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Benchmarks play a key role in FPGA architecture and CAD research, enabling the quantitative comparison
of tools and architectures. It is important that these benchmarks reflect modern large-scale systems that
make use of heterogeneous resources; however, most current FPGA benchmarks are both small and simple.
In this paper we present Titan, a hybrid CAD flow that addresses these issues. The flow uses Altera’s
Quartus II FPGA CAD software to perform HDL synthesis and a conversion tool to translate the result
into the academic BLIF format. Using this flow we created the Titan23 benchmark set, which consists of 23
large (90K-1.8M block) benchmark circuits covering a wide range of application domains. Using the Titan23
benchmarks and an enhanced model of Altera’s Stratix IV architecture, including a detailed timing model,
we compare the performance and quality of VPR and Quartus II targeting the same architecture. We found
that VPR is at least 2.8× slower, uses 6.2× more memory, 2.2× more wire and produces critical paths 1.5×
slower compared to Quartus II. Finally, we identified that VPR’s focus on achieving a dense packing and
inability to take apart clusters is responsible for a large portion of the wire length and critical path delay
gap.
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1. INTRODUCTION
Open-source CAD flows, such as the VTR project [Rose et al. 2012], are crucial to FPGA
research, as open-source tools allow the FPGA architecture and CAD algorithms to be
easily modified. To obtain accurate CAD or architecture results however, we need more
than an open-source CAD flow. It is essential that the benchmark designs used to ex-
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ercise a new algorithm or architecture represent the current, and ideally the future,
usage of FPGAs. Unfortunately, the most commonly used FPGA benchmark suites are
currently composed of designs that are much smaller and simpler than current indus-
trial designs. The MCNC20 benchmark suite [Yang 1991], for example, has an aver-
age size of only 2960 primitives, while current commercial FPGAs [Altera Corporation
2012b] [Xilinx Incorporated 2012] contain up to 2 million logic primitives alone. Fur-
thermore, half of the MCNC benchmarks are purely combinational, and none of the
designs contain hard primitives such as memories or multipliers. The more modern
VTR benchmark suite [Rose et al. 2012] is an improvement, but it still consists of de-
signs with an average size of only 23,400 primitives, which would fill only 1% of the
largest FPGAs. Only 10 of the 19 VTR designs contain any memory blocks and at most
10 memories are used in any design. In comparison, Stratix V and Virtex 7 devices
contain up to 2,660 and 3,760 memory blocks respectively. Without larger benchmarks,
key issues such as CAD tool scalability for very large designs cannot be investigated,
and without more up-to-date benchmarks the validity of architecture studies is ques-
tionable.

There are many barriers to the use of state-of-the-art benchmark circuits with open-
source tool flows. First, obtaining large benchmarks can be difficult, as many are pro-
prietary. Second, purely open-source flows have limited HDL coverage. The VTR flow,
for example, uses the ODIN-II Verilog parser which can process only a subset of the
Verilog HDL – any design containing System Verilog, VHDL or a range of unsupported
Verilog constructs cannot be used without a substantial re-write. As well, if part of a
design was created with a higher-level synthesis tool, the output HDL is not only likely
to contain constructs unsupported by ODIN-II, but is also likely to be very hard to read
and re-write using only supported constructs. Third, modern designs make extensive
use of IP cores, ranging from low-level functions such as floating-point multiply and
accumulate units to higher-level functions like FFT cores and off-chip memory con-
trollers. Since current open-source flows lack IP, all these functions must be removed
or rewritten; this is not only a large effort, it also raises the question of whether the
modified benchmark still accurately represents the original design, as IP cores are
often a large portion of the design.

In order to avoid many of these pitfalls, we have created Titan, a hybrid flow that
utilizes a commercial tool, Altera’s Quartus II design software, for HDL elaboration
and synthesis, followed by a format conversion tool to translate the results into a form
open-source tools can process. The Titan flow has excellent language coverage, and
can use any unencrypted IP that works in Altera’s commercial CAD flow, making it
much easier to handle large and complex benchmarks. We output the design early
in the Quartus II flow, which means we can change the target FPGA architecture
and use open-source synthesis, placement and routing engines to complete the design
implementation. Consequently we believe we have achieved a good balance between
enabling realistic designs, while still permitting a high degree of CAD and architecture
experimentation.

An earlier version of this work was published as Murray et al. [2013b]. We have
significantly enhanced and extended it by improving the quality of the Stratix IV ar-
chitecture capture by including support for carry chains and direct-links between adja-
cent blocks, improving DSP packing, and adding a detailed timing model. This enables
timing-driven CAD and architecture research and a detailed comparison of commercial
and academic CAD tools. Our contributions include:

— Titan, a hybrid CAD flow that enables the use of larger and more complex bench-
marks with academic CAD tools.
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— The Titan23 benchmark suite. This suite of 23 designs has an average size of 421,000
primitives. Most designs are highly heterogeneous with thousands of RAM and/or
multiplier primitives.

— A timing driven comparison of the quality and run time of the academic VPR and
the commercial Quartus II packing, placement and routing engines. This comparison
helps identify how academic tool quality compares to commercial tools, and high-
lights several areas for potential improvement in VPR.

2. THE TITAN FLOW
The basic steps of the Titan flow are shown in Fig. 1. Quartus II performs elabora-
tion and synthesis (quartus map) which generates a Verilog Quartus Map (VQM) file.
The VQM file is a technology mapped netlist, consisting of the basic primitives in the
target architecture. The VQM file is then converted to the standard Berkeley Logic
Interchange Format (BLIF) using our VQM2BLIF tool, which can then be passed on
to conventional open-source tools such as ABC [Mishchenko 2013] and VPR [Betz and
Rose 1997]. The Titan flow is described in more detail in Murray et al. [2013b] and
Murray et al. [2013a].

ARCH

quartus_map

HDL

VQM2BLIF

VPR ABC

VQM

BLIF

Fig. 1: The Titan Flow.

The VQM2BLIF tool, detailed documentation, scripts to run the Titan flow, along
with the complete benchmark set and enhanced architecture capture, are available
from: http://www.eecg.toronto.edu/∼vaughn/software.html.

3. FLOW COMPARISON
Using a commercial tool like Quartus II as a “front-end” brings several advantages that
are hard to replicate in open-source flows. It supports several HDLs including Verilog,
VHDL and SystemVerilog, and also supports higher level synthesis tools like Altera’s
QSYS, SOPC Builder, DSP Builder and OpenCL compiler. It also brings support for
Altera’s IP catalogue, with the exception of some encrypted IP blocks.

