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Abstract
Garbage collection is essential to the endurance of NAND
flash-based solid state drives (SSDs). Analytic modeling
of garbage collection reveals the non-trivial relationship
between endurance, a performance metric manifested as
write amplification, and the algorithmic design variables, de-
vice configurations and workload characteristics. This work
builds on recent advances in analytic modeling that targets
hotness-aware victim selection algorithms, and improves
them using a simpler system of algebraic equations. We
show that such a model retains the precision of predicting
write amplification, with less than 5% error, while reducing
the running time from several hours, as the case in previous
model of ordinary differential equations, to merely a few
seconds. Equipped with such models, we show how design
insights can be obtained to guide performance tuning.

Categories and Subject Descriptors C.4 [Performance of
systems]: Modeling techniques

General Terms modeling, design

Keywords Flash Translation Layer (FTL), Garbage Collec-
tion, Write Amplification, Performance Modelling

1. Introduction
The market development of NAND flash-based Solid State
Drive (SSD) is outstripping that of hard disk drives [Troxel
2013]. The dramatic decrease in price and recent technology
breakthroughs in capacity, reliability, and speed have made
the flash memory a viable storage medium in both consumer
devices and enterprise solutions. However, the underlying
NAND flash technology imposes an endurance limit on the
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SSD device, ranging from a hundred to a hundred thousand
erase/write cycles for each physical block. Once the limit is
exceeded, the data stored are no longer considered reliable.

Unfortunately, the erase operation is required to precede
any in-place update of a flash memory cell. To avoid high
latency and shortened device lifetime due to this “erase-
before-write” constraint, a log-structured write scheme must
be employed. In this situation, the drive writes data at a new
location while it marks the old data as invalid, with flash
management software known as Flash Translation Layer
(FTL). This scheme necessitates a garbage collection (GC)
mechanism that reclaims invalid data and consolidates free
space for subsequent updates. In this GC process, the copied
valid data unproductively consume write budget, as shown
by the dash arrows in Figure 1. As a result, the actual amount
of data written to the flash memory usually exceeds the
user requested write amount (solid arrows), a phenomenon
known as write amplification. Understandably, the write am-
plification is destructive to the effective lifetime of flash-
based storage devices, making them impractical in the long-
term for large storage.
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Figure 1. Write traffic in SSD

Thanks to contributions made in the context of log-
structured file systems [Rosenblum and Ousterhout 1991]
and, later, the flash community [Chen et al. 2011, Park
and Du 2011], the side effects of the GC process are well-
understood and have been mitigated. Nevertheless, these
works are mainly experimental and validated usually by
trace-driven simulations. Like any experimental methodol-
ogy, trace-driven simulations suffer from long running time.
In addition, they are incapable of uncovering the non-trivial
relationship between write amplification and design vari-
ables. Analytical instruments are therefore urgently needed,
particularly in large-scale SSD systems.



Recently SSD researchers propose several analytic mod-
els, allowing FTL designers to analyze design trade-offs
in write amplification reduction [Bux and Iliadis 2010,
Desnoyers 2014, Van Houdt 2013a]. Despite significant
results, these models either adopt the impractical greedy
method of the GC selection algorithm or they fail to in-
corporate the complexity of hotness characteristics in real
workloads, preventing them from being used in real FTLs.
Although [Yang and Zhu 2014] present a model that ad-
dresses the two concerns, their solution relies on an ordinary
differential equation (ODE) based system derivation. Such
a model could suffer from a long run-time, typically hours,
when the design parameters scale. Therefore, a convenient
solution for realistic, high-efficiency GC algorithms with a
generic traffic model is still lacking in the literature to date.

To bridge this gap, we first employ the d-Choice selection
algorithm that is demonstrated to provide an excellent trade-
off between ease of use and GC performance [Van Houdt
2013a]. Second, we fit generic workloads into a multi-tiered
traffic model in compliance with data separation schemes in
recent SSD works [Hsieh et al. 2006, Park and Du 2011].
Third, we develop system state derivatives and character-
ize the steady state by a system of algebraic equations, from
which the write amplification is derived. To the best of our
knowledge, this is the first analytical work presenting an al-
gebraic solution that evaluates the write amplification with
d-Choice selection for a generic traffic. While demonstrating
similar accuracy to the ODE based approach [Yang and Zhu
2014], this model enjoys a substantial run-time reduction,
allowing efficient design trade-offs explorations. Based on
analytical results, we provide insights on performance opti-
mization for hotness-aware flash management algorithm de-
signers.

The rest of this paper proceeds as follows. In Section 2 we
explain the FTL concepts and define the problem. Section 3
presents model notations and analytic derivation towards the
output, i.e. the write amplification factor. We demonstrate
the accuracy of the proposed model by a comparison to
simulated results in Section 4. With the validated predictive
power, we provide design insights on performance optimiza-
tion in Section 5. We give detailed review of related prior
work in Section 6 and conclude the paper in Section 7.

2. Problem description
The I/O behaviour of flash memory is fundamentally differ-
ent from that of hard disks owing to its unique erase-before-
write and wear-out characteristics. Flash memory blocks
must be erased before it can store new data, and can only
sustain a limited number of erase-program cycles, usually
from as little as 100 to a more typical 3,000 or 100,000 times.
Flash memory is organized in units of pages and blocks. A
flash page in modern models is 8KB or 16KB in size and a
block has 128 or 256 flash pages.

