PE0 1271.4 1288.6 1.4%

PE1 2242.9 2340.8 4.4%

PE2 11533.5 3000.9 74.0%

PE3 764.8 785.9 2.8%

PE4 2873.2 3337.8 16.2%

Table 6.9: Simulated and Estimated Residence Time for MP3 Decoder

Chapter 7

Conclusion and Future Work

7.1 Conclusions

This thesis offers three main contributions. First, it proposed a new programming model for

SOC designs based on an abstraction of autonomous dynamic data structures called context.

This programming model is high-level, not so much different from imperative programming

models, simple, even simpler that traditional imperative programming models such as that

of C, and safe, due to the simple garbage collection embedded within the model. Yet, the

model is inexpensive to realize in hardware. The second contribution was the development of

a new SOC architectural platform, called context-flow architecture, which is based on a new

on-chip network called tunnel. The proposed platform makes a better utilization of the on-chip

resources when compared to the recently proposed communication-centric platforms. Finally,

a new queueing-theoretic performance estimation model was proposed for our communication-

centric platform. This model is simple, flexible, synthesis-friendly, and bounded only by the

capabilities of queueing theory.

Based on our study, we draw several main conclusions. First, the context-flow program-

ming model is suitable for realizing SOC applications of interest, namely multi-media and

network applications. Secondly, the proposed communication-centric platform is shown to be

84

CHAPTER 7. CONCLUSION AND FUTURE WORK 85

performance efficient when compared to alternative solutions. Thirdly, the scalability limita-

tion of the tunnel-based CFAs are not an issue when considering the target applications. It is

only when more than one application needs to be mapped to a single die when the interconnect

scalability becomes an issue. This is when a second-level interconnect architecture comes into

play. And finally, although the proposed performance model seems to be the ideal solution for

our platform, a more accurate network analyzer, probably with a solver less general than the

GI/G/n one, but still based on our approach would be a powerful solution.

7.2 Future Work

The work in this thesis opens a lot of scope for future work in several areas in the field of SOC

design. The major step would be the automatic transformation of sequential programs into

context-flow ones. This involves automatic context-recognition and code partitioning, which

is a challenging task when considering dynamically allocated objects of complex architectures

commonly used in interesting application.

Once synthesizing a complete application on a single cluster of a complete system of two-

level interconnect architecture is well defined, studying the behavior of traffic on that second

level network becomes an important task. So far, only random traffic [17] and small appli-

cations like MPEG decoder [72], small enough to accommodate on a single cluster or even a

single PE, were used to study the behavior of these networks, which are far from being rep-

resentative of the projected traffic between various applications running on different tiles of a

large SOC.

After having a better understanding of the behavior of on-chip traffic, the queueing model

proposed in this work will be enhanced and used as an essential part of complete system-level

synthesis tool.

Bibliography

[1] L. Adams. Overview of the CoreFrame Architecture. Technical report, Palmchip, January 2002.

[2] Altera. Excalibur Devices. http://www.altera.com/products/devices/arm/

arm-index.html.

[3] B. S. Amrutur. Design and Analysis of Fast Low Power SRAMs. PhD thesis, Stanford University,

August 1999.

[4] ARM. PrimeXsys Platforms Overview. http://arm.com/products/solutions/

PrimeXsysPlatforms.html.

[5] ARM. AMBA Specification (Rev 2.0). Technical report, Advanced RISC Machines (ARM), 1999.

[6] J. Babb, M. Rinard, C. A. Moritz, W. Lee, M. Frank, R. Barua, and S. Amarasinghe. Parallelizing

Applications into Silicon. In IEEE Symposium on FPGAs for Custom Computing Machines, pages

70–80, April 1999.

[7] A. Baghdadi, N.-E. Zergainoh, W. O. Cesario, and A. A. Jerraya. Combining a Performance

Estimation Methodology with a Hardware/Software Codesign Flow Supporting Multiprocessor

Systems. IEEE Transactions on Software Engineering, 28(9), September 2002.