These factors significantly ease the process of creating large benchmark circuits
for open-source CAD tools. For example, converting an LU factorization benchmark
[Zhang et al. 2012] for use in the VTR flow [Rose et al. 2012] involved roughly one
month of work removing vendor IP and re-coding the floating point units to account
for limited Verilog language support. Using the Titan flow, this task was completed
within a day, as it only required the removal of one encrypted IP block from the origi-
nal HDL, which accounted for less than 1% of the design. In addition, since over 68%
of the design logic was in the floating point units, the Titan flow better preserves the
original design characteristics.
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Experiment Modification VTR Titan Titan Flow Method

Device Floorplan Yes Yes Architecture file
Inter-cluster Routing Yes Yes Architecture file
Clustered Block Size / Configuration Yes Yes Architecture file
Intra-cluster Routing Yes Yes Architecture file
Logic Element Structure Yes Yes Architecture file
LUT size / Combinational Logic Yes Yes ABC re-synthesis
New RAM Block Yes Yes Architecture file (up to 16K depth)
New DSP Block Yes Yes Architecture file (up to 36 bit width)
New Primitive Type Yes No No method to pass black box through Quartus II

Table I: Comparison of architecture experiments supported by the VTR and Titan
flows.

A concern in using a commercial tool to perform elaboration and synthesis is that
the results may be too device or vendor-specific to allow architecture experimentation.
However this is not necessarily the case. The Titan flow still allows a wide range of
experiments to be conducted as shown in Table I. The ability to use tools like ABC
to re-synthesize the netlist ensures experiments with different LUT sizes, and even
totally different logic structures such as AICs [Parandeh-Afshar et al. 2012], can still
occur. RAM is represented as device independent “RAM slices” which are typically one
bit wide, and up to 14 address bits deep. These RAM slices are packed into larger phys-
ical RAM blocks by VPR, and hence arbitrary RAM architectures can be investigated.
Similarly, multiplier primitives (up to 36x36 bits) are packed into DSP blocks by VPR,
allowing a variety of experiments. A simple remapping tool could also re-size the mul-
tiplier primitives if desired. The structure of a logic element (connectivity, number of
Flip-Flops, etc.) can also be modified without having to re-synthesize the design, and
inter-block routing architecture and electrical design can both be arbitrarily modified.
Compared to VTR, the largest limitation is the inability to add support for new primi-
tive types.

Another use of Titan is to test and evaluate CAD tool quality. Both physical CAD
(e.g. packing, placement, routing) and logic re-synthesis tools can be plugged into the
flow. Titan provides a front-end interface between commercial and academic CAD flows
which is complimentary to the back-end VPR to bitstream interface presented in Hung
et al. [2013]. Overall, the Titan flow enables a wide range of FPGA architecture exper-
iments, and can be used to evaluate new CAD algorithms on realistic architectures
with realistic benchmark circuits, and allows for more extensive scalability testing
with larger benchmarks.

4. BENCHMARK SUITE
We selected the 23 largest benchmarks that we could obtain from a diverse set of
application domains to create the Titan23 benchmark suite. The benchmarks often
required minor alteration to make them compatible with the Titan flow. The conversion
methodology is described in Murray et al. [2013b].

4.1. Titan23 Benchmark Suite
The Titan23 benchmark suite consists of 23 designs ranging in size from 90K-1.8M
primitives, with the smallest utilizing 40% of a Stratix IV EP4SGX180 device, and the
largest designs unable to fit on the largest Stratix IV device. The designs represent a
wide range of real world applications and are listed in Table II. All benchmarks make
use of some or all of the different heterogeneous blocks available on modern FPGAs,
such as DSP and RAM blocks.

While these benchmarks (as released) will synthesize with Altera’s Quartus II, it
should also be possible to use them in other tool flows such as Torc [Steiner et al. 2011]
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Name Total Blocks Clocks ALUTs REGs DSP 18x18s RAM Slices RAM Bits Application

gaussianblur 1,859,485 1 805,063 1,054,068 16 334 1,702 Image Processing
bitcoin miner 1,061,829 2 455,263 546,597 0 59,968 297,664 SHA Hashing

directrf 934,490 2 471,202 447,032 960 40,029 20,307,968 Communications/DSP
sparcT1 chip2 824,152 2 377,734 430,976 24 14,355 1,585,435 Multi-core µP
LU Network 630,103 2 194,511 399,562 896 41,623 9,388,992 Matrix Decomposition

LU230 567,992 2 208,996 293,177 924 64,664 10,112,704 Matrix Decomposition
mes noc 549,045 9 274,321 248,988 0 25,728 399,872 On Chip Network

gsm switch 491,846 4 159,388 296,681 0 35,776 6,254,592 Communication Switch
denoise 342,899 1 322,021 8,811 192 11,827 1,135,775 Image Processing

sparcT2 core 288,005 2 169,498 109,624 0 8,883 371,917 µP Core
cholesky bdti 256,072 1 76,792 173,385 1,043 4,920 4,280,448 Matrix Decomposition

minres 252,454 2 107,971 126,105 614 17,608 8,933,267 Control Systems
stap qrd 237,197 1 72,263 161,822 579 9,474 2,548,957 Radar Processing
openCV 212,615 1 108,093 86,460 740 16,993 9,412,305 Computer Vision

dart 202,368 1 103,798 87,386 0 11,184 955,072 On Chip Network Simulator
bitonic mesh 191,664 1 109,633 49,570 676 31,616 1,078,272 Sorting
segmentation 167,917 1 155,568 6,561 104 5,658 3,166,997 Computer Vision
SLAM spheric 125,194 1 112,758 8,999 296 3,067 9,365 Control Systems

des90 109,811 1 62,871 30,244 352 16,256 560,640 Multi µP system
cholesky mc 108,236 1 29,261 74,051 452 5,123 4,444,096 Matrix Decomposition
stereo vision 92,662 3 38,829 49,049 152 4,287 203,777 Image Processing
sparcT1 core 91,268 2 41,968 45,013 8 4,277 337,451 µP Core

neuron 90,778 1 24,759 61,477 565 3,799 638,825 Neural Network

Table II: Titan23 Benchmark Suite.

and RapidSmith [Lavin et al. 2011] by replacing the Altera IP cores with equivalents
from the appropriate vendor.

4.2. Comparison to Other Benchmark Suites
The characteristics outlined above make the Titan23 benchmark suite quite differ-
ent from the popular MCNC20 benchmarks [Yang 1991], which consist of primarily
combinational circuits and make no use of heterogeneous blocks. Furthermore, the
MCNC designs are extremely small. The largest (clma) uses less than 4% of a Stratix
IV EP4SGX180 device, making it one to two orders of magnitude smaller than modern
FPGAs.

