
IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 1

Calculated Risks: Quantifying Timing Error
Probability with Extended Static Timing Analysis

Kevin E. Murray, Andrea Suardi, Vaughn Betz, George Constantinides

Abstract—Timing analysis is a key step in the digital design
process. By modelling device delay variations Statistical Static
Timing Analysis reduces pessimism compared to traditional
Static Timing Analysis. However it ignores the circuit’s logic
which causes some timing paths to never, or only rarely, be
sensitized. We introduce a general timing analysis approach and
tool to calculate the probability that individual timing paths are
sensitized, enabling the calculation of bounding delay distribu-
tions over all input combinations. We show how this analysis is
related to the well-known #SAT problem and present approaches
to improve scalability, achieving, on average, results 75 to 37%
less pessimistic than Static Timing Analysis while running 569
to 16 times faster than Monte-Carlo timing simulation.

Index Terms—Extended Static Timing Analysis (ESTA), #SAT,
Binary Decision Diagrams (BDDs), Better than worst case design,
Overclocking, Timing Verification

I. INTRODUCTION

T IMING analysis, the process of determining whether
a circuit will operate correctly at speed, is a key step

in the digital design process. The conventional approach
for performing timing analysis is Static Timing Analysis
(STA) [1]. However, with smaller manufacturing process
technologies the worst case and average case delay can deviate
significantly, causing STA to be very pessimistic [2], [3].
Statistical Static Timing Analysis (SSTA) was introduced to
reduce this pessimism, by modeling device and interconnect
delay variations. This allows designers to sacrifice a small
amount of delay coverage (and resulting yield) for considerable
performance improvement [3]. However, both STA and SSTA
assume the worst case switching behaviour across all input
combinations.

We propose a complementary approach which quantifies the
stochastic variation across inputs rather than across delays, with
the aim of sacrificing a small amount of input combination
coverage to achieve considerable performance improvement on
the remaining combinations.

This is motivated by applications amenable to approximate
computing, where small errors may be acceptable (e.g. decoding
lossy video), correctable (e.g. by a higher level algorithm), or
where the input data is inherently noisy (e.g. sensor readings)
and extreme accuracy is unnecessary [4]. By running systems
beyond their strictly robust operating regimes, it is hoped that

K. Murray and V. Betz are with the Department of Elec-
trical and Computer Engineering, University of Toronto, Canada:
{kmurray,vaughn}@eecg.utoronto.ca

A. Suardi and G. Constantinides are with the Department of Electrical
and Electronic Engineering, Imperial College London, United Kingdom:
{a.suardi,g.constantinides}@imperial.ac.uk

Manuscript received November 7, 2017; revised January 24, 2018;
accepted March 3, 2018.

better trade-offs between power, area and performance can be
achieved. For instance [5] studied the impact of ‘overclocking’
arithmetic operators beyond their ‘maximum’ safe operating
frequencies1 for improved performance, and inspired changes
to the architecture of arithmetic components [6].

However designing such systems is challenging as their
behaviour is difficult to analyze. This is particularly true at
the circuit-level where conventional tools like STA and SSTA
assume worst-case switching behaviour to ensure exhaustive
coverage of input combinations. In [5] timing analysis was
performed by hand, a method which is time consuming, error
prone and not scalable. To the best of our knowledge there
has been no generic approach to the timing analysis of this
kind of design.

We aim to address this design capability gap by developing
a generalization of STA. Instead of assuming worst-case
switching behaviour to generate a longest path delay bound as
in STA, we determine a bounding delay distribution over all
input combinations.2

To simplify matters we initially consider the case where the
set of inputs at cycles i and i+ 1 are independent, identically
uniformly distributed and statistically stationary. We later
describe how these restrictions can be lifted.

An earlier version of this work was published in [7]. We
have extended it by: enhancing our formulation to handle non-
uniform and correlated inputs, improving scalability with a
more efficient analysis mode, exploring the impact of Monte-
Carlo convergence criteria and performing a more extensive
evaluation and comparison of our approach with Monte-Carlo
simulation. Our key contributions include:

• a new timing analysis formulation to determine bounding
delay distributions across input combinations,

• methods to model non-uniform and correlated inputs,
• reduction of the analysis to #SAT,
• techniques to improve scalability on real circuits, and
• experimental comparison with Monte-Carlo simulation.

Section II discusses background and related work. Sec-
tions III and IV present our formulation and implementation.
Section V describes how non-uniform input probabilities and
correlations can be modelled. Sections VI and VII describe the
experimental methodology and results. Section VIII concludes
and outlines future work.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 2

b

a

ec

d

b

a

e

1.0

1.0
1.0

1.0
1.0

Fig. 1: Example circuit and timing
graph with annotated delays.

TABLE I: PATH-DELAY DISTRIBUTION
(UNIFORM INPUT

TRANSITION PROBABILITY).

Active Path Delay Probability

b→ c→ d→ e 3.0 0.125
a→ d→ e 2.0 0.1875
b→ e 1.0 0.3125

None (constant output) 0.0 0.375

II. BACKGROUND & RELATED WORK

The conventional approach for performing timing analysis is
STA [1]. STA performs a pessimistic analysis by considering
only the topological structure of the circuit, pessimistically
assuming that all signals switch every cycle. This topological
structure is stored as a timing graph:
Definition 1 (Timing Graph)
A directed acyclic graph3 where nodes represent the pins of
circuit elements, edges represent timing dependencies and edge
weights correspond to delays.

The circuit’s primary inputs and state element outputs (e.g.
Flip-Flop Q pins) become timing sources: nodes with no fan-in.
We denote the number of timing sources by I . Conversely,
the primary outputs and state element inputs (e.g. Flip-Flop
D pins) become timing endpoints: nodes with no fan-out. An
example timing graph is shown in Fig. 1. The timing sources
are inputs a and b (I = 2), and the output e is the single timing
endpoint.

We can now define a timing path:
Definition 2 (Timing Path)
A path in the timing graph between a timing source and timing
endpoint.

STA calculates the delay of the longest (or critical) timing
paths, by calculating the latest (worst-case) arrival time of
signals at each node in the graph (that is, the latest time the
signal can become stable). In Fig. 1, the path b→ c→ d→ e
is the critical timing path, with a delay of 3.0 units.

Conventional STA always performs a robust analysis (never
underestimating delay), but can be quite pessimistic in practice.
There are two primary sources of pessimism: the use of worst-
case delays and assuming worst-case switching behaviour.

SSTA [3] has been developed to address the pessimism
introduced by worse-casing delay values, which becomes
particularly problematic in the face of increasing device and
interconnect variation. SSTA directly models the statistical
variation of device and interconnect delays, calculating delay
distributions rather than the fixed worst-case delays used by
conventional STA. Directly modelling delay variations reduces
pessimism since worst-case delay combinations (which are
unlikely to occur) can be ignored.4

1In practice non-error tolerant signals (e.g. control signals) must have
sufficient slack to operate reliably at the overclocked frequency.

2This differs from conventional SSTA, where delay distributions are
derived from device and interconnect delay variations.

3If the timing graph contains cycles it can be transformed into an acyclic
graph using standard techniques [8].

4In practice, the designer chooses an acceptable level of timing yield for
their design, accepting the failure of some devices.

Both STA and SSTA assume worst-case switching behaviour,
by assuming all signals switch every clock cycle. In real
operation this assumption does not hold. The most obvious
cases are false paths, timing paths which are impossible to
exercise in practice. An example is shown in Fig. 2

There has been a variety of previous work investigating
these issues. In [9] a framework for comparing false path
identification criteria is presented. [10] presents algorithms for
detecting near-critical false paths. Algebraic Decision Diagrams
(ADDs) are used in [11] to identify and eliminate false
paths. [12] describes how Automatic Test Pattern Generation
techniques can be applied to a transformed version of the
circuit to identify false paths. In [13] a circuit’s true delay
bounds are determined by checking whether critical paths are
sensitizable using CNF-based SAT solvers. However, unlike
this work, these works consider only false path identification
and elimination. They do not consider the probability of (true)
paths being activated.

In [14], toggle rate information (similar to vector-less power
estimation) is used to adjust the results of SSTA to reduce
pessimism. However only the average toggling behaviour (i.e.
across many cycles) is considered and the toggling of individual
timing paths cannot be distinguished. The problem of re-
convergent paths which cause correlations is also not addressed.

a

b

c

e

sel

d1

0

1

0

Fig. 2: The path b→ d→ e is a false-path; the common sel means transitions
on b can never propagate to e after the other paths have stabilized.

III. EXTENDED STATIC TIMING ANALYSIS FORMULATION

To present the Extended Static Timing Analysis (ESTA)
formulation we begin by defining some terminology.
Definition 3 (Path Sensitization Probability)
The probability of a timing path experiencing a transition
during a single clock cycle.

By associating a delay with each path sensitization we can
build path-delay distributions:
Definition 4 (Path-delay Distribution)
A set of paths, delays, and their associated sensitization
probabilities.