FTL is a set of flash management functions designed to
conceal the peculiarities of flash memory and to provide
the traditional block-level interface, which exposes an array
of logic blocks to the upper-level software stack. To avoid
the costly erase-before-write cycle on blocks, overwriting a
logical page is done by performing an out-of-place update.
An unoccupied and erased location holds the updated data
and this newly allocated page is marked as valid or live,
leaving the physical page containing old data invalid. This is
analogous to the write process in log-structured file systems.

2.1 Garbage collection
Out-of-place updates necessitate a garbage collection (GC)
process to reclaim the space for invalid data. This cleaning
process is triggered once the percentage of free blocks in
the system drops below a threshold. The GC works by (1)
selecting a victim block; (2) copying live data remaining
in the block to a new place; and (3) erasing the block and
moving it to the free block pool. If the victim block contains
V live pages out of B, the total gain is B − V . As migrating
the live pages unproductively consumes free pages, it is
considered a source of write amplification. It is numerically
defined as the ratio of total number of physical page written
to number of logical page writes, or formally,

A =
B

B − V
(1)

where V is the mean of the number of live pages in selected
victim blocks.

Throughout the paper, we use a d-Choice algorithm [Li
et al. 2013, Van Houdt 2013a] as the selection algorithm
in the GC process. Originating from the selection algorithm
in load balancing [Mitzenmacher 2001], the d-Choice pro-
vides an excellent trade-off between ease of use and perfor-
mance. It employs a selection window of size d that defines
a random subset of d out of total N blocks to be selected.
Moreover, the window size d is a tunable parameter that en-
ables the designer to perform design trade-off exploration
in the spectrum between the random and greedy policies.
Intuitively, the random selection (d = 1) maximizes wear-
leveling, while the greedy selection (d→∞) minimizes the
cleaning cost, meaning the write amplification. In fact, the
d-Choice manages to achieve a negligible write amplifica-
tion difference to the greedy selection with a d value such as
d = 10 [Van Houdt 2013a].

2.2 Free space characterization
We refer the space available to perform the out-of-place
updates as free space. It is well known that the fraction
of free space is a key parameter for write amplification in
flash [Baek et al. 2007]. A live data ratio, ρ, characterizes
this relation, which is numerically defined as the ratio of
the number of written pages in user space to the number of
available physical pages. In practice, we always have ρ < 1.



Understandably, ρ is traffic dependent and thus correctly
characterizes the fraction of live data in the system.

2.3 Data Placement
The cleaning efficiency of GC largely depends on data place-
ment. Collocated hot and cold data tend to create more GC
traffic when the block is cleaned. This is so because the cold
data invalidates slowly. It is thus wise to group data with
similar update frequencies in blocks to form a skewed dis-
tribution of live data in the device, facilitating the selection
algorithm in choosing a good candidate block for cleaning.
This strategy is well researched in related literature [Hsieh
et al. 2006, Park and Du 2011], known as data separation by
hotness.

The separation is implemented by write frontier (WF)
blocks, through which user data are written into flash mem-
ory. Pages in a frontier block, or open block, are sequentially
written until the block becomes full. Once it is full, the flash
controller considers the frontier closed and allocates a new
one from the free block pool as a new WF. User data identi-
fied as the same hotness tiers are written into the same WF.
In this work, we assume, during system operations, that no
more than one WF is designated to one hotness tier.

Once the traffic is separated, written data forms multiple
disjoint hotness regions in the flash array, where allocation
and clean can be self-regulated with its own FTL. This pro-
visioning allows us to handle the complexity of overall write
amplification derivation by modeling the performance in the
individual hotness region, as explained later in Section 3.

Moreover, in this work we only consider and measure the
write amplification introduced by GC. In doing so we ignore
the cost of the read operation, which is significant in a disk-
based file system, but much less so in flash-based ones. We
also ignore the extra writes introduced by algorithms other
than GC, such as the address translation by FTL; we also
ignore the cost of erase operations.

3. System Model
3.1 The overall framework
Write amplification, denoted by A, is a function of a n-
tier traffic model T , device configurations C and a garbage
collection algorithm G, or formally,

A = f(T,C,G) (2)

Notations used in this paper are summarized in Table 1
and discussed in detail in the rest of this section.

3.2 Traffic model
The traffic model T characterizes the write skew in work-
load, abstracted by an n-tier model

T = 〈U,w, n, ~r,~l〉 (3)

where U is the number of pages in LBA space; w is the
portion of LBA space to which the write accesses are made;

Table 1: Modeling notations
Symbol Description

Input parameters
T.U number of pages in LBA space
T.w fraction of non-read-only data in LBA space

traffic T.n number of hotness tiers
model T.~r a vector of fractions of write count

T.~l a vector of fractions of LBA space
device C.N number of physical pages in device
config. C.B number of pages per block

C.~R a vector of free space provisioning
GC
config.