Another benchmark suite of interest is the collection of 19 benchmarks included
with the VTR design flow. These benchmarks are larger than the MCNC benchmarks,
with the largest (mcml) reported to use 99.7K 6-LUTs [Rose et al. 2012]. Interestingly,
when this circuit was run through the Titan flow, it uses only 11.7K Stratix IV ALUTs
(6-LUTs) after synthesis, indicating the differences between ODINII+ABC and Quar-
tus II’s integrated synthesis. Additionally, only 10 of the VTR circuits make use of
heterogeneous resources. The Titan23 benchmark suite provides substantially larger
benchmark circuits that make more extensive use of heterogeneous resources.

Several non-FPGA-specific benchmark suites also exist. The various ISPD bench-
marks [Viswanathan et al. 2011] are commonly used to evaluate ASIC tools, but are
only available in gate-level netlist formats. This makes them unsuitable for use as
FPGA benchmarks, since they are not mapped to the appropriate FPGA primitives.
The IWLS 2005 benchmarks [IWLS 2005] are available in HDL format, and the Titan
flow enables them to be used with FPGA CAD tools. However, the largest design con-
sists of only 36K blocks after running through the Titan flow – too small to be included
in the Titan23.

5. ARCHITECTURE MODEL ENHANCEMENTS AND MODIFICATIONS
Several enhancements have been made to the Stratix IV architecture model used in
Murray et al. [2013b], with the dual aims of enabling a reasonably accurate comparison
of the timing optimization capabilities of VPR and Quartus II, and providing a realistic
architecture on which enhanced CAD algorithms can be tested.
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5.1. Carry Chains
Most modern FPGAs such as Stratix IV have embedded carry chains, which are used
to speed up arithmetic computations. These structures are important from a timing
perspective, as they help to keep the otherwise slow carry propagation from dominat-
ing a circuit’s critical path. VPR 7 supports chain-like structures, which are identified
during packing and kept together as hard macros during placement. Using this feature
we were able to model the carry chain structure in Stratix IV, which runs downward
through each LAB, and continues in the LAB below.

One of VPR’s limitations when modeling carry chains is that a carry chain can not
exit a LAB early if the LAB runs out of inputs. In Stratix IV the full adder and LUT are
treated as a single primitive, where the adder is fed by the associated LUT. This allows
additional logic (such as a mux, or the XOR for an adder/subtractor) to be placed in the
LUT. However, for a full LAB carry chain (20-bits) this additional logic may require
more inputs than the LAB can provide. This issue is avoided in Stratix IV by allowing
the carry chain to exit early, at the midpoint of the LAB, and continue in the LAB below
[Lewis et al. 2005]. Since this behaviour is not supported in VPR, we had to increase
the number of inputs to the LAB to 80 to ensure VPR would be able to pack carry
chains successfully. This is notably higher than the 52 inputs that exist in Stratix IV,
and may allow VPR to pack more logic inside each LAB as a result.

5.2. Direct-Link Interconnect and Three Sided LABs
Stratix IV devices also have “Direct-Link” interconnect between horizontally adjacent
blocks [Altera Corporation 2012a]. This allows adjacent blocks to communicate di-
rectly, by driving each-other’s local (intra-block) routing, without having to use global
routing wires. These connections act as fast paths between adjacent blocks, and also
help to reduce demand for global routing resources.

Within VPR these connections were modeled as additional edges (switches) in the
routing resource graph connecting the output and input pins of adjacent LABs. As
modeled, each LAB can drive and receive 20 signals to/from each of its horizontally
adjacent LABs. To ensure that this capability was fully exploited, VPR’s placement
delay model was enhanced to account for these fast connections.

Additionally, Stratix IV LABs can only drive global routing segments on three sides
(left, right and top). This was modeled by distributing all block pins along those sides.

5.3. Improved DSP Packing and Spacing
One of the differences identified in previous work was that VPR used significantly
(~2.3×) more DSP blocks than Quartus II [Murray et al. 2013b]. It was also observed
that VPR’s packer spent a large amount of time packing DSP blocks.

In an attempt to improve these results we provided hints (“pack patterns”) to VPR’s
packer indicating that certain sets of netlist primitives should be kept together. Doing
this for two DSP operating modes (which account for 80% of all DSP modes in the
Titan23 benchmarks), significantly decreased both the number of DSP blocks required
and the time required to pack DSP heavy circuits.

We also found that when run in VPR, many DSP heavy circuits required substan-
tially larger devices than when run in Quartus II. This was caused by the relatively
low DSP density of the EP4SE820 device, upon which the architecture model’s floor-
plan was based. To resolve this issue we reduced the spacing between DSP columns
from 92 to 40 columns, resulting in a DSP density more comparable to the smaller and
more DSP focused Stratix IV devices.
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5.4. Constant Nets
While Quartus II will recognize that netlist primitive ports connected to vcc or gnd
can be tied off within the primitive, VPR does not and will attempt to route these
(potentially high fan-out) constant nets. To avoid this behaviour the VQM2BLIF netlist
converter now removes such constant nets from the generated BLIF netlist.

6. TIMING MODEL
One of the primary limitations of the previous work to compare VPR and Quartus II,
was that both tools were run only in wire length driven mode [Murray et al. 2013b].
Since real world industrial CAD tools would be almost exclusively run with timing
optimization enabled, it is important to compare both VPR and Quartus II in this
mode. However, this comparison requires that VPR have a reasonably accurate timing
model. This ensures that both tools will face similar optimization problems, and that
the final critical path delays can be fairly compared.

While it is practically impossible to create an identical timing model between VPR
and Quartus II, we have captured the major timing characteristics of Stratix IV de-
vices. To do so we used micro-benchmarks to evaluate specific components of the
Stratix IV architecture. Timing delays were extracted from post-place-and-route cir-
cuits using Quartus II’s TimeQuest Static Timing Analyzer for the ‘Slow 900mV 85C’
timing corner. Delay values were averaged across multiple locations on the device, to
account for location-based delay variation.

Some device primitives in Stratix IV contain optional input and/or output registers.
To capture the timing impact of these optional registers VQM2BLIF was enhanced to
identify blocks using such registers and generate a different netlist primitive, allowing
a different timing model to be used.