Table I shows the path-delay distribution for the circuit in
Fig. 1 assuming uniform input transition probability, where
rise, fall, static high, and static low each have 25% probability.
We observe that the longest path is active only 12.5% of the
time, much less likely than other paths. This occurs when b
undergoes a falling transition (p = 0.25), and a simultaneously
undergoes either a static high or rising transition (p = 0.5).
Interestingly no timing paths are active 37.5% of the time since
the output (e) remains constant.

A path-delay distribution is different from the delay dis-
tribution produced by SSTA. Under SSTA the delays are
distributed according to a statistical delay model (i.e. due
to device and interconnect delay variation), while in ESTA

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 3

delays are distributed according to the probability of individual
timing paths being activated.5

We can now define the ESTA problem which we focus on
for the remainder of this paper:
Definition 5 (Extended Static Timing Analysis Problem)
Determine the path-delay distributions at all timing endpoints.

A. Using #SAT to Calculate Probabilities

To calculate a path-delay distribution we need to determine
the delays and sensitization probabilities of different timing
paths. The delay of a path can be calculated by traversing
the timing graph and adding up the annotated delays, but
calculating path sensitization probabilities is more involved.

We first define an activation function:
Definition 6 (Activation Function)
A Boolean function which evaluates to true whenever a path
is sensitized by a transition (which could be a glitch or static
value).

Given an activation function f with support size |f | (i.e.
the number of variables f depends on) we can calculate its
sensitization probability as:

p =
#SAT (f)

2|f |
(1)

where #SAT (f) represents the number of satisfying assign-
ments to f , and 2|f | represents the total number of possible
assignments.

#SAT is a well established problem in theoretical computer
science closely related to Boolean satisfiability (SAT) [15].
Where SAT seeks to find a satisfying assignment to a Boolean
function, #SAT seeks the number of satisfying assignments.
There are a number of algorithms for solving #SAT which
are more efficient than naively enumerating the satisfying
assignments with SAT [15].

Provided we can build appropriate activation functions for
the paths under analysis we can use Eq. (1) to calculate their
sensitization probabilities. This generalizes previous work, in
that a path with zero sensitization probability is by definition
a false path.

B. Transition Model

To analyze a circuit we need to model the different signal
transitions which can occur. While different models are possible,
we use a transition mode [16] model with four types of
transitions: R (rising), F (falling), H (high), and L (low),
where H and L correspond to signals which remain static. As
an example, consider the AND gate in Fig. 3. For this simple
circuit we can enumerate the possible output transitions, as
shown in Table II.

Temporary glitches are modelled by the logical transition
which occurs and an appropriate delay. For example, Fig. 4
shows a high signal which temporarily glitches before settling
to low, which is modelled as a F transition with arrival time
1 + δ.

5While we use a deterministic delay model for each timing graph edge
in this work, it does not preclude the use of a statistical delay model.

a

b
c

Fig. 3: AND gate

TABLE II: AND GATE TRANSITIONS.

a b c

R R R
R F F
R H R
R L L

a b c

F R F
F F F
F H F
F L L

a b c

H R R
H F F
H H H
H L L

a b c

L R L
L F L
L H L
L L L

t = 1 t = 2

δ

Fig. 4: ESTA models the glitch between t = 1 and t = 2 as a F transition
with arrival time 1 + δ.

C. Combining Activation Functions

We can now define a timing tag, which intuitively corre-
sponds to the delay of a transition along a particular path:

Definition 7 (Timing Tag)
A tuple (τ, ν, f) ∈ R×{R,F,H,L}× (BQ → B), correspond-
ing to a path and transition combination. τ is the arrival time,
ν the signal transition, f the activation function, and Q is the
support size of f .

For example, a tag (15, R, x1 ∧ x2) corresponds to a rising
transition with an arrival time of 15 units, which occurs only
when the Boolean function x1 ∧ x2 evaluates true. Since f is
a general Boolean function encoding all the scenarios where
the timing tag applies, false and re-convergent paths can be
accounted for by appropriately constructing f .

Consider the AND gate from Fig. 3. If we have two timing
tags ta and tb arriving at the gate inputs and a gate delay of
δAND we can construct the corresponding output tag tc as:

tc = (δAND + max(ta.τ, tb.τ),

AND(ta.ν, tb.ν),

ta.f ∧ tb.f)

(2)

where δAND + max(ta.τ, tb.τ) is the latest arrival time of
a transition at the output, AND(ta.ν, tb.ν) is the resulting
transition (e.g. determined from Table II), and ta.f ∧ tb.f is
the logical conjunction (AND) of the input activation functions.

More generally for a K-input gate with delay δgate imple-
menting the logic function g(x1, x2, . . . , xK) and incoming
tags t1, t2, . . . , tK the output tag tgate can be defined as:

tgate = (δgate + max(t1.τ, t2.τ, . . . , tK .τ),

G(t1.ν, t2.ν, . . . , tK .ν),

t1.f ∧ t2.f ∧ . . . ∧ tK .f)

(3)

where G(ν1, ν2, . . . , νK) is the transition function derived from
the logic function g()6. Eq. (3) produces an STA-like delay
estimate which is a safely pessimistic upper-bound, ensuring
no paths will be underestimated. The activation function is
specified as the logical conjunction of all the incoming tag
activation functions, since all the tags must arrive to generate
the corresponding output transition and arrival time.

6G() can be determined by evaluating g() twice; first at the initial and
then at the final values of the input transitions (e.g. first 0, then 1 for a R
input transition).

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 4

D. Conditioning Functions

Eq. (3) describes how to propagate timing tags through a
gate (or wire7), allowing us to construct timing tags – including
their associated activation functions – by walking through the
timing graph. However we still require some base activation
functions at timing sources, and a method to specify their
transition probabilities.

We can accomplish this by defining a set of Boolean
conditioning functions at each timing source. Intuitively these
functions model the statistical behaviour of the circuit’s primary
inputs.

For the simplest case of uniform probability we can define
the following conditioning functions:

fR(x, x′) = x ∧ x′ fF (x, x′) = x ∧ x′

fH(x, x′) = x ∧ x′ fL(x, x′) = x ∧ x′
(4)

where intuitively x and x′ represent the current and next state of
the source. Each function in Eq. (4) corresponds to a particular
transition occurring on the source.

Note each conditioning function in Eq. (4) is satisfied 25% of
the time (e.g. #SAT (fR)

2|fR| = 1
4), assuming uniformly random x

and x′. This yields a uniform probability for each transition. In
general arbitrary conditioning functions can be used, allowing
for non-uniform probabilities and correlations between sources.
This is discussed in more detail in Section V.

By combining Eq. (3) with conditioning functions such as
those in Eq. (4) we can propagate timing tags from timing
sources to timing endpoints. The probabilities of the tags at
all timing endpoints can then be calculated using Eq. (1) to
construct the path-delay distributions – completing the ESTA
analysis.

IV. ESTA IMPLEMENTATION

We have developed a tool to perform ESTA.8 The tool is
written in C++ and uses Binary Decision Diagrams (BDDs) [17]
(via the CUDD library [18]) to represent the netlist logic and
timing tag activation functions. BDDs allow easy manipulation
of Boolean functions and enable #SAT to be solved efficiently
once the BDDs are constructed [15].

A. Calculating Timing Tags

The basic procedure to calculate a node’s output timing tags
is shown in Algorithm 1. Provided with the set of tags arriving
at each of the K inputs, we enumerate the Cartesian product of
the input tag sets (Line 3) there by ensuring all possible cases
of input transitions and arrival times are considered. Lines 4
to 6 evaluate a specific set of InputTags (one tag per input)
according to Eq. (3). For each case the resulting tag is recorded
(Line 7), and the full set of output tags returned (Line 8) for
use by downstream nodes.

After all nodes in the timing graph have been processed the
tags at all endpoints can be evaluated with #SAT to build the
path-delay distributions.9

7Wires can be treated as single-input ‘gates’ implementing logical identity.
8The source code is available from www.github.com/kmurray/esta.
9While our implementation always performs a full timing analysis, it

could be extended to perform an incremental timing analysis using the same
techniques as conventional STA [19], [20].

Algorithm 1 Basic ESTA Node Traversal

Require: In(1)
tags, . . . , In

(K)
tags sets of tags on each input, δ input

to output delay, G node logic function
1: function TRAVERSENODE(In(1)

tags, . . . , In
(K)
tags, δ, G)

2: OutTags← ∅
3: for each InputTags ∈ In(1)

tags × . . .× In
(K)
tags do

4: τ ← δ+MAX(InputTags[1].τ, . . . , InputTags[K].τ)
5: ν ← G(InputTags[1].ν, . . . , InputTages[K].ν)
6: f ← InputTags[1].f ∧ . . . ∧ InputTags[K].f
7: OutTags.APPEND((τ, ν, f))

8: return OutTags

B. Input Filtering

Consider the timing diagram in Fig. 5 for the AND gate
from Fig. 3. Initially, both inputs (a, b) are high, producing
a high output (c). At t = 1 input a falls, producing a falling
transition on the output c with some delay. The later transition
on input b at t = 2 produces no change in the output c, since
input a remained low controlling the output. In this case input
a can be said to ‘filter’ transitions on input b.