G.d selection window size of d-Choice

Output value
A write amplification factor

Key intermediate variables & constants
ρ live data ratio
M system state matrix
π steady system state
P probability matrix of victim block selection

~r ∈ {〈r1, . . . , rn〉 ∈ Rn|ri ≥ 0 ∧
n∑
i=1

ri = 1} and ~l ∈

{〈l1, . . . , ln〉 ∈ Rn|li ≥ 0 ∧
n∑
i=1

li = 1}. T characterizes

a distribution of logical page hotness. Each page falls into
one of n disjoint tiers, denoted by i ∈ {1, 2, . . . , n}. Each
tier is characterized by ri and li, meaning that a fraction ri
of write requests are made on the pages in tier i, taking a
fraction li of the LBA space. The n-tier traffic model has two
advantages: 1) it is simple enough to express the write skew
analytically; and 2) it is sufficiently general to approximate
real I/O workloads. To fit a real I/O workload into the n-tier
model, a page rank is created with update frequency. Then
a binning scheme is applied to the rank, forming bins where
pages with similar hotness can be grouped. Unless otherwise
stated, the write skew is assumed stationary over the time.

3.3 Device configuration
The device is characterized by C = 〈N,B,R〉, where N is
the number of physical pages; B is the number of pages per
block, or block size; and ~R ∈ {〈R1, . . . , Rn〉 ∈ Rn|Ri >
0 ∧

n∑
i=1

Ri = 1}, where Ri is the fraction of free space

provisioned for writing data in hotness tier i.
We can now derive live data ratio ρ = U×w

N , where
U and w are defined in Section 3.2. It represents the live
data fraction in the device. For the multi-tiered case, each
hotness region independently maintains a live data ratio ρi,
numerically defined as the ratio the number of logical pages
in tier i to the number of physical pages in region i, i.e.,

ρi =
li

li +Ri × ( 1
ρ − 1)

(4)



Table 2: An exemplary snapshot of system state in SSD with
N = 64, B = 4 and n = 2 (0 ≤ j ≤ B and 1 ≤ i ≤ n).
The number of blocks of a type is given in the bracket.
mi
j j=0 j=1 j=2 j=3 j=4

i=1 0 0 3.8%(1) 23.1%(6) 73.1%(19)
i=2 0 0 5.3%(2) 28.9%(11) 65.8%(25)

3.4 System state modeling
The type of a physical block, denoted by 〈i, j〉, is jointly
defined by the hotness tier i ∈ {1, . . . , n}, the block has
been allocated for, and the number of live pages contained
in the block j ∈ {0, 1, 2, . . . , B}. Thus, the system state at
time t can be described by a matrix

M(t) =


m1

0 m1
1 · · · m1

B

m2
0 m2

1 · · · m2
B

...
...

. . .
...

mn
0 · · · · · · mn

B


where mi

j is the fraction of blocks of type 〈i, j〉 in hotness
region i at time t. Note that the sum of each row in M is 1 at
any time.

Table 2 shows an instantaneous system state of an exem-
plary device containing 64 blocks, 4 pages per block. The
blocks are allocated for one of the two hotness tiers. In the
example, 26 blocks have been allocated for tier 1, among
which 73.1% (19 out of 26) contain 4 live pages, i.e., the
fraction of blocks with type 〈1, 4〉 is 73.1% at the moment.

3.5 Garbage collection
Using the d-Choice selection algorithm, garbage collection
is characterized by a sole parameter d that defines a random
subset of d out of a total of Ni = N ×Ri blocks in region i.
We define a victim probability matrix P , where each element
pij is defined to be the probability a type 〈i, j〉 block is
selected as victim for cleaning in region i, as follows.

P =


p10 p11 · · · p1B
p20 p21 · · · p2B
...

...
. . .

...
pn0 · · · · · · pnB


Given G = 〈d〉, we have

pij =

 B∑
k=j

mi
k

d

−

 B∑
k=j+1

mi
k

d

(5)

The first term in Equation (5) gives the probability that all
the randomly selected d blocks in tier i have no less than j
live pages, while the second term is the complement of the
probability that at least one has exactly j live pages. Thus,
the difference is the probability that a block containing j live
pages is selected. Note that the sum of each row in P is 1.

3.6 State transition
The state transitions are driven by both user writes and data
migration in GC. More specifically, the user writes increase
the number of valid pages in write frontiers and decrease the
number in some of other blocks due to data invalidation. The
GC process creates free blocks while increases the number
of valid pages in write frontiers.

Within the region i, the probability that a valid page in a
block of type 〈i, j〉 blocks is updated by an external write is
the ratio of the number of valid pages contained in the blocks
of type 〈i, j〉 to the total number of user pages in tier i, i.e.,

uij =
NRim

i
jj

BNRiρi
=

1

Bρi
×mi

j × j (6)

where ρi is given in Equation (4).
Let ∆mi

j be the expected change to mi
j between two

consecutive cleanings of the victim blocks, or a cleaning
interval. For j < B,

∆mi
j =

(
B∑
k=0

piB−k × k

)
× (uij+1 − uij)− pij (7)

The first term
B∑
k=1

piB−k × k represents the mean of the

number of user writes within a cleaning interval. Any such
write to a block of type 〈i, j + 1〉 increases the total number
of type 〈i, j〉 blocks in the system, while a request to a block
of type 〈i, j〉 decreases the number. In addition, we also lose
a type 〈i, j〉 block due to the cleaning.