6.1. LAB Timing
The LAB timing model captures many of the important timing characteristics of the
block, as shown in Fig. 2 and Table III. The carry chain delay varies depending on
where in the LAB it is located. As noted in Table III the delay is normally 11ps, but
can be larger when crossing the midpoint of the LAB (due to crossing the extra control
logic in that area) and when crossing between LABs.

One limitation of VPR compared to Quartus II, is that it does not re-balance LUT
inputs so that critical signals use the fastest inputs. As a result we model all LUT
inputs as having a constant combinational delay, equal to the average delay of the 6
Stratix IV LUT inputs.

6.2. RAM Timing
In Stratix IV inputs to RAM blocks are always registered, but the outputs can be ei-
ther combinational or registered. Since VPR does not support multi-cycle primitives,
we model each RAM block as a single sequential element with a short or long clock-to-q
delay depending on whether the output is registered or combinational. While this ne-
glects the internal clock cycle from a functional perspective, it remains accurate from
a delay perspective provided the clock frequency does not exceed the maximum sup-
ported by the blocks (540 and 600 MHz for the M144K and M9K respectively) [Altera
Corporation 2012a].

6.3. DSP Timing
Each Stratix IV DSP block consists of two types of device primitives: multipliers
(mac mults) and adder/accumulators (mac outs) [Altera Corporation 2009]. For the
mac mult primitive, inputs can be optionally registered, while the output is always
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Fig. 2: Simplified LAB diagram
illustrating modeled delays.

Location Delay (ps) Description
a 171 LAB Input
b 261 LUT Comb. Delay

11 Cin to Cout (Normal)
65 Cin to Cout (Mid-LAB)

124 Cin to Cout (Inter-LAB)
c 25 LUT to FF/ALM Out
d 66 FF Tsu

124 FF Tcq
e 45 FF to ALM Out
f 75 LAB Feedback

Table III: Modeled LAB Delay Values

combinational. For the case with no input registers, the primitive is modeled as a
purely combinational element. For the case with input registers it is modeled as a sin-
gle sequential element, with the combinational output delay included in the clock-to-q
delay.

The mac out can have optional input and/or output registers and is modeled simi-
larly, as either a purely combinational element or as a single sequential element with
the setup time/clock-to-q delay modified to account for the presence or absence of in-
put/output registers. From a delay perspective these approximations remain valid pro-
vided the clock driving the DSP does not exceed the block’s maximum frequency of
600MHz [Altera Corporation 2012a]. The different delay values associated with differ-
ent mac out operating modes (accumulate, pass-through, two level adder etc.) are also
modeled.

6.4. Wire Timing
In Murray et al. [2013b], the global routing network was modeled as a combination of
length 4 (L4) and length 16 wires (L16). Stratix IV uses length 4 wires, with additional
length 12 wires in the vertical and length 20 wires in the horizontal directions.

For the modeled wires, resistance, capacitance and driver switching delay values
were chosen, based on ITRS 45nm data and adjusted to match the average delays
observed in Quartus II. The modeled L4 wire parameters were chosen to match Stratix
IV’s length 4 wire delays, and the modeled L16 wire parameters were chosen to match
the averaged behaviour of Stratix IV’s length 12 and 20 wires.

6.5. Other Timing
A basic timing model was included for simple I/O blocks, and a zero delay model was
used for other more complex I/O blocks (such as DDR), and is included only so that
circuits including such blocks will run through VPR correctly. As a result I/O timing
should be considered approximate, and is not reported.

6.6. VPR Limitations
While VPR supports multi-clock circuits, it does not support multi-clock netlist prim-
itives (e.g. RAMs with different read and write clocks). To work around this issue,
VQM2BLIF was enhanced to (optionally) remove extra clocks from device primitives
to allow such circuits to run through VPR.
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VPR also treats clock nets specially, requiring that clock nets not connect to non-
clock ports and vice versa. This occurs occasionally in Quartus II’s VQM output, and
is fixed by VQM2BLIF, which disconnects clock connections to non-clock ports and
replaces non-clock connections to clock ports with valid clocks.

While both of these work-arounds do modify the input netlist, they typically only
affect a small portion of a design’s logic. However, despite these modifications some
circuits were unable to run to completion due to bugs in VPR.

6.7. Timing Model Verification
To verify the validity of our timing model, we ran micro-benchmarks through both
VPR and Quartus II and compared the resulting timing paths. Using small micro-
benchmarks helps to minimize the optimization differences between each tool. The
correlation results for a subset of these benchmarks are shown in table IV.

Benchmark VPR Path Delay (ps) Quartus II Path Delay (ps) VPR:Q2 Delay Ratio Note

L4 Wire 131 132 0.99
L16 Wire 293 289 1.01

32-bit Adder 1,674 1,718 0.97
8:1 Mux 932 1,498 0.62 Extra inter-block wire

8-bit LFSR 3,400 3,346 1.02
18-bit Comb. Mult 9,494 8,760 1.08
32-bit Reg. Mult 7,751 7,015 1.10
M9K Comb. Output 4,757 4,813 0.99
M9K Reg. Output 3,733 3,788 0.99

diffeq1 9,935 11,289 0.88 Small Benchmark
sha 6,103 5,416 1.13 Small Benchmark

Table IV: Stratix IV Timing Model Correlation Results.

The correlation is reasonably accurate, with VPR’s delay falling within 10% of the
delay measured in Quartus II, except for the 8:1 Mux, diffeq1 and sha benchmarks.
For the 8:1 Mux, Quartus II uses an additional inter-block routing wire that VPR does
not, accounting for the delay difference. The diffeq1 and sha benchmarks, while still
small, are large enough that each tool produces a different optimization result.

7. BENCHMARK RESULTS
In this section we use the Titan23 benchmark suite described in Section 4, in conjunc-
tion with the enhanced Stratix IV architecture capture and timing model described in
Sections 5 and 6. This allows us to compare the popular academic VPR tool with Al-
tera’s commercial Quartus II software. Using the Stratix IV architecture capture, VPR
was able to target an architecture similar to the one targeted by Quartus II, allowing
a coarse comparison of CAD tool quality.

7.1. Benchmarking Configuration
In all experiments, version 12.0 (no service packs) of Quartus II was used, while a
recent revision of VPR 7.0 (r4292) was used. During all experiments a hard limit of
48 hours run time was imposed; any designs exceeding this time were considered to
have failed to fit. Most benchmarks were run on systems using Xeon E5540 (45nm,
2.56GHz) processors with either 16GB or 32GB of memory. For some benchmarks,
systems using Xeon E7330 (65nm, 2.40GHz) and 128GB of memory, or Xeon E5-2650
(32nm, 2.00GHz) and 64GB of memory were used. Where required, run time data is
scaled to remain comparable across different systems.