While Algorithm 1 handles these cases correctly, it does
so in an unnecessarily pessimistic manner, always using the
latest arrival time, even if the associated transition would be
filtered and have no effect. To counteract this, as each input
arrives we restrict the node logic function to the input’s post-
transition value. We can then use Boolean difference to identify
subsequently arriving input transitions which do not affect
the output. Such input tags are ignored during arrival time
calculation, removing the unnecessary pessimism.

It should be noted that this approach maintains the monotone
speed-up property10 necessary for a robust analysis [21]. While
input filtering is performed in a delay dependent manner it is
safe since:
• Decreasing the delay of an input transition can only

increase the amount of filtering performed (since the
signal would be stable earlier).

• Increased filtering can only decrease the delay of a
resulting output transition (if an additional late arriving
input transition was filtered).

• Input filtering never prevents a transition from propagating
through the circuit.

Together these ensure that the delay of any timing path can
never increase if a component delay decreases, and that all
timing paths are considered during the analysis – none are
‘dropped’ in a delay-dependent manner.

C. Tag Merging

In the worst case Algorithm 1 can produce O(`K) output
tags where ` is the maximum number of tags across all K
inputs. While the number of tags produced is often smaller in
practice it can still grow large – particularly since the output
tags of a node become the inputs to subsequent nodes.

10Monotone speed-up ensures that decreasing the delay of circuit element(s)
cannot increase the critical path delay.

www.github.com/kmurray/esta

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 5

a

b

c

t = 1 t = 2

δ

Fig. 5: Input filtering example. The arrival time at c is 1 + δ, but STA or a
naive ESTA implementation will report 2 + δ.

To counteract this rapid growth, we can merge tags together.
Suppose we have the tags t1, t2, . . . , tn with the same transition
ν. We can produce a new tag tmerged which approximates the
original tags:

tmerged = (max(t1.τ, t2.τ, . . . , tn.τ),

ν,

t1.f ∨ t2.f ∨ . . . ∨ tn.f) .

(5)

We ensure a safely pessimistic approximation by using the
maximum arrival time, and only merging tags with the same
transition. The activation function of the merged tag is the
logical disjunction (OR) of the original tags, since any of the
tags could produce this bounding transition.

Note the approximation is exact if the original tags have the
same arrival time. Our implementation always merges such
tags.

D. Run-Time/Accuracy Trade-Offs

Although precise tag merging helps, for larger circuits the
number of tags (and hence run-time) can grow prohibitively
large. Accordingly we have also developed several different
techniques to trade-off accuracy for reduced run-time. They
all rely on Eq. (5) to safely merge tags.
Fixed Delay Binning: Merges output tags with the same

transition, and delay within the same delay bin. For a delay
bin size of d, the delay bins are defined as [k ·d, (k+1)·d),
k ∈ N.
As an example, consider a set of five tags with the same
transition and delays 75, 80, 110, 120, 155. Performing
Fixed Delay Binning with d = 100 would produce two
tags with delays 80 and 155.

Adaptive Binning: Merges input tags to limit the size of the
Cartesian product evaluated at a node to at most m. This
is performed by iteratively re-binning the node’s input
tags at increasing bin-sizes, until the size of the cartesian
product drops below m.

Percentile Binning: Merges output tags which cannot gener-
ate sth-percentile critical paths. For example, s = 0.05
would ensure no merging occurred on the top 5% of
critical paths, while all other tags would be merged.

In practice these various techniques can be used in combination.

E. Enhanced Algorithm

Algorithm 2 shows the procedure for traversing nodes
including the enhancements from Sections IV-B to IV-D. Lines
3 to 5 calculate the cartesian product of tags, limiting the

number of cases evaluated to at most m. To perform input
filtering we first sort the K input tags of a single case by
ascending order of arrival time (Line 10).11 We then check
whether the transitions associated with each input can affect the
output (Line 12). If a transition does affect the output (is not
filtered) we ‘restrict’ the node’s logic function (Line 13), so the
current input’s stable post-transition value will be considered
when filtering later arriving inputs. Finally, we bin the resulting
tags into bins of size d (Line 17).

Algorithm 2 Enhanced ESTA Node Traversal

Require: In(1)
tags, ..., In

(K)
tags sets of tags on each input, δ input

to output delay, G node logic function, m maximum
cartesian product size, d delay bin size

1: function TRAVERSENODE(In(1)
tags, . . . , In

(K)
tags, δ, G,m, d)

2: Outtags ← ∅
3: AllCases = In

(1)
tags × ...× In

(K)
tags . Cartesian product

4: if |AllCases| > m then . Limit product size to m
5: AllCases← REDUCEPRODUCT(AllCases,m)

6: for InputTags ∈ AllCases do
7: τ ← ∅
8: ν ← G(InputTags[1].ν, ..., InputTags[K].ν)
9: f ← TRUE

10: SORTASCENDINGARRIVAL(InputTags)
11: for InputTag ∈ InputTags do . Each node input
12: if not FILTERED(G, InputTag) then
13: G← RESTRICT(G, InputTag) . Constrain input
14: τ ← MAX(τ, δ + InputTag.τ) . Update delay
15: f ← f ∧ InputTag.f . Update activation f’n
16: Outtags.APPEND((τ, ν, f))

17: Outtags ← REDUCETAGS(Outtags, d) . Delay binning
18: return Outtags

In our implementation activation function construction
(Line 15) is performed lazily. As a result the cost of constructing
activation function BDDs is incurred only during the final #SAT
evaluations, and not during the graph traversal.

F. Computational Complexity

The computational complexity of our ESTA implementa-
tion is dominated by two components: evaluating tags, and
performing #SAT.

The complexity of manipulating BDD’s is O(2nvars), where
nvars is the total number of Boolean variables in the BDD. The
size of a node’s Cartesian tag product is O(LK), where K is the
maximum number of inputs to any node, and L is the maximum
number of tags on any node input. Sorting the input tags for
filtering takes O(K logK) time, and manipulating the node’s
logic function (as a BDD) takes O(2K) time. The complexity
of evaluating a single node is then O(LK(2K + K logK)).
This must be done across all n nodes in the timing graph,
taking O(nLK(2K +K logK)) time.

To solve #SAT we must construct BDDs which in the worst
case takes O(2Q) time, where Q is the total number of Boolean

11This enforces causality by ensuring that only stable inputs can filter
subsequently arriving transitions.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 6

conditioning function variables. The resulting complexity of
ESTA is

O(nLK(2K +K logK) + 2Q) . (6)

In typical circuits K is bounded by a small constant (e.g.
6), and the complexity simplifies to

O(nLK + 2Q) . (7)

If we define q as the number of conditioning function variables
per timing source then Q = qI . For the conditioning functions
in Eq. (4) q = 2 and the complexity becomes

O(nLK + 4I) . (8)

L can be controlled using the methods in Section IV-D, and
as a result run-time is typically dominated by BDD construction
for #SAT. However in practice decreasing L also reduces #SAT
run-time, since fewer BDDs covering more of the input space
(which are typically simpler to encode) are required.

While the time complexity of ESTA is high, this is fun-
damental to the problem of analyzing the logic behaviour of
a circuit under all possible inputs. For instance, all known
general false-path detection algorithms also have exponential
time complexity, since false-path identification is reducible to
SAT: an NP-complete problem. The ESTA problem (calculating
the probability that timing paths are activated) is more general
than the false-path identification problem (finding timing paths
with zero activation probability), and therefore subject to the
same theoretical limits.

It should also be noted that the O(4I) term represents the
worst-case complexity of BDD construction, however it can
be more efficient in practice – such as when using techniques
like dynamic variable re-ordering [22].

G. Comparison with Exhaustive Simulation

It is informative to compare the complexity of ESTA and
Exhaustive Simulation, which takes

O(n4I) (9)

time.
An important distinction between Eqs. (8) and (9) is the

coefficient of the O(4I) term. In exhaustive simulation the
coefficient is n (circuit size), while in ESTA the coefficient is
a constant. This results in a significant difference: exhaustive
simulation’s complexity grows as the product of circuit size
and the number of possible input combinations, while ESTA’s
complexity grows linearly with circuit size and O(4I).

Intuitively, ESTA achieves this lower complexity since it
traverses the timing graph only once during its analysis. In
contrast, exhaustive simulation must evaluate the whole circuit
for each of the 4I possible sets of input transitions. In addition,
constructing BDDs to evaluate #SAT is far more efficient in
practice than enumerating a vast input space.12

12For example, exhaustive simulation of the clma benchmark, requires
evaluating > 10249 sets of input transitions; counting the satisfying assign-
ments is far faster.