We notice that(1)

B∑
k=1

piB−kk = B −
B∑
k=1

(cik)d (8)

where cij =
B∑
k=j

mi
k is the cumulative fraction of blocks

containing at least j live pages in hotness tier i. Equation (8)
can be understood as follows. The right-hand side is the
mean of the number of free pages gained from a GC process,
which should match the mean of the number of user writes
serviced between the cleaning interval, represented by the
left-hand side in the equation. For simplicity, let βi = B −
B∑
k=1

(cik)d.

For j = B,

∆mi
j =

B∑
k=0

pik × b
B−k,k/BWl(i)
0 − pij − βi × uij (9)

where bq,pi =

(
q
k

)
pi(1−p)q−i is the binomial probabilities.

The latter two terms can be understood as before, while the

(1) Proof of Equation (8) is available upon request.



first term states that a type 〈i, B〉 block is formed (as a write
frontier) by k pages copied from the immediately preceding
GC process cleaning a block of type 〈i, k〉 and B − k recent
user writes demanding pages in a tier i block, none of which
invalidates the former k pages. Note that k/BWl(i) � 1,
b
B−k,k/BWl(i)
0 ≈ 1. Equation (9) can be reduced to

∆mi
B = 1− piB − βi × uiB (10)

3.7 Steady State
A necessary and sufficient condition of steady system state,
denoted by π, is ∆mi

j = 0 at π, for all i ∈ {1, . . . , n} and
j ∈ {0, . . . , B}.

Uniform Traffic We first examine the steady state for uni-
form traffic, or n = 1. When d = 1, the victim block is
randomly chosen and thus p1j = m1

j . From Equation (7)
and Equation (10), ∆m1

j = 0, 0 ≤ j ≤ B, yields π1 =

〈m1
0, . . . ,m

1
B〉, where

m1
j =

{
1

1+(1/ρ−1)·B , j = B

m1
B ·
∏B−j
k=1

(1/ρ−1)·(B−k+1)
1+(1/ρ−1)(B−k) , 0 ≤ j < B.

(11)
We then generalize the d-Choice with d ≥ 2. Assuming

(c1B)d � 1, we have c1B = ρ1
β1

from Equation (10). For
j < B, from Equation (7) and, we obtain a system of
algebraic equations(2)

(c1j )
d +

jβ1
Bρ1

(c1j − c1j+1) = 1 (12)

Note that β1 is a function of c1j , 0 ≤ j ≤ B. Thus the
equations can be solved numerically (3).

Figure 2 shows a comparison of system steady states pre-
dicted by the proposed model and the simulation results for
different ρ and d values. The simulation performed on a de-
vice with B = 32 and N = 131, 072 is driven by a uniform
workload of 20 million write requests. The x-axis represents
the block type, and y-axis indicates the occupancy. The com-
parison demonstrates that, under all cases, our model pro-
vides a good approximation of the steady system state.

Skewed Traffic Directing skewed traffic into different hot-
ness regions where garbage collection is independently per-
formed implies that each hotness tier is regulated by an in-
dependent flash translation layer (characterized by ρi). In
this way, the problem is reduced to the uniform traffic case
by which the steady state of the whole device can be con-
structed, i.e.,

π = 〈π1, . . . , πn〉 (13)

where πi represents the steady state of hotness region i.

(2) Derivations of Equation (11) and Equation (12) are available upon re-
quest.
(3) MATLAB code for these and other numeric computations in this paper
is available upon request.
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Figure 2. Comparison of model-predicted steady system
state and simulation results. X-axis represents block type. Y-
axis indicates the occupancy percents. The states are reached
by 20 million random writes. (B = 32 and N = 131, 072)

3.8 Write amplification
Once the steady system state π is obtained, write amplifica-
tion can be immediately derived. As the frequency of GCs
invoked in a hotness tier is proportional to the request arrival
rate, the overall write amplification is given by

A =
n∑
i=1

ri ×Ai =
ri ×B

B −
B∑
k=0

pik × k
(14)

where pik is the element of the victim probability matrix
under πi = 〈mi

0, . . . ,m
i
B〉withmi

j , 0 ≤ j ≤ B, solved by
replacing m1

j with mi
j in Equation (11) or Equation (12).

4. Model Validation
4.1 Simulation Setup
4.1.1 Datasets
We use both real and synthetic traces to drive the simu-
lations. Filebench [McDougall 2014] trace fileserver and
varmail emulate block I/O behavior of a file server and a
mail server, respectively. The real-world traces, obtained
from UMass Trace Repository [Storage Performance Coun-
cil 2002] and [Storage Networking Industry Association
2011], include an OLTP trace fin2 collected from an online
transaction process application running at a large financial
institution and a database trace rad-be collected via 18-hour
SQL replication on a back-end server running at Microsoft.

The write skew in real-world traffic is oftentimes high,
and we observe so in the selected traces. The highly skewed
traffic implies a low live data ratio and naturally leads to



Table 3: Trace characteristics and simulation configurations
Trace Characteristics SSD device configurations

Aligned
page
size
(KB)

Number of
normalized

write requests
(million)

Write
range
(GB)

Working set
N × w(# of

pages in
million )

Configured
device

capacity
(GB)

Total
number

of dies in
SSD

Total
number of
blocks per

die

Block
size

Free
space

partition

synthetic 20 15 2.5/3.6/3.8
fileserver 4 3 15 1.4 16 16
varmail 3.5 15 1.3 8192 32 Equal

fin2 8 3.8 9.3 0.8 12 6
radbe 38.5 81.9 5.5 84 42

a low write amplification falling into in a narrow range
that is close to 1. In order to examine the model accuracy
with diverse high live data ratios, we use synthetic traces.
Characteristics of the used workloads are given in Table 3.
As read requests do not influence our analysis, we record the
write requests only.