To ensure both tools were operating at comparable effort levels, VPR packing
and placement were run with the default options, while Quartus II was run in
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STANDARD FIT mode. Due to long routing convergence times, VPR was allowed to use
up to 400 routing iterations instead of the default of 50. Quartus II supports multi-
threading, but was restricted to use a single thread to remain comparable with VPR.

Quartus II targets actual FPGA devices that are available only in discrete sizes. In
contrast VPR allows the size of the FPGA to vary based on the design size. While it is
possible to fix VPR’s die size, we allowed it to vary, so that differences in block usage
after packing would not prevent a circuit from fitting.

To enable a fair comparison of timing optimization results, we constrained both tools
with equivalent timing constraints. All paths crossing netlist clock-domains were cut,
ensuring that the tools can focus on optimizing each clock independently. The bench-
mark I/Os were constrained to a virtual I/O clock with loose input/output delay con-
straints. Paths between netlist clock-domains and the I/O domain were analyzed, to
ensure that the tools can not (unrealistically) ignore I/O timing [Altera Corporation
2007]. All clocks were set to target an aggressive clock period of 1ns. Since VPR does
not model clock uncertainty, clock uncertainty was forced to zero in Quartus II. Sim-
ilarly VPR does not model clock skew across the device; this can not be disabled in
Quartus II, but its timing impact is small (typically less than 100ps).

7.2. Quality of Results Metrics
Several key metrics were measured and used to evaluate the different tools. They fall
into two broad categories.

The first category focuses on tool computational needs, which we quantify by looking
at wall clock execution time for each major stage of the design flow (Packing, Place-
ment, Routing), as well as the total run time and peak memory consumption.

The second category of metrics focus on the Quality of Results (QoR). We measure
the number of physical blocks generated by VPR’s packer, and the total number of
physical blocks used by Quartus II. Another key QoR metric is wire length (WL). Un-
like VPR, Quartus II reports only the routed WL and does not provide an estimate of
WL after placement. If a circuit fails to route in VPR, we estimate its required routed
WL by scaling VPR’s placement WL estimate by the average gap between placement
estimated and final routed WL (~31%). Finally, with a Stratix IV like timing model
included in the architecture capture, we also compare circuit critical path delay. This
was done using the timing constraints described in Section 7.1. For multi-clock cir-
cuits we report the geometric mean of critical path delays across all clocks, excluding
the virtual I/O clock.

7.3. Timing Driven Compilation and Enhanced Architecture Impact
It is useful to quantify the impact of running VPR in timing-driven mode and the
impact of the architectural changes outlined in Section 5. This was evaluated by ei-
ther disabling timing-driven compilation or specific architecture features. The results
shown in Tables V and VI are averaged across the benchmarks that ran to completion
and normalized to the fully featured architecture run in timing-driven mode.

Performance Metric Baseline No Timing No Chains No Direct No DSP Hints

Pack 1.00 1.55 1.45 1.01 2.42
Place 1.00 0.45 0.94 1.03 1.11
Route 1.00 0.15 0.62 1.18 0.96
Total 1.00 0.28 0.68 1.15 1.21

Peak Memory 1.00 1.02 1.02 1.00 1.08

Table V: Timing Driven & Enhanced Architecture Tool Performance Impact
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QoR Metric Baseline No Timing No Chains No Direct No DSP Hints

LABs 1.00 0.99 1.01 1.00 1.00
DSP 1.00 1.12 1.09 1.00 2.22
M9K 1.00 1.00 1.00 1.00 1.01

M144K 1.00 1.00 1.00 1.00 0.97
WL 1.00 0.79 1.04 1.01 1.10

Crit. Path Delay 1.00 — 2.16 1.03 1.12

Table VI: Timing Driven & Enhanced Architecture QoR Impact

Disabling timing-driven compilation in VPR resulted in significant run time im-
provements. In particular, placement and routing took 0.45× and 0.15× as long re-
spectively while packing took 1.55× longer. VPR’s run time is usually dominated by
routing (Section 7.4), and as a result VPR ran 3.6× faster in non-timing-driven mode.
While the speed-up during placement seems reasonable, since no timing analysis is
being performed, the large speed-up in the router makes it clear that VPR’s timing-
driven router suffers from convergence issues on this architecture. As expected when
run in non-timing-driven mode the routed WL decreases to 0.79× compared to timing-
driven mode.

Disabling carry chains (Section 5.1) increases packer run time by 1.45×, but reduces
routing run time to 0.62×. The slow-down in the packer indicates that carry chains
provide useful guidance to the packer. The speed-up in the router can be attributed
to the reduction in routing congestion caused by the dispersal of input and output
signals used by the carry chains. From a timing perspective, disabling carry chains
has a significant impact, increasing critical path delay by 2.16×.

Disabling the direct-links between adjacent LABs (Section 5.2) increases router run
time to 1.18×, and results in a small (3%) increase in critical path delay. This indicates
that the direct-link connections make the architecture easier to route.

Disabling the packing hints for DSP blocks (Section 5.3) increased the packer run
time by 2.42×, while also increasing the required number of DSP blocks by 2.22×. This
increase in DSP blocks had an appreciable impact on WL and critical path delay, which
increased by 10% and 12% respectively.

7.4. Performance Comparison with Quartus II
Table VII shows both the absolute run time and peak memory of VPR, and the relative
values compared to Quartus II on the Titan23 benchmark suite, using the enhanced
architecture. Quartus II’s absolute run time and peak memory across the same bench-
marks, while targeting Stratix IV, are shown in Table VIII. Both tools were run in
timing-driven mode.

VPR spends most of its time on routing, which takes on average 80% of the total
run time on benchmarks that completed. In contrast, Quartus II has a more even run
time distribution with placement taking the largest amount of time (38%), and with a
significant amount of time (28% and 25%) spent on routing and miscellaneous actions
respectively. For both tools, run time can be quite substantial on larger benchmarks,
taking in excess of 48 hours.1 Looking at the relative run time of the two tools in Table
VII, we can gain additional insights into each step of the CAD flow.

Packing is slower (2.2×) in VPR than in Quartus II, which can be partly attributed
to VPR’s more flexible packer, which allows it to target a wide range of FPGA architec-
tures.