H. Per-Output & Max-Delay Modes

Our ESTA tool can be run in two possible operating modes:
Per-Output Mode: Calculates a unique path-delay distribu-

tion for each timing endpoint. This is analogous to the
maximum arrival time at each timing endpoint reported
by STA.

Max-Delay Mode: Calculates a single path-delay distribution
corresponding to the maximum delay across all timing
endpoints. This is analogous to the Critical Path Delay
(CPD) reported by STA. However the maximum path-
delay distribution calculated may involve multiple timing
paths, since different paths will be maximal for different
sets of input transitions. This requires the ESTA tool
to track which timing path (tag) is responsible for the
maximum delay of each set of input transitions. To reduce
this overhead, binning is applied when calculating the
maximum delay distribution to reduce the number of
unique tags.

It is important to note that the max-delay distribution cannot
be calculated from the path-delay distributions produced in
per-output mode, since the distributions contain only aggregate
information and do not capture which path is maximal for a
given set of primary input transitions.

V. NON-UNIFORM & CORRELATED CONDITIONING
FUNCTIONS

In traditional STA a design is typically analyzed with
multiple delay models to capture the impact of delay variation
at different ‘timing corners’, and in multiple operational ‘modes’
to model the behaviour of the design in different use cases [23].
Like traditional STA, ESTA can be performed using different
combinations of delay models and operating modes. However,
ESTA generalizes STA’s concept of a mode to include the
transition probability distribution of the primary inputs.

So far we have considered uniform and independent inputs,
which are modelled with the conditioning functions in Eq. (4).
In general, inputs may have non-uniform probabilities and may
not be independent. In practice, the probabilities and correla-
tions could be determined from designer knowledge, simulation,
the upstream circuit logic, or derived from word-level statistics
[24]. In order to model these statistical characteristics we need
to develop different conditioning functions.

Intuitively, conditioning functions can be viewed as a form
of pre-processing which transforms a set of uniform and
independent Boolean variables (e.g. x and x′) into some
output distributions. As shown in Fig. 6, if unique independent
variables are used for the conditioning functions associated
with each primary input, then the resulting conditioning
functions are independent. However, if some variables are
shared across conditioning functions, as in Fig. 7, the resulting
conditioning functions may not be independent and could
exhibit correlations.

A. Non-uniform Conditioning Functions

As described by Eq. (1), the probability of a particular transi-
tion is proportional to the number of satisfying assignments (i.e.
minterms) of the associated conditioning function. To model

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 7

Cond. F’nsCond. F’ns Cond. F’ns

x x′ y y′ z z′

Circuit Under
Analysis

Primary
Inputs

Boolean
Variables

Fig. 6: Independent Condition Functions.

Cond. F’ns

x x′ y y′ z z′

Circuit Under
Analysis

Primary
Inputs

Boolean
Variables

Fig. 7: Non-Independent Condition Functions.

non-uniform input probabilities, we can assign the minterms in
proportion to the desired probabilities. However care must be
taken to ensure no minterms are shared between conditioning
functions associated with the same primary input, as each
transition must be independent (e.g. R and F cannot occur
simultaneously). Furthermore, by adding additional variables
to the conditioning functions’ support, probabilities can be
assigned at finer granularity.

Fig. 8 shows how a set of conditioning functions for a
non-uniform primary input can be created. Each transition
is assigned to a unique subset of the possible minterms in
proportion to the desired probability.

There are many possible conditioning functions which
satisfy a set of target probabilities. The algorithm we use
to construct non-uniform conditioning functions is shown in
Algorithm 3. This approach assigns adjacent minterms to
a particular transition. Since the minterms for a particular
transition are grouped together, the conditioning function is
easier to encode as a BDD.13 First the conditioning functions
are initialized on Lines 2 to 5. Next the transitions are sorted
(Line 7), so the highest probability transition is processed
first. The number of minterms to assign to each transition
is calculated on Line 10, based on transition probability and
the number of Boolean variables per input (q). The relevant
minterms are then set in the conditioning function on Line 13,
and the conditioning functions are returned on Line 15.

B. Correlated Condition Functions

It is also possible to construct conditioning functions which
capture correlations between inputs. In such cases the number of
minterms shared between two conditioning functions describes
their degree of correlation.

13Evaluation on 12 of the MCNC20 benchmarks showed this approach
reduced ESTA run-time by 1.8× compared to a round-robin allocation, such
as shown in Fig. 8.

x1 x2 x3 f

0 0 0 R
0 0 1 F
0 1 0 H
0 1 1 L
1 0 0 R
1 0 1 L
1 1 0 L
1 1 1 L

fR(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

fF (x1, x2, x3) = (x1 ∧ x2 ∧ x3)

fH(x1, x2, x3) = (x1 ∧ x2 ∧ x3)

fL(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

Fig. 8: Example Truth Table and conditioning functions satisfying P (fR) =
0.25, P (fF) = 0.125, P (fH) = 0.125 and P (fL) = 0.5.

Algorithm 3 Grouped Minterm Allocation
Require: q the number of Boolean variables per primary input,

P the desired probabilities of R/F/H/L transition
1: function ALLOCATEGROUPEDMINTERMS(q, P)
2: f [R]← FALSE
3: f [F]← FALSE
4: f [H]← FALSE
5: f [L]← FALSE
6: Trans← (R,F,H,L)
7: SORTDESCENDINGPROBABILITY(Trans, P)
8: m← 0 . Current minterm number
9: for t ∈ Trans do

10: M ← P [t] · 2q . Number of minterms to allocate
11: for 1 . . .M do
12: fm ← GETMINTERMFUNCTION(q,m)
13: f [t]← f [t] ∨ fm . Set minterm
14: m← m+ 1

15: return (f [R], f [F], f [H], f [L])

Consider the following joint probability specification be-
tween inputs a and b:

aR aF aH aL


bR 1/16 0 0 1/8
bF 1/16 0 1/8 0
bH 1/16 1/8 1/4 0
bL 1/16 1/8 0 0

(10)

where each entry corresponds to the probability of specific
transitions occurring simultaneously on a and b.

In Eq. (10) aR is uncorrelated with the transitions on input
b, since it is equally likely to occur with any transition on
b. In contrast, aF occurs only when b is undergoing a H
or L transition, aH occurs only if b is undergoing a F or H
transition, and aL occurs only if b is undergoing a R transition.

A set of conditioning functions which model this behaviour

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 8

are:
faR

(x1, x2, x3, x4) = (x0 ∧ x1 ∧ x2 ∧ x3) ∨ (x0 ∧ x2 ∧ x3)

∨ (x0 ∧ x1 ∧ x2 ∧ x3)

faF
(x1, x2, x3, x4) = (x1 ∧ x2 ∧ x3) ∨ (x0 ∧ x1 ∧ x2)

faH
(x1, x2, x3, x4) = (x1 ∧ x2 ∧ x3) ∨ (x0 ∧ x1 ∧ x2)

∨ (x0 ∧ x1 ∧ x3) ∨ (x0 ∧ x2 ∧ x3)

∨ (x0 ∧ x1 ∧ x2 ∧ x3)

faL
(x1, x2, x3, x4) = (x0 ∧ x1 ∧ x2 ∧ x3)

∨ (x0 ∧ x1 ∧ x2 ∧ x3)

fbR(x1, x2, x3, x4) = (x0 ∧ x1 ∧ x2 ∧ x3)

∨ (x0 ∧ x1 ∧ x2 ∧ x3)

∨ (x0 ∧ x1 ∧ x2 ∧ x3)

fbF (x1, x2, x3, x4) = (x0 ∧ x1 ∧ x2) ∨ (x0 ∧ x1 ∧ x2 ∧ x3)

fbH (x1, x2, x3, x4) = (x1 ∧ x3) ∨ (x2 ∧ x3) ∨ (x0 ∧ x1 ∧ x2)

fbL(x1, x2, x3, x4) = (x0 ∧ x1 ∧ x2 ∧ x3) ∨ (x0 ∧ x1 ∧ x2)

(11)

Where, for example:

P (aH ∧ bF) =
#SAT (faH

∧ fbF)

24

=
#SAT ((x0 ∧ x1 ∧ x2 ∧ x3) ∨ (x0 ∧ x1 ∧ x2 ∧ x3))

16

=
2

16

(12)

as desired, since faH
and fbF share the two minterms: x0 ∧

x1 ∧ x2 ∧ x3 and x0 ∧ x1 ∧ x2 ∧ x3.
In general, constructing a set of conditioning functions that

satisfy an arbitrary set of joint probabilities for a large number
of inputs is challenging. This task can be formulated as a
constrained minterm assignment problem, and solved with
Integer Linear Programming (ILP). However this approach is
computationally expensive, and as a result it is only practical
for groups of less than 4 correlated circuit inputs.