In a trace, we rank the logical pages by their write counts
(hotness) in a descending order and group pages with similar
hotness into bins that each is created 2 times wider than the
one preceding it. In this way, we obtain hotness tiers with the
first bin contains the hottest pages and the last bin contains
the coldest. Separation with 2,4 and 6 bins are examined.

4.1.2 SSD configuration
We have used a commercial flash array simulator offered by
our industry partner, who is an SSD vendor. The simulator
models real devices, and can simulate an arbitrary SSD ar-
ray configuration with different flash device and parallelism
characteristics. It can also drive the input using trace files in
DISKSIM format, or using common I/O benchmarking tools
such as iometers, vdbench etc. The capacity of the simulated
flash array scales to terabyte range. To ensure reproducible
and comparable results, we have chosen SSD configuration
that is consistent with prior literature, and can be likely han-
dled by academic simulators [Kim et al. 2009].

Some configurations are trace specific. For example, the
device capacity is configured slightly larger than the largest
LBA referenced in a trace, by using different number of dies.
The total number of blocks per die and the block size remain
unchanged in all simulations. In multi-tiered cases, by de-
fault the free space is equally divided for each hotness re-
gion, i.e., Ri = 1/n for i = 1, . . . , n, allowing each re-
gion maintains an FTL by itself. Note that the default provi-
sioning setting is used to perform model validation but per-
formance tuning. We later discuss performance optimization
implications later in Section 5.

The garbage collection starts once the total number of
free pages drops below 0.5% of total pages and ends when
this threshold is surpassed. The d-Choice selection config-
ured with d = 2, 5, 10 is used. While the garbage collec-
tor is busy, user requests are held. In multi-tiered case, the
threshold applies to each hotness region.

4.1.3 Simulation behavior
The simulation is profile-based and the configuration space
is swept for each of the traces. Each simulation starts with an
empty state, meaning that the SSD is clean and no data has
been written. To make sure that the device reaches a steady
state with a sufficiently large number of GC performed, the
exercising trace is replayed until more than 100,000 GC
counted, a method has been used in prior SSD work [Li et al.
2013]. In multi-tiered case, the counts are ensured in each
hotness region in the same way. The write amplification is
reported when the simulation ends.

4.2 Validation results
We compare the predicted write amplifications to simulation
results for different design parameters, shown in Table 4.
Input profiles are differentiated by traffic models, d values as
well as device configurations. For synthetic uniform traces,
traffic models are differentiated by working set sizes, while
filebench and real-world traces, whose working set sizes are
fixed, are investigated with different number of tiers used to
separate data. As a result, we find that the predictions are
quite close in all examined cases. The absolute value of the
maximum relative errors is 4.14% and the mean is 1.64%.

4.3 Results agreement
Parameterized modeling enables us to customize our model
to some published analytic frameworks [Desnoyers 2014,
Van Houdt 2013a] that have been shown highly accurate.
In the remainder of this section, we compare our predic-
tions with their results and present the agreement or even
better approximations that advocate for our model’s predic-
tive power. Appreciating these pioneering studies, we point
out that our model provides more analytic capabilities that
are not all found in any of the other works, which is later
discussed in detail in Section 6.

4.3.1 d-Choice selection algorithm
An ordinary differential equations (ODEs) based model is
proposed by [Van Houdt 2013a]. It is shown to be highly
accurate to evaluate GC performance with the d-Choice al-
gorithm under uniform traffic. We plug the parameters used
in the Table.1 of his paper into our model and find results
agreement, as shown in Table 5. The spare factor Sf was



Table 4: Comparisons of predicted write amplifications and trace-driven simulation results. Traffic specific simulation config-
urations is given in Table 3. d-Choice with d = 2, 5, 10 and traffic separated by n = 2, 4, 6 tiers are examined.

Trace d A
(model)

A
(sim.)

rel. error A
(model)

A (sim.) rel.
error

A
(model)

A
(sim.)

rel.
error

ρ = 0.6 ρ = 0.85 ρ = 0.9

Synthetic 2 1.85 1.84 0.54% 4.62 4.61 0.22% 7.25 7.23 0.28%
uniform 5 1.54 1.52 1.31% 3.57 3.54 0.85% 5.11 5.08 0.59%
(n = 1) 10 1.47 1.44 2.08% 3.34 3.30 1.21% 4.74 4.71 0.63%

n = 2 n = 4 n = 6

2 1.20 1.18 1.69% 1.23 1.21 1.65% 1.30 1.28 1.56%
fileserver 5 1.08 1.08 0 1.12 1.10 1.82% 1.18 1.16 1.72%

(ρ = 0.35) 10 1.06 1.06 0 1.10 1.08 1.85% 1.15 1.14 0.87%
2 1.14 1.18 -3.39% 1.14 1.12 1.78% 1.20 1.17 2.56%

varmail 5 1.05 1.07 -1.86% 1.07 1.05 1.90% 1.11 1.09 1.83%
(ρ = 0.31) 10 1.03 1.06 -2.83% 1.05 1.04 0.96% 1.09 1.07 1.87%