1In contrast, the largest MCNC20 circuit took 60s in VPR and 65s in Quartus II, highlighting the importance
of using large benchmarks to evaluate CAD tools.
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Name Total Blocks Pack Place Route Total Mem. Outcome

gaussianblur * 1,859,485 745.8 ERR
bitcoin miner * 1,061,829 248.1 (2.38×) 427.7 (0.35×) UNR

directrf * 934,490 ERR
sparcT1 chip2 † 824,152 76.8 (1.01×) 117.1 (0.47×) 568.7 762.6 46.0
LU Network † 630,103 48.2 (1.45×) 113.1 (0.84×) OOT

LU230 * 567,992 148.3 (1.82×) OOM
mes noc † 549,045 53.2 (2.84×) 117.2 (1.21×) 433.0 (7.90×) 603.4 (2.72×) 39.0 (5.42×)

gsm switch * 491,846 85.3 (1.94×) 204.1 (1.07×) OOT
denoise 342,899 39.8 (3.01×) 111.8 (1.21×) 1,335.7 (27.86×) 1,487.4 (8.14×) 25.0 (4.60×)

sparcT2 core 288,005 37.0 (3.33×) 50.1 (0.71×) 348.3 (9.16×) 435.4 (3.06×) 18.0 (4.58×)
cholesky bdti 256,072 16.6 (1.51×) 32.0 (0.77×) 188.2 (12.17×) 236.8 (2.67×) 25.0 (6.78×)

minres † 252,454 13.8 (1.76×) 20.9 (0.65×) 135.4 (9.28×) 170.1 (2.38×) 42.0 (9.96×)
stap qrd 237,197 15.3 (1.04×) 47.1 (1.31×) 86.7 (7.05×) 149.0 (1.83×) 23.0 (6.65×)
openCV † 212,615 14.2 (2.63×) 20.9 (0.84×) OOT

dart 202,368 17.7 (2.34×) 20.6 (0.73×) OOT
bitonic mesh † 191,664 19.2 (3.87×) 28.2 (0.91×) 1,914.9 (20.02×) 1,962.3 (12.86×) 55.0 (11.63×)
segmentation 167,917 17.1 (3.07×) 37.4 (0.99×) 546.1 (22.30×) 600.5 (7.30×) 17.0 (5.61×)
SLAM spheric 125,194 12.0 (2.90×) 22.2 (0.98×) OOT

des90 † 109,811 9.3 (4.22×) 12.4 (0.80×) 228.6 (5.61×) 250.3 (3.63×) 28.0 (9.29×)
cholesky mc 108,236 6.1 (1.94×) 10.2 (0.85×) 30.4 (4.74×) 46.6 (1.34×) 16.0 (6.90×)
stereo vision 92,662 3.3 (1.27×) 8.0 (0.69×) 11.1 (3.31×) 22.4 (0.96×) 9.2 (5.30×)
sparcT1 core 91,268 9.8 (3.77×) 8.7 (0.85×) 46.0 (3.61×) 64.5 (1.94×) 7.1 (3.89×)

neuron 90,778 4.6 (1.90×) 7.4 (0.71×) 19.6 (3.46×) 31.5 (1.08×) 10.0 (4.63×)

Geomean 26.4 (2.20×) 36.3 (0.81×) 171.0 (8.23×) 229.4 (2.82×) 21.8 (6.21×)

ERR: Error in VPR. UNR: Unroute. OOT: Out of Time (>48 hours). OOM: Out of Memory (>128GB).
*Run on 128GB machine. †Run on 64GB machine.

Table VII: VPR 7 run time in minutes and memory in GB. Relative speed to Quartus
II (VPR/Q2) is shown in parentheses.

Name Total Blocks Pack Place Route Misc. Total Mem. Outcome

gaussianblur * 1,859,485 DEV
bitcoin miner * 1,061,829 104.1 1,226.8 2,387.6 337.5 4,379.9 10.5

directrf * 934,490 DEV
sparcT1 chip2 * 824,152 76.3 251.3 OOT
LU Network * 630,103 33.2 134.7 85.4 57.3 300.2 8.4

LU230 * 567,992 81.6 290.1 211.3 122.7 823.5 9.5
mes noc * 549,045 18.7 96.6 54.8 63.4 222.2 7.2

gsm switch * 491,846 44.0 190.7 266.0 40.1 579.2 7.0
denoise 342,899 13.2 92.4 48.0 29.1 182.6 5.4

sparcT2 core 288,005 11.1 70.1 38.0 23.1 142.4 3.9
cholesky bdti 256,072 11.0 41.5 15.5 20.9 88.8 3.7

minres * 252,454 7.9 32.1 14.6 20.6 71.4 4.2
stap qrd 237,197 14.7 35.9 12.3 18.7 81.6 3.5
openCV * 212,615 5.4 24.8 11.6 15.9 54.8 3.7

dart 202,368 7.6 28.0 23.9 741.9 801.3 3.2
bitonic mesh * 191,664 5.0 31.0 95.7 25.6 152.6 4.7
segmentation 167,917 5.6 37.8 24.5 14.4 82.2 3.0
SLAM spheric 125,194 4.2 22.7 16.2 13.0 56.1 2.6

des90 * 109,811 2.2 15.5 40.7 12.8 69.0 3.0
cholesky mc 108,236 3.1 11.9 6.4 13.3 34.8 2.3
stereo vision 92,662 2.6 11.6 3.4 5.9 23.4 1.7
sparcT1 core 91,268 2.6 10.3 12.8 7.6 33.3 1.8

neuron 90,778 2.4 10.4 5.7 10.9 29.3 2.2

Geomean 10.3 48.9 32.8 28.8 133.4 4.0

DEV: Exceeded size of largest Stratix IV device. OOT: Out of Time (>48 hours).
*Run time scaled to 64GB or 128GB machine.

Table VIII: Quartus II run time in minutes and memory in GB.

On average, both VPR and Quartus II spend a comparable amount of time during
placement, with VPR using 19% less execution time. However this is somewhat pes-
simistic for VPR, since it also spends time generating the delay map used for place-
ment. Quartus II in contrast uses a pre-computed device delay model. This is an ex-
ample of where VPR has additional overhead because of its architecture independence.
Additionally, VPR typically uses fewer LABs than Quartus II (see Section 7.5), which
decreases the size of VPR’s placement problem. Quartus II also enforces stricter place-
ment legality constraints and uses more intelligent directed moves than VPR, which
also affect its run time [Ludwin and Betz 2011].

VPR’s timing-driven router is also substantially slower (8.2×) than Quartus II’s.
Furthermore, the router’s run time is volatile, ranging from 3.3× slower in the best
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case to nearly 28× slower in the worst case. This can be partly attributed to VPR’s
default congestion resolution schedule, which increases the cost of overused resources
slowly with the aim of achieving low critical path delay.