VI. EVALUATION METHODOLOGY

To evaluate our ESTA implementation we compare it against
post-place-and-route timing simulation performed with Mentor
Graphics Modelsim SE 10.4c. The evaluation flow used is
shown in Fig. 9. We take in a circuit netlist which is mapped
onto a 40nm 6-input Look-Up-Table (6-LUT) based FPGA
using VPR [25] to generate an SDF file with both logic and
routing delays. The SDF file is then used to annotate identical
delays in both Modelsim and ESTA. To avoid unrealistic glitch
filtering Modelsim was run using the transport delay model.

We evaluate all tools on the 20 largest MCNC benchmarks
[26] which are listed in Table VI. Any state elements (e.g.
Flip-Flops) were replaced with primary inputs and outputs.14

A. Monte-Carlo Simulation

While exhaustive simulation is useful for verification it
quickly becomes impractical, since the number of cases to be
simulated grows as Θ(4I). To enable the evaluation of larger
benchmarks, and provide a more realistic run-time comparison
to ESTA, we also developed a Monte-Carlo (MC) based
simulation framework for calculating path-delay distributions.

14While our ESTA implementation does not perform clock-pessimism
removal, the same techniques used in traditional STA could be applied [27],
[28].

It is important to distinguish between the strength of
guarantees that MC and ESTA provide. ESTA guarantees it will
always produce safely pessimistic upper bounds of path-delay
distributions. MC cannot provide any such guarantees.

In the MC framework we uniformly generate random sets
of input transitions to sample the input space. This sampling
procedure was run for 48 hours on each benchmark. All quality
comparisons are based on the more accurate 48-hour sample,
while run-times are determined by finding the smallest sample
size which meets some convergence criterion.

Since it is impractical to exhaustively simulate large circuits
we determine convergence based on sample statistics. We define
convergence based on the max-delay probability, as this is
the delay region of interest when considering timing errors.
Intuitively we define convergence to be when we are confident
the relative error of the sample maximum-delay probability
across multiple samples is sufficiently small. More formally:
Definition 8 (MC Max-Delay Convergence)
Let p̂ be the sample probability of activating maximum delay
paths. Given a sample with max-delay probability confidence
interval [LB,UB] at α confidence, we say the sample has
converged if UB−LB

p̂ < ∆p̂rel
.

For instance, choosing α = 0.95 and ∆p̂rel
= 0.05 corresponds

to a 95% confidence that the relative error in p̂ is less than 5%.
MC run-time is dependent on how α and ∆p̂rel

are chosen
and their effect is evaluated in Section VII-C.

The reported Monte-Carlo run-times include only the simula-
tion run-time, and exclude the large amount of post-processing
required to extract useful transition and delay information, and
to determine convergence.

B. Metrics

To compare the Quality of Results (QoR) between STA,
ESTA and MC we used the Earth Mover’s Distance (EMD)
metric [29], commonly used to compare image histograms.
EMD corresponds to the minimal amount of ‘work’ required
to transform one discrete distribution into another.

To account for different critical path delays across bench-
marks we normalize EMD by the EMD between MC and STA.
The resulting normalized EMD ∈ [0, 1] describes how closely
the MC distribution is approximated. A value of 1 corresponds
to an STA-like analysis (worst-case switching behaviour), and
a value of 0 corresponds to the MC distribution (assumed true
switching behaviour). For each benchmark we report the run-
times for determining the maximum delay across all outputs,
and for determining the delay distribution of each output. We
also report the mean normalized EMD of the resulting path-
delay distributions.

VII. RESULTS

Using the experimental methodology from Section VI and
the implementation from Section IV we perform several
experiments to investigate the characteristics of ESTA. Unless
otherwise noted ESTA was run with d = 100ps, m = 104

and s = 0.0, which were found experimentally to offer good
run-time/quality trade-offs as shown in Section VII-D. For MC
we used α = 0.95 and ∆p̂rel

= 0.05 unless otherwise noted.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 9

Netlist

VPR

SDF

ESTA Modelsim

Compare

Fig. 9: Evaluation Flow.

TABLE III: NORMALIZED CRITICAL PATH
DELAYS WITH FALSE PATHS.

STA MC ESTA

s298 1.000 0.981 0.981
clma 1.000 0.959 0.984 †
frisc 1.000 0.965 0.999 *

elliptic 1.000 0.974

* ESTA upper-bound, †MC optimistic

Results were collected on an Intel Xeon E5-2643v3 machine
with 256GB of memory.

A. Verification

To verify the correctness of our ESTA tool we exhaustively
compared with Modelsim on a set of small micro-benchmarks
including simple logic circuits, ripple-carry adders and array
multipliers. We verified for each possible set of input transitions,
that ESTA agreed with simulation on the resulting output
transitions and that ESTA’s delay estimate was an upper-bound
of the simulation delay.

B. Maximum Delay Estimation with False Paths

By running both MC, STA, and ESTA (with percentile
binning) we can investigate the impact of false-paths. While
most circuits in the MCNC20 benchmarks produced the same
critical path delay in all tools, the existence of false paths
caused divergence on the benchmarks in Table III. ESTA was
able to identify the true critical path delay on the s298 and
clma benchmarks, and confirm false paths exist on frisc.15

Notably on clma MC reported an unsafe (optimistic) delay
– indicating the worst-case path was never sampled. This
illustrates the utility of ESTA’s strong guarantees; it never
underestimates delay.

C. Monte-Carlo Convergence

The specific criteria chosen for MC convergence (Defini-
tion 8) can affect whether MC converges and its associated
run-time.

Fig. 10 illustrates the impact of varying these parameters
on the run-time of the apex2 benchmark, a representative
example. Increasing the confidence level (α) increases run-time,
particularly as the confidence approaches 1.0 .16 Decreasing the
allowed relative error in max-delay probability (∆p̂rel

) strongly
increases run-time. Reducing the allowed relative max-delay
probability variation from 5% to 2.5% causes run-time to more
than triple, and exceed 48 hours for confidences beyond 0.99.

Table IV shows the impact, across all benchmarks, of varying
∆p̂rel

and α on MC max-delay convergence. For relatively loose
convergence criteria (∆p̂rel

= 0.05 and α = 0.95), only 10 of
the 20 MCNC benchmarks converge. Increasing the confidence
level (α) increases run-time, but decreasing the allowed relative
error in p̂ has a more substantial impact, causing substantial

15ESTA exceeded memory limits on frisc due to the large number of
nearly critical false paths, and exceeded 48 hours run-time on elliptic.

16Higher α causes the size of the calculated confidence interval to increase
slowing convergence.

0.95 0.96 0.97 0.98 0.99 1.00
Confidence

0

10

20

30

40

R
un

­T
im

e
(h

ou
rs

)

48 Hour Limit

apex2 p Rel Err: 0.025

apex2 p Rel Err: 0.05

Fig. 10: MC max-delay run-time on apex2 for various convergence criteria.

TABLE IV: IMPACT OF CONVERGENCE CRITERIA ON MC MAX DELAY
RUN-TIME OF THE MCNC20 BENCHMARKS.

∆p̂rel α
Converged
Benchmarks

Median MC
Run-time (hours)

0.05 0.95 10 1.09
0.05 0.99 10 1.88
0.05 0.999 10 3.07
0.025 0.95 10 4.34
0.025 0.99 8 3.62
0.025 0.999 8 5.92
0.01 0.95 6 11.60
0.01 0.99 5 17.57
0.01 0.999 5 28.71
0.005 0.95 3 21.11
0.005 0.99 2 33.13
0.005 0.999 0

Blank entries exceeded 48 hours run-time

increases in the median run-time, and reducing the number of
converged benchmarks. At ∆p̂rel

= 0.005 and α = 0.999, MC
fails to converge on all benchmarks.

It should be noted that to equal ESTA’s strong upper-bound
guarantee (analogous to 1.0 confidence) MC effectively reverts
to exhaustive simulation. Furthermore, all comparisons we
make between MC and ESTA are performed with relatively
loose MC convergence criteria (∆p̂rel

= 0.05, α = 0.95), and
both MC convergence and run-time would be much worse if
tighter convergence criteria were used.

D. ESTA Run-time/Accuracy Trade-Offs

Fig. 11 shows run-time/accuracy trade-offs for the binning
methods described in Section IV-D.

Increasing the fixed bin size (d) from 0 to 100 at m =∞
speeds-up ESTA by 2.2×, with only a 4% degradation in QoR.
Beyond d = 100 the QoR degrades significantly for little or
no run-time improvement.