2 1.39 1.45 -4.14% 1.42 1.40 1.42% 1.57 1.52 3.28%
fin2 5 1.21 1.26 -3.97% 1.24 1.23 0.81% 1.36 1.33 2.26%

(ρ = 0.48) 10 1.17 1.21 -3.31% 1.20 1.20 0% 1.32 1.28 3.13%
2 1.05 1.07 -1.87% 1.06 1.05 0.95% 1.11 1.07 3.74%

radbe 5 1.01 1.01 0% 1.02 1.01 0.99% 1.05 1.03 1.94%
(ρ = 0.18) 10 1.00 1.01 -0.99% 1.01 1.00 1% 1.04 1.02 1.96%

defined as the ratio of spare space to physical capacity, nu-
merically equivalent to 1 − ρ in our work. The block size is
set to 64 in the comparison.

Table 5: Model accuracy for d-Choice algorithm. Input pa-
rameters are borrowed from the Table.1 in [Van Houdt
2013a], where spare factor Sf is numerically equivalent to
1− ρ in our model.
d Sf A ([Van Houdt

2013a])
A(our
model)

A
(simulation)

2 0.07 9.64 10.05 9.64
4 0.07 7.72 7.72 7.72
8 0.07 7.00 7.00 7.00
2 0.14 4.96 4.97 4.97
4 0.14 4.07 4.07 4.07
8 0.14 3.74 3.74 3.74
2 0.21 3.37 3.37 3.37
4 0.21 2.80 2.80 2.80
8 0.21 2.59 2.59 2.59

4.3.2 Greedy selection algorithm
Desnoyers [Desnoyers 2014] has presented a highly accu-
rate approximation of the write amplification under greedy
selection algorithm. We plug the parameters used in the Ta-
ble.3 of his paper into our model and show in Table 6 the
predicted results by the two as well as the simulation results.
The variable α was defined as the over-provisioning factor
in [Desnoyers 2014] and numerically equivalent to 1

ρ in our
work. In order to approach the greedy policy, we customize
the d-Choice by letting d be total number of physical blocks
in device. In all the shown cases, our model yields very close
results to the simulation and in addition we do better than the
compared when α is close to 1.

Table 6: Model accuracy for greedy GC algorithm. Input
parameters are borrowed from the Table.3 in [Desnoyers
2014],where the over-provisioning factor α is numerically
equivalent to 1

ρ in our model.
α A (Eq.16

in [Desnoyers 2014])
A (our
model)

A
(simulation)

1.03 13.71 13.86 13.86
1.05 9.19 9.20 9.20
1.07 7.00 7.00 7.01
1.12 4.53 4.53 4.53
1.20 3.05 3.05 3.05

Table 7: Matlab modeling run-time for modern flash array
configurations. A′ and T ′run are from [Yang and Zhu 2014]
B ρ d A′ A (our model) T ′

run Trun (our model)
256 0.93 5 7.80 7.80 4h 57m 4s
256 0.87 10 4.08 4.08 9h 50m 3s
128 0.93 5 7.66 7.66 27m 1s
128 0.87 10 4.03 4.03 1h 6m 1s

4.4 Modeling speed-up
While demonstrating the high accuracy, our model enjoys
a substantial speed-up over the ODE-based approaches. Ta-
ble 7 shows the run-time reduction for predicting the write
amplification for random traffic with modern flash array
configurations and selected ρ and d, in comparison with
the ODE-based model presented in [Yang and Zhu 2014].
The run-time is measured by the 64-bit version Matlab
(R2013a) [MathWorks 2013] under Windows 7 OS with
3.70GHz i7-4820K CPU and 16GB system RAM. Our
model achieves significant speed-up with orders of mag-
nitude, especially for large block sizes.



5. Design Implications
5.1 Optimization on provisioning
Because write amplification is a monotonically increasing
function of the live data ratio, reserving higher share of free
space for hotness region i decreases the write amplification
Ai, however, at the cost of increasing write amplification
in some other hotness regions, making the impact of free
space assignment on the overall write amplification non-
trivial. Figure 3 shows the write amplification as a func-
tion of free space provisioning for four 2-tiered traffic mod-
els T1-T4. Having the same live data ratio (0.72), they are
differentiated by parameters ~r and ~l. With G.d = 5, we ob-
serve that a global optimal provisioning yielding the mini-
mum write amplification exists in each case. For example,
~R = 〈0.5, 0.5〉 yields Aopt = 1.61 for traffic input T1, the
Rosenblum [Rosenblum and Ousterhout 1991] traffic model.

Like Equation (42) in [Desnoyers 2014], Aopt can be an-
alytically found by framing Equation (14) into an optimiza-
tion problem:

minimize
~R=〈R1,...,Rn〉

A =
n∑
i=1

ri ×Ai

s.t.
n∑
i=1

Ri = 1, Ri ≥ 0.