As to overall run time, for benchmarks it successfully fits, VPR takes 2.8× longer
that Quartus II. However, it should be noted that this result is skewed in VPR’s favour,
since it does not account for benchmarks which did not complete. Peak memory con-
sumption is also much higher (6.2×) in VPR. This is quite significant and will often
limit the design sizes VPR can handle. It is interesting to note that the largest bench-
mark that Quartus II will fit (bitcoin miner), uses approximately the same memory
in Quartus II as the smallest Titan23 benchmark (neuron) uses in VPR.

It is also useful to compare the scalability of VPR and Quartus II with design size,
since scalable CAD tools are required to continue exploiting Moore’s Law. As shown in
Table VII, VPR is unable to complete at least 6 of the benchmarks due to either exces-
sive memory or run time. Quartus II in contrast, completes all but one of the bench-
marks that fit on Stratix IV devices (Table VIII). Furthermore, when considering total
run time VPR is closest (1.0×-1.9×) to Quartus II on the four smallest benchmarks,
but generally falls behind as design size increases. From these results it appears that
Quartus II scales better with increasing design size than VPR.

These results are notably different from those previously reported for wire length
driven optimization in Murray et al. [2013b]. The most significant difference is that
VPR’s run time is now spent primarily during routing, rather than during packing.
This is attributable to two main factors. First, VPR’s packing performance has been
significantly improved due to recent algorithmic enhancements and the addition of
packing hints (Section 5.3). Second, VPR’s timing-driven router is significantly slower
(Section 7.3) than the wire length driven router, often requiring significantly more
routing iterations to resolve congestion. We observed that VPR spends a large num-
ber of later routing iterations attempting to resolve congestion on only a handful of
overused routing resources, which were always logic block output pins. Additionally,
we found that small tweaks to the router cost parameters or architecture can cause
large variations in the timing-driven router’s run time.

7.5. Quality of Results Comparison with Quartus II
The relative QoR results for the Titan23 benchmark suite are shown in Table IX. These
results show several trends. First, VPR uses fewer LABs (0.8×) than Quartus II. While
this reduced LAB usage may initially seem a benefit (since a smaller FPGA could be
used), this comes at the cost of WL as will be discussed in Section 7.6.

Looking at the other block types, VPR uses 1.1× as many DSP blocks and 1.2×
as many M9K blocks as Quartus II, showing that Quartus II is somewhat better at
utilizing these hard block resources. Since only six circuits use M144K blocks in both
tools, it is difficult to draw meaningful conclusions.

Routed WL is one of the key metrics for comparing the overall quality of VPR and
Quartus II. Somewhat surprisingly, the wire length gap is quite large, with VPR us-
ing 2.2× more wire than Quartus II.2 Without access to Quartus II’s internal pack-
ing, placement and routing statistics, it is difficult to identify which step(s) of the de-
sign flow are responsible for this difference. However, as will be shown in Section 7.6
VPR’s packing quality has a significant impact. In addition, it is likely that Quartus II
achieves a higher placement quality than VPR as shown in Ludwin and Betz [2011].
A lower quality placement would increase VPR’s routing time and routed WL.

2The WL gap is quite different (0.7×) on the largest MCNC20 circuit, emphasizing how modern benchmarks
can impact CAD tool QoR.
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Name Total Blocks LAB DSP M9K M144K WL Crit. Path

gaussianblur 1,859,485
bitcoin miner 1,061,829 0.89 0.91 3.45 3.85 *

directrf 934,490
sparcT1 chip2 824,152
LU Network 630,103 1.38 1.00 1.26 2.86 *

LU230 567,992 0.53 1.00 3.57 21.38
mes noc 549,045 0.84 1.00 1.97 1.37

gsm switch 491,846 0.65 1.48 2.38 *
denoise 342,899 0.73 1.50 2.66 1.77 1.02

sparcT2 core 288,005 0.92 1.00 1.43 1.51
cholesky bdti 256,072 1.03 1.02 1.00 2.58 1.87

minres 252,454 0.61 1.49 1.00 2.69 1.59
stap qrd 237,197 1.75 0.99 0.76 2.81 2.52
openCV 212,615 0.78 1.31 1.15 1.00 3.30 *

dart 202,368 0.72 0.93 2.26 *
bitonic mesh 191,664 0.65 0.77 0.96 1.94 1.77 1.77
segmentation 167,917 0.70 1.17 1.32 2.50 1.76 1.10
SLAM spheric 125,194 0.66 1.09 1.52 *

des90 109,811 0.67 0.56 0.95 1.70 1.33
cholesky mc 108,236 0.87 0.98 1.10 1.00 2.43 2.44
stereo vision 92,662 0.71 4.00 1.11 2.24 1.21
sparcT1 core 91,268 0.89 1.00 1.01 1.31 1.16

neuron 90,778 0.70 0.82 1.65 2.61 1.84

Geomean 0.80 1.12 1.20 2.67 2.19 1.53

* VPR WL scaled from placement estimate.

Table IX: VPR 7/Quartus II Quality of Result Ratios.

The other key metric to consider is critical path delay. VPR produces a critical path
which is 1.5× slower than Quartus II on average. This difference exceeds the range of
variation expected between the VPR and Quartus II timing models and indicates that
VPR does not match Quartus II at optimizing critical path delay. There are several
potential reasons for this. One reason is the connectivity in the inter-block routing
network. In our Stratix IV model both long and short wires are accessible from block
pins, which limits the number of connections that can easily reach the small number of
long wires. In actual Stratix IV devices long wires are only accessible from short wires
[Lewis et al. 2003]. This connectivity may improve delay by allowing the short wires to
act as a feeder network for the long wires making them easier to access. Additionally,
the use of the Wilton switch block in our architecture model makes it unlikely that
long wires will connect to other long wires, potentially limiting their benefit. VPR also
tends to pack more densely than Quartus II and is unable to take apart clusters after
packing to correct poor packing decisions, both of which may increase VPR’s critical
path delay. Finally, Quartus II has additional algorithmic optimizations (not included
in VPR) which help it to achieve lower critical path delay, such as timing budgeting
during routing [Fung et al. 2008].

Compared to the previously reported WL driven results the relative QoR between
the two tools is similar, with VPR still using fewer LABs and using additional wire
compared to Quartus II. The most significant change, the decrease in the relative
amount of DSP blocks, can be attributed to the hints given to VPR’s packer (Section
5.3).