Decreasing m from ∞ to 106 has limited impact on QoR.
Further decreasing m to 104 causes some impact, resulting in
a 40% QoR degradation for speed-up of 1.5× compared to
m =∞ at d = 10. At m = 102 speed-up compared to m =∞
improves further (e.g. a further 1.8× compared to m =∞ at

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Run­Time

0.15

0.20

0.25

0.30

0.35

0.40
M

ea
n

N
or

m
al

iz
ed

 E
M

D
d=0 m=
d=10 m=
d=100 m=
d=1000 m=
d=10000 m=
d=10 m=102
d=100 m=102
d=1000 m=102
d=10000 m=102
d=10 m=104
d=100 m=104
d=1000 m=104

d=10000 m=104
d=0 m=106
d=10 m=106
d=100 m=106
d=1000 m=106
d=10000 m=106
d=0 m=108
d=10 m=108
d=100 m=108
d=1000 m=108
d=10000 m=108

Fig. 11: ESTA run-time/accuracy tradeoffs on the dsip benchmark in per-
output mode.

d = 100), but at the cost of significant QoR degradation (e.g.
a further 222% compared to m =∞ at d = 100).

In general d = 100 and m in the range 104 to 106 provide
good run-time/accuracy trade-offs. d is the most effective, and
setting it to a small but non-negligible portion of the circuit
delay ensures only timing tags with similar delays are merged
together. This reduces run-time with minimal QoR impact. m
serves to limit ESTA’s worst-case complexity by bounding the
O(LK) term in Eq. (8). Setting m to a large, but finite value
ensures designs with large numbers of convergent timing paths
remain tractable, at the cost of some additional pessimism.

E. ESTA Non-Uniform Conditioning Functions

As described in Section V, ESTA can model non-uniform
and correlated inputs with appropriate conditioning functions.

Fig. 12 illustrates the impact of different conditioning
functions on the delay-probability Cumulative Distribution
Functions (CDFs) of the pksi_83_d output of the dsip
benchmark. The condition functions for the ‘ESTA Non-
Uniform’ are constructed to satisfy randomly generated target
transition probabilities. By changing the random number
generator’s seed, different target transition probabilities can be
created. In this instance the non-uniform conditioning functions
result in a sharper delay transition around 2000ps compared to
the uniform conditioning functions. Notably, the different input
probability distributions can result in significantly different
delay behaviour; for instance the 99th-percentile delay for
‘ESTA Non-Uniform Seed 2’ is 2656ps, while for ‘ESTA
Uniform’ it is 3235ps, 22% higher.

It is also important to consider the impact of conditioning
functions on ESTA’s run-time. An key factor is how many
Boolean variables (q), are used to form the support of the
conditioning functions of each input. Larger values of q allow
probabilities to be specified at finer granularity, since the
smallest probability that can be specified is 1

2q .
Table V shows the run-time impact of using the uniform

conditioning functions from Eq. (4), or randomly generated
non-uniform conditioning functions, for various values of
q. Increasing q has a strong effect on run-time, since it is
directly proportional to the total number of Boolean variables.

0 500 1000 1500 2000 2500 3000
Delay (ps)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

STA (cdf)
ESTA Uniform (cdf)
ESTA Non­Uniform Seed 1 (cdf)
ESTA Non­Uniform Seed 2 (cdf)
ESTA Non­Uniform Seed 3 (cdf)

Fig. 12: CDFs for the pksi_83_d output of the dsip benchmark for various
conditioning functions. The ‘ESTA Uniform’ CDF corresponds to using the
conditioning functions from Eq. (4) for each primary input. Each ‘ESTA
Non-Uniform’ CDF correspond to a different set of randomly generated non-
uniform conditioning functions used at the primary inputs. ESTA was run with
d = 1 and m =∞.

TABLE V: RELATIVE ESTA PER-OUTPUT RUN-TIME FOR VARIOUS
CONDITIONING FUNCTIONS (d = 100, m = 104).

Benchmark Uniform
q = 2

Non-Uniform
q = 4

Non-Uniform
q = 6

ex5p 1.00 1.08 1.73
apex4 1.00 4.33 7.10

ex1010 1.00 1.26 1.87
s298 1.00 2.82 6.60

misex3 1.00 5.58 8.75
alu4 1.00 8.58 14.07
spla 1.00 1.34 7.30
pdc 1.00 2.91 12.27

apex2 1.00
seq 1.00 41.12
des 1.00 4.54 18.25

clma 1.00
tseng 1.00
diffeq
dsip 1.00 4.86 10.34

bigkey 1.00 6.23 12.00
frisc

elliptic
s38584.1 1.00 12.22
s38417

Geomean 1.00 4.37 7.42

Blank entries exceeded 48 hours run-time

Increasing q to 4 and 6 allows probabilities to be specified
with 6.25% and 1.56% granularity respectively. However this
comes at a cost to run-time, with ESTA taking 3.2× and 7.4×
longer on the common benchmarks which completed. Clearly,
the smallest value of q which captures the non-uniform input
distribution should be used to minimize run-time.17

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 11

0 1000 2000 3000 4000 5000 6000
Delay (ps)

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y
STA (cdf)
MC (cdf)

ESTA d=100 m=106 (cdf)

ESTA d=100 m=104 (cdf)

Fig. 13: Maximum delay CDFs on the spla benchmark.

F. ESTA and MC Comparison

Fig. 13 plots the maximum path-delay CDFs for the
spla benchmark. STA, which assumes worst-case switching
behaviour, produces a single maximum delay estimate of
6230ps (the critical path delay) for all cases (p = 1). In contrast
MC, which directly simulates switching behaviour, produces a
path-delay distribution, showing 13% of input transitions cause
no delay (i.e. don’t affect the output), and only 4% of input
transitions produce delays > 5000ps. ESTA is always safely
conservative compared to MC and less pessimistic than STA,
with its CDF always falling between MC and STA. The form
of ESTA’s CDF follows the shape of MC’s CDF, with larger
m producing a more accurate result.

Table VI quantitatively compares ESTA and MC.
1) Max-Delay Comparison: First, we consider the behaviour

of ESTA and MC when evaluated in Max-Delay mode (Sec-
tion IV-H), where a single path-delay distribution represents
the maximum delay over all timing endpoints.

For MC max-delay probability (p̂) we observe that bench-
marks with relatively large max-delay probability tend to
converge, while those with smaller probability (p̂ ≤ 10−4)
tend not to converge. A relatively high p̂ means max-delay
paths are observed relatively frequently, and the confidence
interval around p̂ shrinks quickly. In contrast, on benchmarks
with relatively rare max-delay paths (e.g. p̂ ≤ 10−4) MC often
fails to converge within 48 hours. Intuitively, it is difficult to
determine from a given sample if a small p̂ is caused by an
inherently rare path, or by insufficient sample size; this causes
MC to converge slowly.

Now considering Max-Delay QoR for ESTA m=104, we see
ESTA’s analysis falls between STA and MC, with normalized
EMD ranging between 0.96 (nearly STA-like) and 0.33
(more MC-like), with an geometric mean of 0.63 across the
benchmarks which completed. Increasing m to 106 (Max-Delay
ESTA m=106) reduces the geometric mean normalized EMD
by 24% to 0.48 on the common benchmarks which completed.

The run-time performance of Max-Delay ESTA and MC
are also shown in Table VI. Looking at Max-Delay Run-time
for MC, it converges on only 10 of the 20 benchmarks within

17It should be noted that despite these slow downs ESTA would still
outperform MC (Section VII-F).

48 hours, and fails to converge even on benchmarks with few
inputs (e.g. s298). Max-Delay Run-time for ESTA m = 104

completed 11 of 20 benchmarks and shows more stable run-
time, completing all of the benchmarks with 41 or fewer inputs
and also the largest benchmark (in terms of logic) clma. For
those benchmarks which completed under both MC and ESTA,
ESTA m = 104 and m = 106 achieved a geometric mean
speed-up of 164× and 16× respectively. For all benchmarks
with > 415 inputs ESTA in Max-Delay mode exceeded 48
hours run-time during #SAT evaluation.

2) Per-Output Comparison: We can also evaluate ESTA
and MC in Per-Output mode (Section IV-H), where a unique
path-delay distribution is calculated for each timing endpoint.18

Since there are multiple path-delay distributions produced we
calculate the normalized EMD and report the arithmetic mean
across all timing endpoints. For MC convergence we report the
time required for the maximum delay of each timing endpoint
to converge, according to Definition 8.

Table VI also shows the Per-Output QoR; ESTA produces
a more accurate analysis than in the Max-Delay mode: with
a geometric mean EMD of 0.28 and 0.25 for m = 104 and
m = 106 respectively.

Looking at Per-Output Run-time in Table VI we can see
that MC converges on only 6 of 20 benchmarks, and total
run-time increased 4.3× compared to MC Max-Delay mode
for those which converged. In comparison, in Per-Output mode
ESTA converges on more benchmarks: 16 and 13 for m = 104

and m = 106 respectively. On the common benchmarks which
completed, ESTA’s geometric mean speed ups over MC were
569× and 109× for m = 104 and m = 106 respectively.