(15)

With solution of this equation(4), one can construct hotness
regions by specifying the free space assignment determined
by our optimization. Figure 4 demonstrates the performance
improvement by comparing write amplifications given by
the default (equal-sized) and the optimal provisioning for
a set of 171 3-tiered traffic models. The traffic models are
differentiated by parameter T.~r = 〈r1, r2, r3〉 with multiple
intervals of 0.05. Working set size N × w is set to 3 million
(ρ = 0.72 for 4KB-page 16GB devices) and logical address
space is logarithmically binned, i.e. T.~l ≡ 〈1/7, 2/7, 4/7〉.
In the figure, The x-axis and y-axis are values of r1 and r2,
respectively, and the z-axis is the write amplification pre-
dicted by our model. The upper surface is the write ampli-
fication given by the default free space provisioning, while
the lower surface represents the minimum write amplifica-
tion obtained by the optimization. For example, for T =
〈4.2 × 107, 0.72, 3, 〈0.3, 0.2, 0.5〉, 〈1/7, 2/7, 4/7〉〉, the de-
fault gives A = 1.97 while the optimal yields Aopt = 1.83.
On average, we observe a performance gain of 8% by the
optimization, which suggests that the equal-sized free space
reservation is a close-to-optimal provisioning scheme.

We have simulated this, creating synthetic workloads and
provisioning free space with the default and optimal assign-
ments. Sample results are shown in Table 8 and shown to
correspond to the analytic results.

(4) Solution is found by the MultiStart class implemented in Matlab [Math-
Works 2013].
(5) T5 = 〈4.2× 107, 0.72, 3, 〈0.40, 0.35, 0.25〉, 〈1/7, 2/7, 4/7〉〉
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Figure 3. Write amplification as a function of free space
provisioning for 2-tier traffic models T1-T4. SSD device
is of capacity 16GB, block size 32 and 4KB page size.
Garbage collection parameters include d = 5. The free space
provisioning is characterized by 0 < R1 < 1 (R2 = 1−R1).
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Figure 4. A comparison of write amplifications with equal-
sized and optimal free space provisioning. The used 3-
tier traffic models are differentiated by parameter ~r =
〈r1, r2, r3〉 with multiple intervals of 0.05.

Table 8: d-Choice cleaning with optimal free space provi-
sioning for 3-tiered data. (ρ = 0.72, B = 32)

Traffic
model

d Free space
provisioning

A (model) A (sim.)

T5
(5) 2 Equal-size 1.98 1.97

2 Optimal 1.95 1.94
T6

(6) 5 Equal-size 1.64 1.62
5 Optimal 1.56 1.54

(6) T6 = 〈4.2× 107, 0.72, 3, 〈0.60, 0.35, 0.05〉, 〈1/7, 2/7, 4/7〉〉



5.2 Optimization on data separation
Understandably, increasing the number of hotness tiers can
separate the data with a finer granularity and potentially fa-
cilitate the garbage collector in selecting good victim block
candidates. However, it does not necessarily improve the
overall write performance – we have already observed this
in Table 4. We consider the overall write amplification A
as a function of traffic model T and depict the relation-
ship based on our analytic results, shown in Figure 5. The
filebench and real-world traces are examined. For each trace,
the traffic models are differentiated by the number of tiers
T.n = 1, 2, . . . , 6, assuming the working set is logarithmi-
cally binned by data hotness. In addition, G.d = 5 and the
optimal free space provisioning are used in each case.

We observe that for the shown cases n = 3 or 4 yields the
lowest write amplification. The optimal tier number depends
on the write skew in the given traffic as well as the working
set binning scheme. Highly skewed traffic requires less hot-
ness regions partitioned in device, and can be well character-
ized by the simple hot/cold model. For less skewed traffic, a
larger number of bins maybe needed as mixing data of differ-
ent hotness is known to has negative impact on the cleaning.
However, over-binning is bad as well because too many cold
regions would reduce the share of free space reserved for
hot regions. Analytically, the overall write amplification is
dominated by the largest ri in Equation (14). With the loga-
rithmic binning, over-binning implies the write amplification
in coldest region predominates, where the worst cleaning is
performed, and it explains the upward tails in Figure 5 for
all cases. Unfortunately, we cannot examine all possible bin-
ning schemes, of which there are an infinite number.
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Figure 5. Write amplification on the number of hotness tiers
with optimal free space provisioning. User address space is
logarithmically binned by data hotness. G.d = 5.

5.3 Approximating greedy GC algorithm
Although the greedy selection algorithm yields the lower
bound of write amplification under a given system state, it
requires an expensive metadata management, preventing it
from being used in large systems. The d-Choice algorithm
provides a trade-off between the performance and practical-
ity. Understandably, the write amplification is a monotoni-

cally decreasing function of d. When d → ∞ the d-Choice
corresponds to the greedy policy.

In fact, d-Choice can well approximate the greedy pol-
icy with a much smaller d value. Figure 6 demonstrates
the approximation with different ρ values. The solid lines
plot the write amplification reduction while d increases; and
the non-solid reference lines are the lower bounds given by
the greedy policy. With d = 20, the d-Choice performance
is only 2.1% higher than the greedy for ρ = 0.9. When
d reaches 100, the performance gap shrinks to less than
0.5% for all examined cases. This observation implies that
d-Choice algorithm is a good candidate method for garbage
collection given its selective power and implementation sim-
plicity even when the system scales. Similar observation
was made in [Van Houdt 2013a]. While Houdt [Van Houdt
2013a] demonstrates that small d values suffice to approxi-
mate the write amplification of the greedy algorithm for dif-
ferent block size, we confirm that this observation holds true
for different live data ratio, in particular, when ρ is small.
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Figure 6. Approximation of greedy algorithm by d-Choice
for uniform traffic.