7.6. Modified Quartus II Comparison
To investigate the impact of packing density and taking apart clusters, we re-ran the
benchmarks through Quartus II using several different combinations of packing and
placement settings. The impact of these settings on the relative QoR between VPR and
Quartus II are shown in Table X.
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Q2 Settings Q2:Q2 Def. LAB Q2:Q2 Def. WL Q2:Q2 Def. Crit. Path VPR:Q2 LAB VPR:Q2 WL VPR:Q2 Crit. Path

Default 1.00 1.00 1.00 0.85 2.07 1.52
No Finalization 1.03 1.09 1.10 0.82 1.90 1.39

Dense 0.85 1.22 1.02 1.01 1.71 1.50
Dense & No Finalization 0.76 1.57 1.19 1.11 1.32 1.28

Note: the default VPR:Q2 values are different from Table IX since some benchmarks would not fit for some Quartus II settings
combinations.

Table X: QoR ratios for different Quartus II packing density and placement
finalization settings.

We investigated the effect of telling Quartus II to always pack densely, and the ef-
fect of disabling “placement finalization”. In its default mode Quartus II varies pack-
ing density based on the expected utilization of the targeted FPGA, spreading out the
design if there is sufficient space. Also by default, Quartus II performs placement fi-
nalization, where it breaks apart clusters by moving individual LUTs and Flip-Flops.

Disabling placement finalization resulted in a moderate increase in Quartus II’s
WL and critical path delay. Forcing Quartus II to pack densely significantly reduced
the number of LABs used, but caused a large increase in Quartus II’s WL, narrowing
the WL gap between VPR and Quartus II, while having minimal impact on critical
path delay. Simultaneously disabling finalization and forcing dense packing further
reduced the number of LABs used, further increased Quartus II’s WL and significantly
increased Quartus II’s critical path delay. With these settings the WL gap between
VPR and Quartus II reduced to 1.3× from the original 2.1×, while the critical path
delay gap reduced from 1.5× to 1.3×.

This indicates that significant portions of VPR’s higher WL and critical path delay
are due to packing effects. The focus on achieving high packing density hurts wire-
length, while the inability to correct poor packing decisions (no placement finalization)
hurts critical path delay. Together these settings have an even larger impact. We sus-
pect that VPR’s packer is sometimes packing largely unrelated logic together to min-
imize the number of clusters. This appears to be counter productive from a WL and
delay perspective.

For example, consider a LAB (Fig. 3a) that is mostly filled with related logic A, but
which can accommodate an extra unrelated register B. During placement, the cost of
moving this LAB will be dominated by the connectivity to the related logic A. This
could result in a final position that is good for A but may be very poor for the extra
register B (i.e. far from its related logic). If this is a common occurrence it could lead
to increased WL and critical path delay.

A
B

(a) Dense Packing

A
B

(b) Less Dense Packing

Fig. 3: Packing density and wire length example.

A better solution (Fig. 3b) would have been to utilize additional clusters (pack less
densely) to avoid packing unrelated logic together. Alternately, if the placement engine
was able to recognize the competing connectivity requirements inside a cluster, it could
break it apart, much like Quartus II’s placement finalization. These results agree with
those presented in Tom and Lemieux [2005], which showed that the routing demand
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(as measured by the minimum channel width required to route a design) could be
significantly decreased by packing logic blocks less densely.

7.7. Comparison of VPR to Other Commercial Tools
In [Hung et al. 2013] VPR packing and placement were compared to Xilinx’s ISE tool
on four VTR benchmarks. Similar to our results, the authors found that VPR produced
a denser packing than ISE, had slower critical paths, used more routing resources, took
more execution time and required more memory. Despite differences in methodology
and tools, the general conclusion is the same – VPR does not optimize as well, and
requires more computational resources than commercial CAD tools.

7.8. VPR versus Quartus II Quality Implications
It is clear from the previously presented results that Quartus II outperforms VPR in
terms of QoR, performance and scalability. However, it may be argued that this is not
surprising. VPR is used primarily as an academic research platform, and as a result
is capable of targeting a wide range of FPGA architectures. Quartus II in contrast, is
used for FPGA design implementation on real devices and targets the narrower set
of Altera FPGA architectures. This means additional optimizations can be made in
Quartus II, for both QoR and tool performance, which may not be possible (or have not
been implemented) in VPR.

It is important, however, that this gap not be too large. Given the empirical nature
of most FPGA CAD and architecture research, research conclusions can become de-
pendant on the CAD tools used [Yan et al. 2002]. In order to be confident in research
conclusions, it is important for CAD tools such as VPR to remain at least reasonably
comparable to state-of-the-art commercial tools.

8. CONCLUSION
First, we have presented Titan, a hybrid CAD flow that enables the creation of large
benchmark circuits for use in academic CAD tools, supporting a wide variety of HDLs
and range of IP blocks. Second, we have presented the Titan23 benchmark suite built
using the Titan flow. The Titan23 benchmarks significantly improve the state of open-
source FPGA benchmarks by providing designs across a wide range of application do-
mains, which are much closer in both size and style to modern FPGA usage. Third,
we have presented an enhanced architecture capture, including a correlated timing
model, of Altera’s Stratix IV family. As a modern high performance FPGA architec-
ture, this forms a useful baseline for the evaluation of CAD or architecture changes.
Finally, we have used this benchmark suite and architecture capture to compare the
popular academic CAD tool VPR with a state-of-the-art commercial CAD tool, Altera’s
Quartus II. The results show that VPR is at least 2.8× slower, consumes 6.2× more
memory, uses 2.2× more wire, and produces critical paths 1.5× slower than Quartus
II. Additional investigation identified VPR’s focus on achieving high packing density
and inability to take apart clusters to be an important factors in the WL and critical
path delay differences.

9. FUTURE WORK
The Titan23 benchmark suite represents a first step forward, but will need to be con-
tinually updated to keep pace with increasing FPGA design size and complexity. There-
fore we would welcome additional benchmark contributions to cover larger design sizes
and a wider range of applications.

It is possible with large designs, that CAD tools may benefit from additional guid-
ance such as a system-level floorplan. It should be possible to use the Titan23 bench-
marks in a floorplanning based flow, provided CAD tool support is available.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0, Publication date: 2014.



Timing Driven Titan 0:17

Finally, given the substantial gap between VPR and commercial FPGA CAD tools, it
is clear that there remains significant room for improvement in the run time, memory
usage, and result quality of this academic CAD tool. Specific areas to focus on include
packing for wireability instead of density, and faster router convergence with timing
optimizations.
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