3) Discussion: The QoR gap between ESTA and MC is de-
rived from four factors. First, binning (Section IV-D) introduces
additional pessimism since the true distribution is approximated
with fewer timing tags. Second, Modelsim performs more
aggressive transition filtering than ESTA (Section IV-B). Since
Modelsim simulates glitching behaviour it can filter transitions
when some inputs have not yet stabilized to their final values.
In contrast, ESTA does not directly model glitching behaviour,
instead calculating upper bounds on the stable arrival times,
and only filters based on the stable post-transition signal
value. To illustrate this difference consider Fig. 4. ESTA will
filter based on the signal state only after t = 1 + δ (when
the signal is guaranteed to be stable and glitch-free), while
Modelsim will filter based on the signal state for the full
time period (even before the signal has stabilized).19 Third,
Modelsim optimistically treats simultaneous transitions at a
gate input with no logical effect (e.g. simultaneous R/F in
Table II) as producing no output transition. To remain safely
pessimistic ESTA models these with an appropriate R/F
transition. Fourth, on some benchmarks MC fails to converge
(e.g. s298), meaning our assumed ground-truth may not be the
actually the ground-truth. In such cases, if ESTA’s calculated

18This more indicative of how an ESTA-like tool would be used to analyze
an overclocking-style design, since the acceptable error rates are likely to be
endpoint dependent.

19ESTA’s behaviour ensures it maintains the monotone speed-up property
[21]. Modelsim’s analysis does not satisfy the monotone speed-up property,
since it filters transitions in a delay-dependent manner.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 12

path-delay distributions are closer to the real ground-truth than
MC’s, the reported normalized EMD may be pessimistic.

It is also interesting to note that MC performs worse
(converges on fewer benchmarks and runs slower) when run in
Per-Output mode, while ESTA exhibits the inverse behaviour.
For MC, Per-Output mode requires that all timing endpoints
converge according to Definition 8, while MC Max-Delay
mode requires only that the maximum delay converges. Thus
Per-Output is a stricter convergence criteria, since it requires
potentially non-maximal delay outputs to converge. For ESTA,
Per-Output mode is faster since it does not require tracking
the covered input transitions, and produces better QoR since
it avoids the final stage of tag merging and binning used to
compute the maximum distribution over all timing endpoints
in Max-Delay mode (Section IV-H).

Overall, these results show that ESTA can be used to
quickly calculate bounding path-delay distributions on most
of the circuits, including some with 100s or 1000s of primary
inputs. This would enable automated analysis of practical
design components such as the 12-input overclocked designs
considered in [5].

VIII. CONCLUSION & FUTURE WORK

In conclusion we have presented ESTA, a new timing
analysis method which accounts for non-worst-case switching
behaviour, calculating safe bounding path-delay distributions
over all input combinations. We showed how the sensitization
probability of timing paths can be calculated using #SAT, al-
lowing path-delay distributions to be constructed. We presented
a BDD-based implementation, including approaches to improve
accuracy and scalability. We also described how non-uniform
probabilities and correlations can be modelled in ESTA. Our
experimental comparisons of ESTA and Monte-Carlo timing
simulation, showed ESTA on average runs 16 to 569× faster
while achieving results within 25 to 63% of Monte-Carlo,
representing a 75 to 37% reduction in pessimism compared to
STA.

ESTA is more general than the previous state of the art for
calculating path delay distributions (manual analysis by hand),
and is more scalable than Monte-Carlo timing simulation while
performing a more robust analysis with stronger correctness
guarantees. ESTA’s high complexity does limit its worst-
case scalability, and analysis of large-scale designs remains
intractable, as they do for all known general methods that
analyze input-dependent circuit behaviour. However, ESTA is
suitable for use on high value sub-circuits where the additional
design effort, pessimism reduction and strong correctness
guarantees are warranted.

There are a variety of directions for future work. The key
algorithmic challenge for ESTA is scalability, with #SAT being
the main run-time bottleneck in our implementation.

One potential approach is to simplify the transition model
from the 4-state model (‘R’, ‘F’, ‘H’, ‘L’) used in this work,
to a simpler 2-state model (e.g. ‘Static’, ‘Switch’). This would
reduce ESTA’s complexity to O(nLK + 2I), but would likely
increase pessimism since filtering (Section IV-B) would become
less effective.

There have also been a variety of works proposing accu-
racy/guarantee trade-offs while approximating the solution to
#SAT [15]. These approximations could substantially reduce
the time required to perform #SAT provided: some potential for
error in the analysis is acceptable, or #SAT can be approximated
pessimistically (e.g. only ever safely over-estimating activation
probabilities). Whether these accuracy/guarantee/complexity
trade-offs are worthwhile requires further investigation.

Another avenue for investigation is using CNF-based solvers
instead of BDDs for solving #SAT. It would also be interesting
to compare ESTA’s efficiency at identifying false paths with
other dedicated false path detection algorithms.

Improved run-time quality trade-offs (Section IV-D), par-
ticularly those that actively consider the impact on quality
would also improve results. For instance percentile binning,
which analyzes only the most critical paths, warrants further
investigation.

There are also open questions driven by the application
of ESTA. While it is possible to model arbitrary correlations
in ESTA it is not clear how to automatically construct such
conditioning functions in an efficient manner. It is also not clear
how best to model the switching behaviour of state elements
like Flip-Flops. It would also be useful to combine both ESTA
and SSTA (i.e. a statistical delay model) to determine the
path-delay distribution while considering device-level delay
variation.

Finally, since ESTA enables automated evaluation of the
path-delay distribution associated with different circuit im-
plementations, it could be used to drive design optimization.
This would require new metrics to guide optimization which
combine path delay and path activation probability information.
Potential metrics could include a probabilistically weighted
slack, or an error-rate slack. Such metrics would allow
designers and optimization tools (such as technology mapping
or placement) to directly optimize a design’s error-rate based on
its physical implementation. This would enable new trade-offs
between delay, path sensitization probability, and other circuit
characteristics which would have interesting applications to
approximate computing techniques such as overclocking.

ACKNOWLEDGMENTS

This work was supported by an NSERC CGS-D scholarship,
the NSERC/Intel Industrial Research Chair in Programmable
Silicon, EPSRC (EP/P010040/1, EP/K034448/1), the Royal
Academy of Engineering, and Imagination Technologies. This
research was also enabled in part by SciNet [30] and Compute
Canada [31].

REFERENCES

[1] S. Sapatnekar, “Static timing analysis,” in EDA for IC implementation,
circuit design, and process technology, L. Lavagno et al., Eds. CRC
press, 2006, ch. 6.

[2] S. R. Nassif, “Modeling and forecasting of manufacturing variations,” in
Int. Workshop on Statistical Metrology, 2000, pp. 2–10.

[3] D. Blaauw et al., “Statistical timing analysis: From basic principles to
state of the art,” IEEE Trans. Comput.-Aided Design Integ. Circuits. Syst.,
vol. 27, no. 4, pp. 589–607, 2008.

[4] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in European Test Symp., 2013, pp.
1–6.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 13

TABLE VI: QUALITY AND RUN-TIME ON THE MCNC20 BENCHMARKS.

Max-Delay
Prob.

Max-Delay QoR
(norm. EMD)

Max-Delay Run-time
(minutes)

Per-Output QoR
(mean norm. EMD)

Per-Output Run-time
(minutes)

Benchmark I LUTs MC p̂
ESTA
m=104

ESTA
m=106

MC ESTA
m=104

ESTA
m=106

ESTA
m=104

ESTA
m=106

MC ESTA
m=104

ESTA
m=106

ex5p 8 740 3.9 · 10−3 0.73 0.37 151.7 0.5 4.6 0.40 0.33 305.1 0.7 5.6
apex4 9 970 5.9 · 10−3 0.85 0.74 118.1 1.5 8.7 0.63 0.48 712.0 1.2 8.7

ex1010 10 3093 2.7 · 10−3 0.96 0.85 922.1 5.8 40.4 0.84 0.65 10.1 127.4
s298 11 1301 0.87 0.79 5.7 59.4 0.54 0.45 15.7 118.6

misex3 14 1158 1.5 · 10−3 0.66 0.46 781.3 5.2 54.9 0.41 0.34 4.4 68.3
alu4 14 1173 2.5 · 10−3 0.83 0.46 473.6 2.4 58.9 0.58 0.44 1966.4 1.8 62.3
spla 16 3005 0.40 0.25 6.3 207.1 0.26 0.19 12.7 108.3
pdc 16 3627 0.56 0.31 11.3 118.4 0.39 0.25 15.5 282.7

apex2 39 1478 6.9 · 10−4 0.33 2068.2 87.1 0.31 80.1
seq 41 1325 0.34 57.9 0.19 0.15 5.7 164.5
des 256 554 1.8 · 10−2 60.7 0.27 0.23 1101.8 0.6 2.8

clma 415 6239 0.92 319.2 0.13 129.4
tseng 436 798 0.15 87.0
diffeq 440 871
dsip 460 880 3.5 · 10−2 49.8 0.15 0.14 56.1 0.5 0.6

bigkey 494 883 1.2 · 10−2 150.6 0.17 0.16 151.2 0.4 0.5
frisc 905 3028

elliptic 1252 2135
s38584.1 1332 4486 3.2 · 10−3 2829.4 0.09 0.07 26.3 111.8
s38417 1545 3465

Common
Geomean 3.0 · 10−3 0.80 0.55 360.8 2.2 22.1 0.31 0.27 398.3 0.7 3.6

‘Common Geomean’ is the geomean of the subset of benchmarks which completed in MC, ESTA m = 104 and ESTA m = 106 in the same mode. Note this means Max-Delay and
Per-Output geomeans are not comparable.
Blank entries exceeded 48 hours run-time.