6. Prior Work
Rosenblum’s [Rosenblum and Ousterhout 1991] seminal
work provides the foundation for developing most of the
existing analytic models evaluating garbage collection per-
formance for flash memory based storage system. His initial
work is on log-structured file systems where he examines
write performance in the context of hard disk drives.

[Ben-Aroya and Toledo 2006] first examines the cleaning
cost in flash context by introducing a wear-leveling model.
Such a model shows a lower bound on the total writes that
a flash device running a simple randomized algorithm can
service. Their study also identifies that clustering blocks ac-
cording to update frequency is advantageous. Despite the
significance of its results, some assumptions, such a single-
block free pool, prevent this model from being used. [Baek
et al. 2007] identifies free space as a key parameter. Unfortu-



nately, this work provides no further investigations on traffic
models and the victim block selection method, both of which
have substantial impacts on GC performance.

[Bux and Iliadis 2010] derives write amplification with
the greedy algorithm from device’s steady-state probabili-
ties developed from Markov chain model. However, owing
to practical limitations, the model can be used only for very
small devices. In the same work, Bux presents a stochastic
model that captures the behaviour of large systems, but lack-
ing a closed-form solution. In addition, this work assumes
purely random small write traffic, limiting its adoption.

Subsequent to this, [Van Houdt 2013a] employs the
Markov model and achieves to characterize the system
state for large systems by introducing the mean field the-
ory (MFT). The system evolution is described by a system
of ordinary differential equations. The model assesses the
number of valid pages per block for a class of GC algo-
rithms, including the d-Choice and Greedy selection algo-
rithms, under uniform traffic. His later work [Van Houdt
2013b] extends this model with two write frontiers, sepa-
rating GC traffic and user traffic. Houdt’s models assume
that cold and hot data co-exist in a physical block, while it
has been well recognized that separating cold and hot data
could significantly reduce the cleaning costs. Using MFT as
well, [Li et al. 2013] extends the performance evaluation by
revealing trade-off between cleaning cost and wear-leveling.
However, the write behaviour in their framework does not
rely on the write frontier scheme, which is not practical.

[Yang and Zhu 2014] advances Houdt’s framework by
introducing hotness-awareness where traffic is generalized
by a multi-tier model. In addition, trace-driven simulations,
not found in [Van Houdt 2013a,b], have been used for model
validation. Despite demonstrated predictive power, this work
still relies on ODE-based system derivation, and suffers from
a long running time when design parameters scales. For
example, given a block size 128 and 4 hotness tiers, a typical
configuration in practice, it takes hours for the MATLAB
implementation to reach a result.

[Desnoyers 2014] delivers closed-form expressions for
write performance with LRU and greedy selection algo-
rithms. Particularly, the work examines uniform and simple
hot/cold traffic models. The author provides insights of de-
sign trade-off for the non-uniform case. In this case, he in-
vestigates an optimal free space partition that would mini-
mize the overall write amplification. While this framework
has achieved highly accurate approximation in demonstrated
cases, it also has several limitations hindering its wide adop-
tion. First, both LRU and greedy selection algorithms are
rarely adopted in actual designs. While the former yields
high cleaning cost, the latter is impractical when design pa-
rameter scales. Second, it is unclear if their approach may be
extended to realistic workloads with the greedy algorithm -
this is because no solution and simulation is described.

Prior to Desnoyers’ work, several models present closed-
form results as well. [Hu et al. 2009] develops a probabilistic
model to approximate the performance of the greedy algo-
rithm, but it is shown to be inaccurate under configurations
that are commonly found in consumer SSDs. [Agarwal and
Marrow 2010] and [Luojie and Kurkoski 2012] study the dis-
tribution of live and invalid pages, respectively, in selected
blocks. Both works derive an expected value of the number
for an asymptotic write amplification. Unfortunately, these
studies use the greedy algorithm exclusively and overlook
the data hotness.
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Figure 7. A capability comparison of state-of-the-art ana-
lytical frameworks for evaluating garbage collection perfor-
mance in flash memory based SSD.

Figure 7 shows that our model advances the state-of-
the-art by providing more analytical capabilities. These ex-
tra capabilities meet the needs of practical FTL design and
performance evaluation. These needs include 1) a generic
traffic model reflecting the complexity of real-world work-
loads; 2) a practical and efficient block selection algorithm
for garbage collection and 3) an accurate and economically
computational modeling process. In addition, simulations
driven by both synthetic and real-world traces validate our
model – a feature not found in many of previous proposals.

7. Conclusion
In this work, we have presented a highly accurate alge-
braic approach for evaluating the write amplification in the
garbage collection with the d-Choice selection algorithm for
general traffic. We validated the model accuracy with simu-
lations, using both an application benchmark and real-world
workloads; the errors against these simulations are shown to
be within 5%.

With our study, we conclude that the algebraic model
of garbage collection can compete in precision with mod-
els with ordinary differential equations, while reducing the
running time from hours to seconds. It should therefore, as
our discussion shows, serve as indispensable tools for design
optimizations.
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