[8] L. Benini and G. D. Micheli. System-Level Power Optimization: Techniques and Tools. ACM

Transactions on Design Automation of Electronic Systems (TODAES), 5(2):115–192, April 2000.

[9] L. Benini and G. D. Micheli. Networks on Chips: A New SOC Paradigm. Computer, 35:70–78,

January 2002.

[10] K. Brandenburg and H. Popp. An Introduction to MPEG Layer-3. EBU Technical Review, June

2000.

[11] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical report, Computer

Science Department, University of Wisconsin, 1997.

86

BIBLIOGRAPHY 87

[12] Cadence. Encounter Digital IC Design Platform. http://www.cadence.com/products/

digital_ic/.

[13] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle. Custom

Memory Management Methodology: Exploration of Memory Organisation for Embedded Multi-

media System Design. Kluwer Academic Publishers, 1998.

[14] W. J. Dally and S. Lacy. VLSI Architecture: Past, Present, and Future. In Proceedings of the 20th

Anniversary Conference on Advanced Research in VLSI, March 1999.

[15] W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip Interconnection Networks. In

Proceeding of the 38th Design Automation Conference, pages 684–689, June 2001.

[16] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan Kauf-

mann, December 2003.

[17] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: Task Graphs for Free. In International Workshop

on Hardware/Software Codesign, March 1998.

[18] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks. Morgan Kaufmann, 2002.

[19] T. Dumitras, S. Kerner, and R. Marculescu. Towards On-Chip Fault-Tolerant Communication. In

Asia and South Pacific Design Automation Conference, Januuary 2003.

[20] A. Ferrari and A. Sangiovanni-Vincentelli. System Design: Traditional Concepts and New

Paradigms. In IEEE International Conference on Computer Design, October 1999.

[21] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and Design of Embedded Systems.

Prentice Hall, 1994.

[22] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao. SpecC: Specification Language and

Methodology. Kluwer Academic Publishers, Boston, March 2000.

[23] J. Golbus, B. Gribstad, C. Kozyrakis, and K. Wang. Interconnection Issues Between Memory and

Logic in IRAM Systems. Technical report, University of California, Berkeley, 1997.

[24] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist. Network on

a Chip: An Architecture for Billion Transistor Era. In Proceedings of IEEE NorChip Conference,

November 2000.

[25] M. Horowitz, R. Ho, and K. Mai. The Future of Wires. In Proceedings of the IEEE, pages

490–504, April 2001.

BIBLIOGRAPHY 88

[26] J. Hu and R. Marculescu. Exploiting the Routing Flexibility for Energy/Performance Aware Map-

ping of Regular NOC Architectures. In Proceedings of the Design Automation and Test Confer-

ence in Europe, March 2003.

[27] IBM. The CoreConnect Bus Architecture. Technical report, IBM, 1999.

[28] T. Instuments. OMAP Processors for Wireless Devices. http://focus.ti.com/

graphics/omap/omap_020603.pdf.

[29] ITRS. International Technology Roadmap for Semiconductors, 2001 Edition. Technical report,

Semiconductor Industry Association, 2001.

[30] A. Jalabert, S. Murali, L. Benini, and G. D. Micheli. pipesCompiler: A Tool for Instantiating

Application Specific Networks on Chip. In Proceedings of the Design Automation and Test Con-

ference in Europe, March 2004.

[31] A. A. Jerraya, A. Baghdadi, W. Cesario, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. Paviot, and

S. Yoo. Application-Specific Multiprocessor Systems-on-Chip. Microelectronics Journal, Else-

vier Science, 33(11):891–898, November 2002.

[32] A. Kalavade and P. Moghe. A Tool for Performance Estimation of Networked Embedded End-

Systems. In Proceeding of the 35th Design Automation Conference, June 1998.

[33] K. Keutzer. Programmable Platforms Will Rule. EETimes, September 2002.