[5] K. Shi et al., “Accuracy-Performance Tradeoffs on an FPGA through
Overclocking,” in IEEE FCCM, 2013, pp. 29–36.

[6] ——, “Datapath synthesis for overclocking: Online arithmetic for latency-
accuracy trade-offs,” in DAC, 2014, pp. 190:1–190:6.

[7] K. E. Murray et al., “Quantifying Error: Extending Static Timing Analysis
with Probabilistic Transitions,” in DATE, 2017, pp. 1486–1491.

[8] Y.-C. Hsu et al., “Finding the longest simple path in cyclic combinational
circuits,” in ICCAD, Oct 1998.

[9] H. C. Chen and D. H. C. Du, “Path sensitization in critical path problem,”
in ICCAD Digest of Technical Papers, Nov 1991, pp. 208–211.

[10] D. H. C. Du et al., “On the general false path problem in timing analysis,”
in DAC, 1989, pp. 555–560.

[11] R. I. Bahar et al., “Timing analysis of combinational circuits using
ADDs,” in Proceedings of European Design and Test Conference EDAC-
ETC-EUROASIC, Feb 1994, pp. 625–629.

[12] P. Ashar and S. Malik, “Functional timing analysis using ATPG,” IEEE
Trans. Comput.-Aided Design Integ. Circuits. Syst., vol. 14, no. 8, pp.
1025–1030, Aug 1995.

[13] Y.-T. Chung and J.-H. R. Jiang, “Functional Timing Analysis Made Fast
and General,” IEEE Trans. Comput.-Aided Design Integ. Circuits. Syst.,
vol. 32, no. 9, pp. 1421–1434, Sep. 2013.

[14] B. Liu, “Signal probability based statistical timing analysis,” in DATE,
2008, pp. 562–567.

[15] C. P. Gomes et al., “Model counting,” in Handbook of satisfiability,
A. Biere et al., Eds. IOS press, 2009, ch. 20.

[16] S. Devadas et al., “Computation of floating mode delay in combinational
circuits: theory and algorithms,” IEEE Trans. Comput.-Aided Design
Integ. Circuits. Syst., vol. 12, no. 12, pp. 1913–1923, Dec 1993.

[17] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys, vol. 24, no. 3, pp. 293–318,
1992.

[18] F. Somenzi, “CUDD: CU Decision Diagram package release 2.5.1,”
University of Colorado at Boulder, 2015. [Online]. Available:
http://vlsi.colorado.edu/∼fabio/CUDD

[19] C. Visweswariah et al., “First-order incremental block-based statistical
timing analysis,” IEEE Trans. Comput.-Aided Design Integ. Circuits.
Syst., vol. 25, no. 10, pp. 2170–2180, Oct 2006.

[20] T.-W. Huang and M. D. F. Wong, “Opentimer: A high-performance
timing analysis tool,” in ICCAD, 2015, pp. 895–902.

[21] P. C. McGeer and R. K. Brayton, Integrating Functional and Temporal
Domains in Logic Design: The False Path Problem and Its Implications.
Norwell, MA, USA: Kluwer Academic Publishers, 1991.

[22] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in ICCAD, 1993, pp. 42–47.

[23] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs
A Practical Approach. New York, NY, USA: Springer Science + Business
Media, 2009.

[24] S. Ramprasad et al., “Analytical estimation of signal transition activity
from word-level statistics,” IEEE Trans. Comput.-Aided Design Integ.
Circuits. Syst., vol. 16, no. 7, pp. 718–733, Jul 1997.

[25] J. Luu et al., “VTR 7.0: Next Generation Architecture and CAD System
for FPGAs,” ACM TRETS, vol. 7, no. 2, pp. 1–30, 2014.

[26] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide
3.0,” MCNC, Tech. Rep., 1991.

[27] J. Zejda and P. Frain, “General framework for removal of clock network
pessimism,” in ICCAD, Nov 2002, pp. 632–639.

[28] T.-W. Huang et al., “UI-timer: An Ultra-fast Clock Network Pessimism
Removal Algorithm,” in ICCAD, 2014, pp. 758–765.

[29] Y. Rubner et al., “The earth mover’s distance as a metric for image
retrieval,” Int. J. of Computer Vision, vol. 40, no. 2, pp. 99–121, 2000.

[30] C. Loken et al., “SciNet: Lessons Learned from Building a Power-efficient
Top-20 System and Data Centre,” Journal of Physics: Conference Series,
vol. 256, no. 1, 2010.

[31] www.computecanada.ca.

http://vlsi.colorado.edu/~fabio/CUDD

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. AA, NO. BB, MMMM YYYY 14

Kevin E. Murray (S’12) received his BASc in
Engineering Science in 2012 and MASc in Electrical
and Computer Engineering in 2015, both from the
University of Toronto, where he is a PhD candidate
in Electrical and Computer Engineering. He has pre-
viously been a visiting Research Assistant at Imperial
College London, and worked on digital design flows
at Advanced Micro Devices (AMD). His research
interests include CAD for digital systems focusing on
timing analysis, latency insensitive design methods
and floorplanning for FPGAs.

Andrea Suardi Andrea Suardi received his M.Sc.
in Electronic Engineering from the Politecnico di
Milano, Italy in 2006 and he gained his Ph.D. in
Electronics and Communication Engineering at the
same university in 2010. Currently, he is a research
associate at Imperial College London, UK. His
research interests are in digital architecture design,
in particular timing analysis and high efficiency
FPGA based systems for supercomputing and control
applications.

Vaughn Betz (S’88–M’91–SM’17) received the B.Sc
degree in EE from the University of Manitoba in
1991, the MS degree in ECE from the University of
Illinois at Urbana-Champaign in 1993, and the PhD
degree in ECE from the University of Toronto in
1998. He co-founded Right Track CAD to develop
new FPGA architectures and CAD tools and was its
VP of Engineering until its acquisition by Altera in
2000. He was at Altera from 2000 to 2011, ultimately
as Senior Director of Software Engineering, and is
one of the architects of both the Quartus II CAD

system and the Stratix I - V and Cyclone I - V FPGAs. He is a Professor and
the NSERC/Intel Industrial Research Chair in Programmable Silicon at the
University of Toronto, where his research covers FPGA architecture, CAD,
and acceleration of computation using FPGAs.

Dr. Betz has published over 70 technical papers in refereed journals and
conferences, 12 of which have received best paper or most significant 20/25
year paper awards. He holds 97 issued US patents.

George Constantinides George A. Constantinides
(S96-M01-SM08) received the Ph.D. degree from
Imperial College London in 2001. Since 2002, he
has been with the faculty at Imperial College London,
where he is currently Royal Academy of Engineering
/ Imagination Technologies Research Chair, Professor
of Digital Computation, and Head of the Circuits and
Systems research group. He has served as chair of the
FPGA, FPL and FPT conferences. He currently serves
on several program committees and has published
over 150 research papers in peer refereed journals

and international conferences. Prof Constantinides is a Senior Member of the
IEEE and a Fellow of the British Computer Society.

	Introduction
	Background & Related Work
	Extended Static Timing Analysis Formulation
	Using #SAT to Calculate Probabilities
	Transition Model
	Combining Activation Functions
	Conditioning Functions

	ESTA Implementation
	Calculating Timing Tags
	Input Filtering
	Tag Merging
	Run-Time/Accuracy Trade-Offs
	Enhanced Algorithm
	Computational Complexity
	Comparison with Exhaustive Simulation
	Per-Output & Max-Delay Modes

	Non-Uniform & Correlated Conditioning Functions
	Non-uniform Conditioning Functions
	Correlated Condition Functions

	Evaluation Methodology
	Monte-Carlo Simulation
	Metrics

	Results
	Verification
	Maximum Delay Estimation with False Paths
	Monte-Carlo Convergence
	ESTA Run-time/Accuracy Trade-Offs
	ESTA Non-Uniform Conditioning Functions
	ESTA and MC Comparison
	Max-Delay Comparison
	Per-Output Comparison
	Discussion

	Conclusion & Future Work
	References
	Biographies
	Kevin E. Murray
	Andrea Suardi
	Vaughn Betz
	George Constantinides

