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• Error tolerant applications

• Errors correctable: Iterative algorithms

• Inherently noisy: Sensor readings

• Errors acceptable: Image processing

Error Tolerance

2[Shi et. al, DAC 2014]



• Running system beyond 𝒇𝒎𝒂𝒙 may cause errors

• But critical path not always exercised

Timing Errors

3

𝑡𝑐𝑞 + 𝑡𝑐𝑜𝑚𝑏 + 𝑡𝑠𝑢 ≤
1

𝑓𝑚𝑎𝑥

D Q D Q

𝑡𝑐𝑞 𝑡𝑠𝑢

𝑡𝑐𝑜𝑚𝑏



• How often do timing errors occur?
• How likely are timing paths to be exercised?
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• How often do timing errors occur?
• How likely are timing paths to be exercised?

• Probability depends on:
• Circuit logic
• Input data

• Traditional Static Timing Analysis (STA) does not answer this!

Analysis Capability Gap
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• Goal: Calculate probability timing paths are exercised

Extended Static Timing Analysis (ESTA)
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ESTA: 87.5% 
𝐷𝑒𝑙𝑎𝑦 ≤ 2

STA: 100% 
𝐷𝑒𝑙𝑎𝑦 = 3
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Multiple Outputs

6

Module

Per-Output

Maximum over all outputs

• Composite module-level error
• Analogous to critical path delay



• SSTA 
• Models delay uncertainty

• Still assumes all paths switch

• ESTA
• Models input uncertainty
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• Introduction

• Extended STA Formulation

• Evaluation Framework

• Experimental Results

• Conclusion and Future Work

Outline
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• Model four transitions:

ESTA Transition & Delay Modeling
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Activation Functions
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• Let 𝒇 ∈ 𝔹𝒏 → 𝔹 be an activation function:
• Evaluates TRUE when an event occurs

• We can combine activation functions:

𝑨,𝑩 ⇒ 𝑪

𝒇𝑪 = 𝒇𝑨 ⋀ 𝒇𝑩



• Define a timing tag tuple:
• Transition

• Delay

• Activation Function

Timing Tags
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• Base-case activation functions at 
Primary Inputs

• Two variables per input

Base Activation Functions
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• Let 𝒇 be an activation function, and 𝒇 its support size then:

• Assumes uniformly distributed independent variables

Calculating Probabilities with #SAT
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• Let 𝒇 be an activation function, and 𝒇 its support size then:

• Assumes uniformly distributed independent variables
• Assumption can be removed with pre-processing

Calculating Probabilities with #SAT
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𝐩 𝒇 =
#𝐒𝐀𝐓(𝒇)

𝟐 𝒇



Probability Example
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• Propagate timing tags
• Calculate STA-like path-based delay estimates

• Build activation functions

• Probability Calculation
• Use #SAT to determine path probabilities

ESTA Formulation Summary

19



• Activation functions represented with 
Binary Decision Diagrams (BDDs)
• Easy manipulation 

• Efficient #SAT

• Bound some path-delay combinations
• Improves scalability (fewer tags)

• Adds some pessimism

ESTA Implementation

20



• Determine maximum delay histogram across all outputs

• Benchmarks: 
• MCNC20: 

• 554 to 6239 LUTs
• 8 to 1545 Primary Inputs

• Post-place-and-route delays from 40nm FPGA

• Comparison:
• Timing Simulation (Ground Truth)
• ESTA
• STA

Evaluation Framework

21



• Simulate primary input transitions

• Determine when primary outputs have 
stabilized

• Exhaustive Timing Simulation:
• Test all possible input transitions
• Impractical! 

• Input space too large

• Monte-Carlo Simulation:
• Randomly sample input space
• Detect when maximum delay has converged
• Assumed ground truth

Timing Simulation

22

Delay

Output:

Inputs:



Experimental Results: Accuracy on SPLA
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Experimental Results: Accuracy on SPLA
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STA Pessimism

ESTA Pessimism



Experimental Results: Quality
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• ESTA:
• 46% to 32% less 

pessimistic than 
STA



• 48 hour completion:
• MC: 10

• ESTA: 11

• ESTA Speed-up:
• 14.6x to 44.0x

Experimental Results: Run-time
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MC ESTA STA

Scalable

Safe Analysis

Overly Pessimistic

False Paths

Statistical Delays *

Technique Comparison
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* Future work



• Introduced ESTA method:
• Performs timing analysis with non-worst-case switching
• Calculates timing path activation probabilities using #SAT

• Described an ESTA implementation:
• 46% to 32% less pessimistic than STA
• 14.6x to 44.0x faster than MC Timing Simulation

• Future work:
• Improve scalability
• More general input distributions
• Feedback analysis results to optimization tools (Place & Route)
• Application studies

Conclusion & Future Work

28
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Thanks! Questions?



Backup
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• Exhaustive Simulation:

• ESTA:

Complexity

31
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• Exhaustive Simulation:

• ESTA:
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#SATGraph Traversal



Non-uniform Input Probabilities
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Circuit Under 
Analysis

{r: 0.25, f: 0.25, h: 0.25, l: 0.25} {r: 0.25, f: 0.25, h: 0.25, l: 0.25}

Circuit Under 
Analysis

Conditioning 
Functions



• Correlation determined by:
• Number of shared variables
• Activation function cover overlaps

Correlated Input Probabilities
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Circuit Under 
Analysis

Circuit Under 
Analysis



• b-d-e is a false path

False Paths
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• b-d-e is a false path

False Paths
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• MC underestimates clma
worst-case delay