[34] K. Keutzer, S. Malik, J. M. Rabaey, and A. Sangiovanni-Vincentelli. System-Level Design: Or-

thogonalization of Concerns and Platform-Based Design. IEEE Transactions on Computer-Aided

Design, 19(12), December 2000.

[35] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J.-P. Soininen, M. Forsell, K. Tiensyrja, and A. He-

mani. A Network on Chip Architecture and Design Methodology. In IEEE Computer Society

Annual Symposium on VLSI, April 2002.

[36] K. Lagerstrom. Design and Implementation of an MPEG-1 Layer III Audio Decoder. Master’s

thesis, Chalmers University of Technology, May 2001.

[37] K. Lahiri, A. Raghunathan, and S. Dey. Fast Performance Analysis of Bus-Based System-On-Chip

Communication Architectures. In Proceedings of the International Conference on Computer-

Aided Design, November 1999.

BIBLIOGRAPHY 89

[38] K. Lahiri, A. Raghunathan, and S. Dey. Performance Analysis of Systems with Multi-Channel

Communication Architectures System-On-Chip Communication Architectures. In 13th Interna-

tional Conference on VLSI Design, January 2000.

[39] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System Performance,

Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., February 1984.

[40] L. Li, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and I. Kadayif. CCC: Crossbar Connected

Caches for Reducing Energy Consumption of On-Chip Multiprocessors. In EUROMICRO Sym-

posium on Digital System Design, Architectures, Methods and Tools (DSD’03), September 2003.

[41] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart Memories: a modular

reconfigurable architecture. In 28th Annual International Symposium on Computer Architecture

(ISCA), pages 161–171, June 2000.

[42] S. Malik, M. Martonosi, and Y.-T. S. Li. Static Timing Analysis for Embedded Software. In

Proceeding of the 34th Design Automation Conference, June 1997.

[43] R. Marculescu and A. Nandi. Probabilistic Application Modeling for System-Level Performance

Analysis. In Proceedings of the Design Automation and Test Conference in Europe, March 2001.

[44] G. Martin and H. Chang. Winning the SoC Revolution: Experience in Real Design. Kluwer

Academic Publishers, 2003.

[45] A. Mathur, A. Dasdan, and R. K. Gupta. Rate Analysis of Embedded Systems. ACM Transaction

on Design Automation of Eletronic Systems, 44(3), July 1998.

[46] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC

Press, 5 edition, October 1996.

[47] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[48] Microsoft Web Site. http://www.microsoft.com/com/.

[49] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The Nostrum Backbone - A Com-

munication Protocol Stack for Networks on Chip. In Proceedings of the VLSI Design Conference,

January 2004.

[50] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click Modular Router. In 17th ACM

Symposium on Operating Systems Principles (SOSP), December 1999.

[51] Message Passing Interface (MPI) Web Site. http://www-unix.mcs.anl.gov/mpi.

BIBLIOGRAPHY 90

[52] S. Murali and G. D. Micheli. Bandwidth-Constrained Mapping of Cores onto NoC Architectures.

In Proceedings of the Design Automation and Test Conference in Europe, March 2004.

[53] OMG Web Site. http://www.omg.org/.

[54] OpenCores Web Site. http://www.opencores.org.

[55] OpenSSL Project Web Site. http://www.openssl.org.

[56] P. P. Pande, C. Grecu, A. Ivanov, and R. Saleh. Switch-Based Interconnect Architecture for Future

Systems on Chip. In Proceedings of SPIE, VLSI Circuits and Systems, 2003.

[57] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and

K. Yelick. A Case for Intelligent RAM: IRAM. IEEE Micro, 17(2):34–44, /1997.

[58] L.-S. Peh. Flow Control and Micro-Architectural Mechanisms for Extending the Performance of

Interconnection Networks. PhD thesis, Stanford University, August 2001.

[59] Philips. Nexperia: Streaming Media for Advanced Multimedia Applications. http://www.

semiconductors.philips.com/products/nexperia/.

