23
1.2

THE HARVEST SYSTEM

Paul S. Herwitz and James H, Pomerene

Product Development Laboratory, Data Systems Division
International Business Machines Corporation
Poughkeepsie, New York

Summary

The Harvest System is a large-scale data
processor designed for maximum performance
in handling extremely large amounts of data in
primarily non-arithmetic operations. Itis
being built by IBM under contract with the
Government and incorporates both a new
system organization and a stored program
concept of macro-instructions which directly
implement many useful data manipulating sub-
routines. Design features include a very high
processing rate and an on-line table lookup
facility for effecting very general transforma-
tions.

Introduction

Most of the information generated and
handled in our society is either non-numeric
or developed within areas supported by little
or no theoretical structure. A general-purpose
system for processing this type of information
must be organized very differently from more
conventional scientific computers. Many of
these areas are in the early stages of scien-
tific development where ordering and classifi-
cation are predominant activities and where
the major problem is to uncover patterns and
trends upon which theory can be built. There
are few rules for determining the relevancy
of information so that often enormous amounts
must be examined to achieve significant
results. Comparatively simple operations and
data transformations are the most useful, and
the output desired may frequently be some
statistical characterization of the input.

The Harvest System is a large scale com-
puter intended for maximum performance in
this broad area of information processing. It
was defined and is being built under study and

development contracts between IBM and the
Government. Harvest comprises a major data
processing system reflecting the above con-
siderations and includes an IBM Stretch com-
puter for high performance on conventional
operations (Figure 1), Stretch has been
described elsewhere; only the special data
processing portion is discussed here.

Harvest Organization

The Streaming Mode

Processing in Harvest is parallel by
character, represented by a quantity of 8 bits
or less. This quantity is called a byte and is
the basic information unit of the system. The
streaming mode is primarily a design attitude
whose aim is to select bytes from memory
according to some preassigned pattern and to
keep a steady stream of such selected bytes
flowing through a designated process or trans-
formation and thence back to memory. Empha-
sis is on maximum flow rate so that the typical
large volumes of information can be processed
in minimum times. Processing time per byte
is held to a minimum by prespecifying byte
selection rules, processing paths, and even
methods for handling exception cases, so that
decision delays are suffered but once for a long
sequence of bytes rather than being compounded
for each byte. There is a functional analogy to
plugboard machines except that the plugging can
be changed at high electronic speeds and much
of it on the basis of data encountered.

Stream Formation

The bytes which are selected to form the
stream are taken from memory according to

24
1.2

either simple or complicated patterns which
are chosen by the programmer. For technical
reasons memory is organized into 64-bit words,
but this artificial grouping is suppressed in
Harvest so that memory is handled as a long
string of bits any one of which can be addressed
for selection. Up to 218 words of memory can
be directly selected, and since the word size

is exactly 2° a Harvest address consists of 24
bits: 18 to select the word and 6 to select the
bit within the word,

Data are transferred to and from memory
as 64 parallel bits; selection down to the bit
is accomplished by generalized operand
registers called stream units (Figure 2).
Each stream unit contains also a switching
matrix which allows a byte to be selected out
with minimum delay, starting at any bit
position within the register. To handle cases
where a byte overlaps from one memory word
into the next and to minimize waiting time for
the next needed word from memory, each
stream unit is actually 2 words (i.e., 128 bits)
long. The byte output of the stream unit is
fed into the processing area through a bit-for-
bit mask which enables the programmer to
pass any subset of the 8 bits, including non-
consecutive combinations. The selection of
these bytes is controlled by the low order 6
bits of a stream of 24-bit addresses generated
by the pattern selection units. There are two
source stream units which feed operands into
the processing area and one sink stream unit
which accepts results from the processing
area.

Pattern Selection

The data input to Harvest may be highly
redundant to any particular problem, and so a
powerful mechanism is provided for imposing
selection patterns on the data in memory. It
is assumed that the very effective input-output
control in the basic Stretch system has grossly
organized the contents of memory. For
example, various characteristics may be
recorded for a population and recorded in
uniform subdivisions of a file. A particular
problem may be concerned with only a certain
characteristic drawn from each record in the
file, Again, for example, data may be stored
in memory in matrix form and the particular
problem may require the transpose of the
matrix,

Pattern selection in Harvest resembles
indexing in other computers, except that in
Harvest the programmer determines the
algorithm which generates the pattern rather

than listing the pattern itself, Each stream
unit has its independent pattern generating
mechanism which is actually an arithmetic
unit capable of performing addition, subtrac-
tion, and counting operations on the 24-bit
addresses, The programmer specifies
patterns in terms of indexing levels. Each
level consists of an address incrementing
value I which is successively added to the
starting address value S until N such incre-
ments have been applied, after which the next
indexing level is consulted to apply a different
increment, The programmer may then
choose that incrementing continue on this
level or that the previous level be resumed for
another cycle of incrementing.

