DESIGN, AUTOMATION & TEST IN EUROPE

27 – 31 March, 2017 · STCC · Lausanne · Switzerland The European Event for Electronic System Design & Test

Quantifying Error: Extending Static Timing Analysis with Probabilistic Transitions

Kevin E. Murray, Andrea Suardi, Vaughn Betz and George Constantinides

Imperial College London

Error Tolerance

- Error tolerant applications
 - Errors correctable: Iterative algorithms
 - Inherently noisy: Sensor readings
 - Errors acceptable: Image processing

Timing Errors

- Running system beyond f_{max} may cause errors
- But critical path not always exercised

• How often do timing errors occur?

• How often do timing errors occur?

• How likely are timing paths to be exercised?

- Probability depends on:
 - Circuit logic
 - Input data

• Traditional Static Timing Analysis (STA) does not answer this!

Extended Static Timing Analysis (ESTA)

• Goal: Calculate probability timing paths are exercised

Extended Static Timing Analysis (ESTA)

• Goal: Calculate probability timing paths are exercised

Extended Static Timing Analysis (ESTA)

• Goal: Calculate probability timing paths are exercised

Multiple Outputs

Multiple Outputs

Per-Output

Multiple Outputs

Per-Output

Maximum over all outputs

- Composite module-level error
 - Analogous to critical path delay

What about Statistical STA (SSTA)?

• SSTA

- Models delay uncertainty
- Still assumes all paths switch

• ESTA

• Models input uncertainty

What about Statistical STA (SSTA)?

• SSTA

- Models delay uncertainty
- Still assumes all paths switch

• ESTA

• Models input uncertainty

Outline

Introduction

- Extended STA Formulation
- Evaluation Framework
- Experimental Results
- Conclusion and Future Work

Symbol	Meaning
R	Rising
F	Falling
н	High (static)
L	Low (static)

Symbol	Meaning
R	Rising
F	Falling
н	High (static)
L	Low (static)

Symbol	Meaning
R	Rising
F	Falling
н	High (static)
L	Low (static)

Symbol	Meaning
R	Rising
F	Falling
н	High (static)
L	Low (static)

Symbol	Meaning
R	Rising
F	Falling
н	High (static)
L	Low (static)

Activation Functions

- Let $f \in \mathbb{B}^n \to \mathbb{B}$ be an *activation function:*
 - Evaluates TRUE when an event occurs

• We can combine activation functions:

$$A, B \Rightarrow C$$

$$f_{\mathcal{C}} = f_A \wedge f_B$$

- Transition
- Delay
- Activation Function

• Propagate timing tags

 $f_e = ?$

• Propagate timing tags

 $f_e = f_d \wedge f_b$ 13

Propagate timing tags

 $f_{c} = ?$

 $f_e = f_d \wedge f_b$

Propagate timing tags

 $f_c = f_b \qquad \qquad f_e = f_d \wedge f_b$

Base Activation Functions

- Base-case activation functions at Primary Inputs
- Two variables per input

$$f_{rise}^{(a)} = \overline{x_a} \wedge x_a'$$

$$f_{fall}^{(a)} = x_a \wedge \overline{x_a'}$$

$$f_{high}^{(a)} = x_a \wedge x_a'$$

$$f_{low}^{(a)} = \overline{x_a} \wedge \overline{x_a'}$$

Base Activation Functions

- Base-case activation functions at Primary Inputs
- Two variables per input

Calculating Probabilities with #SAT

• Let f be an activation function, and |f| its support size then:

$$\mathbf{p}(f) = \frac{\# \mathbf{SAT}(f)}{2^{|f|}}$$

Assumes uniformly distributed independent variables

Calculating Probabilities with #SAT

• Let f be an activation function, and |f| its support size then:

$$\mathbf{p}(f) = \frac{\# \mathbf{SAT}(f)}{2^{|f|}}$$

- Assumes uniformly distributed independent variables
 - Assumption can be removed with pre-processing

Probability Example

$$f(x_a, x'_a, x_b, x'_b) = x_a \wedge x'_a \wedge x_b \wedge x'_b$$

Probability Example

$$f(x_a, x'_a, x_b, x'_b) = x_a \wedge x'_a \wedge x_b \wedge x'_b$$

$$#SAT(f) = 1$$
$$|f| = 4$$

Probability Example

$$f(x_a, x'_a, x_b, x'_b) = x_a \wedge x'_a \wedge x_b \wedge x'_b$$

$$#SAT(f) = 1$$

 $|f| = 4$

p f = 1 2 4 = 0.0625
4 4 4 2 4 2 4
$$\frac{1}{2^4}$$
 = 0.0625

ESTA Formulation Summary

• Propagate timing tags

- Calculate STA-like path-based delay estimates
- Build activation functions

- Probability Calculation
 - Use #SAT to determine path probabilities

ESTA Implementation

- Activation functions represented with Binary Decision Diagrams (BDDs)
 - Easy manipulation
 - Efficient #SAT

- Bound some path-delay combinations
 - Improves scalability (fewer tags)
 - Adds some pessimism

Evaluation Framework

- Determine maximum delay histogram across *all* outputs
- Benchmarks:
 - MCNC20:
 - 554 to 6239 LUTs
 - 8 to 1545 Primary Inputs
 - Post-place-and-route delays from 40nm FPGA
- Comparison:
 - Timing Simulation (Ground Truth)
 - ESTA
 - STA

Timing Simulation

- Simulate primary input transitions
- Determine when primary outputs have stabilized
- Exhaustive Timing Simulation:
 - Test all possible input transitions
 - Impractical!
 - Input space too large
- Monte-Carlo Simulation:
 - Randomly sample input space
 - Detect when maximum delay has converged
 - Assumed ground truth

Experimental Results: Accuracy on SPLA

Experimental Results: Accuracy on SPLA

Experimental Results: Quality

• ESTA:

 46% to 32% less pessimistic than STA

Experimental Results: Run-time

- 48 hour completion:
 - MC: 10
 - ESTA: 11

- ESTA Speed-up:
 - 14.6x to 44.0x

Technique Comparison

	MC	ESTA	STA
Scalable			
Safe Analysis			
Overly Pessimistic			
False Paths			
Statistical Delays		*	

* Future work

27

Conclusion & Future Work

• Introduced ESTA method:

- Performs timing analysis with non-worst-case switching
- Calculates timing path activation probabilities using #SAT

• Described an ESTA implementation:

- 46% to 32% less pessimistic than STA
- 14.6x to 44.0x faster than MC Timing Simulation

• Future work:

- Improve scalability
- More general input distributions
- Feedback analysis results to optimization tools (Place & Route)
- Application studies

Thanks!

Questions?

Backup

Complexity

• Exhaustive Simulation:

 $O(n \cdot 4^{I})$

• ESTA:

 $O(n \cdot L^K + 4^I)$

Complexity

• Exhaustive Simulation:

• ESTA:

 $O(n \cdot L^K + 4^I)$

Complexity

• Exhaustive Simulation:

of Primary Inputs $O(n \cdot 4^{I})$ \downarrow Circuit # of cases Size

• ESTA:

 $O(n \cdot L^K + 4^I)$ Graph Traversal #SAT

Non-uniform Input Probabilities

Correlated Input Probabilities

- Correlation determined by:
 - Number of shared variables
 - Activation function cover overlaps

False Paths

• *b-d-e* is a false path

	STA	MC	ESTA	
s298	1.000	0.981	0.981	
clma	1.000	0.959	0.984	
frisc	1.000	0.965	0.999	*
elliptic	1.000	0.974		

False Paths

• *b-d-e* is a false path

• MC underestimates clma worst-case delay