[60] J. Russell. Literature Survey: Software Performance Estimation. Technical report, University of

Texas at Austin, June 2001.

[61] A. Sangiovanni-Vincentelli. Defining Platform-Based Design. EEdesign, February 2002.

[62] F. Schirrmeister, M. Meindl, and S. Krolikoski. IP Authoring and Integration for HW/SW Co-

Design and Reuse – Lessons Learned. In Proceedings of the 9th IEEE/DATC Electronic Design

Processes Workshop (EDP), April 2002.

[63] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edi-

tion. John Wiley & Sons, second edition, October 1995.

[64] Sematech. International Technology Roadmap for Semiconductor. http://public.itrs.

net.

[65] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and A. Sangiovanni-Vincentelli.

Addressing the System-on-a-Chip Interconnect Woes Through Communication-Based Design. In

Proceeding of the 38th Design Automation Conference, June 2001.

[66] R. L. Sites. It’s the memory, stupid! Microprocessor Report, 10(10):19–20, August 1996.

[67] StarCore. SC1000 Platforms. http://www.starcore-dsp.com/.

[68] Synopsys. Galaxy Design Platform. http://www.synopsys.com/products/

solutions/galaxy_platform.html.

BIBLIOGRAPHY 91

[69] SystemC Web Site. http://www.systemc.org.

[70] L. Thiele, S. Chakraborty, M. Gries, and S. Kunzli. A Framework for Evaluating Design Tradeoffs

in Packet Processing Architectures. In Proceeding of the 39th Design Automation Conference,

June 2002.

[71] R. Usselmann. DES/Triple DES IP cores, September 2001.

[72] G. Varatkar and R. Marculescu. On-Chip Communication Analysis for Multimedia Applications.

In IEEE International Conference on Multimedia and Expo, August 2002.

[73] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch,

R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring It All to Software: Raw Machines.

IEEE Computer, 30(9):86–93, September 1997.

[74] H.-S. Wang, L.-S. Peh, and S. Malik. Power-Driven Design of Router Microarchitectures in

On-Chip Networks. In 36th International Symposium on Microarchitecture (MICRO), November

2003.

[75] H.-S. Wang, X.-P. Zhu, L.-S. Peh, and S. Malik. Orion: A Power-Performance Simulator for In-

terconnection Networks. In Proceedings of the 35th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO-35), January 2003.

[76] W. Whitt. The Queueing Network Analyser. The Bell System Technical Journal, 62(9):2779–

2815, November 1983.

[77] W. Whitt. Towards Better Multi-Class Parametric-Decomposition Approximations For Open

Queueing Networks. Annals of Operations Research, 48:221–248, 1994.

[78] D. Wingard. MicroNetwork-Based Integration for SOCs. In Proceeding of the 38th Design Au-

tomation Conference, pages 673–677, June 2001.

[79] Xilinx. ASMBL: Revolutionary Platform FPGA Architecture Delivering Highest Value. http:

//www.xilinx.com/products/asmbl/index.htm.

[80] T. T. Ye and G. D. Micheli. Physical Planning for Multiprocessor Networks and Switch Fabrics. In

Proceeding of the 14th International Conference on Application-Specific Systems, Architectures

and Processors, June 2003.

[81] W. Ye, R. Ernst, T. Benner, and J. Henkel. Fast Timing Analysis for Hardware-Software Cosyn-

thesis. In International Conference on Computer Design, June 1993.

BIBLIOGRAPHY 92

[82] T.-Y. Yen and W. Wolf. Performance Estimation for Real-time Distributed Embedded Systems. In

International Conference on Computer Design, June 1995.

[83] H. Zhang, M. Wan, V. George, and J. Rabaey. Interconnect Architecture Exploration for Low-

Energy Reconfigurable Single-Chip DSPs. In IEEE Computer Society Workshop on VLSI, pages

2–8, April 1999.