Many other indexing modes are provided
to permit almost any pattern of data selection,
Particular attention has been given to direct
implementation of triangular matrix selection
and to the iterative chains of any formal
inductive process, however complex,

In general, the pattern selection facilities
completely divorce the function of operand
designation from that of operand processing,
except that pre-designated special character-
istics of the operands may be permitted to
change the selection pattern in some fashion,

Processing Facilities

The pattern selection units determine the
movement of data between the stream units and
memory and, together with the stream units,
determine the byte flow in the processing area.
The processing facilities, together with the
selection facilities, have been designed to
give a flow rate of approximately 4 million
bytes per second. Source stream units to the
processing area are stream units P and Q
while the sink stream unit is stream unit R.

Transformation Facilities

Two facilities are provided for the trans-
formation of data (Figure 3). Extremely
general operations on one or two input vari-
ables can be accomplished with the on-line
table lookup facility. Simpler operations can
be done directly by the logic unit without
involving memory lookup. The logic unit also
provides a choice of several one-bit character-
jzations of the input bytes (such as Byte from
P >byte from Q). These one-bit signals can
be used to alter the stream process through
the adjustment mechanism.

The table lookup facility consists of two

units., The more important logically is the
Table Address Assembler which accepts bytes
from one or two sources and from them forms
the lookup addresses which are sent to memory
(Figure 4). The other is the Table Extract
Unit which permits selection of a particular
field within the looked-up word. Both units
have their own indexing mechanisms and
together they permit the programmer to
address a table entry ranging in size from one
bit up to a full word and starting at any bit
position in memory. This freedom is
abridged only by considerations of the table
structure chosen by the programmer.

The table lookup facility also provides
access to the memory features of Count and
Existence. Under instruction from the Table
Address Assembler the medium speed memory
can use the assembled address to logically OR
a one into the referenced bit position. The
referenced word as it was just before the
ORing can be sent to the table extract unit,

In the high-speed memory a one may be either
ORed or added into the referenced bit position
with the same provision for sending the word
before alteration to the table extract unit,

The ability to add ones into high-speed memory
words permits use of these words as individual
counters, Several counter sizes can be
specified.

Statistical Aids

The table lookup facility may be used to
associate statistical weights with the occur-
rence of particular sets of bytes. For
example, the occurrence of a byte P, in the P
stream together with a byte Qj in the Q
stream may be assigned a weight Wij’ which
would be stored in a table and referenced by
an address formed from both P; and Q..
Alternatively a memory counter may be
associated with each pair P;, Q; and stepped
on the occurrence of each such pair.

A Statistical Accumulator (SACC) is
provided (Figure 5) either to sum the weights
W over a succession of sets of bytes or to
provide a key statistical measure of the
counting results, In addition, SACC can be
used for many other accumulating purposes.

A Statistical Counter (SCTR) provides a
way of counting the occurrences of any of a
large number of events during a stream. In
particular, SCTR can be designated to count
the number of weights W which have been
added into SACC,

The Stream Byte-by-Byte Instruction

The table lookup unit, the logic unit, and
the statistical units can be connected into the
processing stream in various ways by the
programmer, Like a class of analog com-
puters, these connections reflect the structure
of a problem and are the electronic equiva-
lents of a plugboard. The hookup chosen by
the programmer then applies the same pro-
cessing to each byte or pair of bytes sent
through it; this very general processing mode
is called the Stream Byte-by-Byte instruction.
The connections, indexing patterns, and
special conditions described below all form
part of a pre-specified setup which can be
considered as a macro-instruction putting the
computer into a specific posture for a specific
problem,

Monitoring for Special Conditions

The concept of a streaming process
determined by a flexible and extensive setup
specification is most meaningful when applied
to a large batch of data which is all to be
treated the same way. In any particular
streaming process, special conditions may
arise within the data being processed which
call for either momentary or permanent
changes in the process. For example, the
transformation being performed may be
undefined for certain characters so that these
must be deleted at the input; or a special
character may be reserved to mark the end
of a related succession of bytes after which
the process or the pattern of data selection
must be altered.

Special conditions can be monitored in
several ways (Figure 5). Special characters
can be detected by Match Units. each of which
can be assigned a special 8-bit byte to match.
There are four Match Units; W, X, Y, and Z,
which can be connected to monitor the stream
at several different points., When a match
occurs, the Match Unit can directly do one of
several operations on the stream and can also
emit a one-bit signal indicating the match,

A large number of other one-bit signals
are generated by the various stream facilities
to mark key points in their respective pro-
cesses. These one-bit signals, collectively
called stimuli, can be monitored to accomplish
specific operations, such as stepping SCTR or
marking the end of an indexing pattern. They
can also be used to accomplish a much wider

26

1.2

range of operations through the adjustment
mechanism,

Up to 64 stimuli are generated by the
various processing, indexing, and monitoring
functions in Harvest., For any particular
problem those stimuli which represent the
key or significant properties of the data being
streamed can bé chosen. Te each stimulus or
coincident combination of stimuli the pro-
grammer may associate one or more of a
large number of reactions on the stream; its
data, its process, or its indexing. These
stimulus-reaction pairs are called adjustments.
The adjustment mechanism gives the pro-
grammer a direct way of picking out those
eleménts of the stream which are different
from the general run. These different
elements may provide the key to the pattern
being sought, either because they are particu-
larly relevant or because they are distinctly
irrelevant,

Programming Harvest

The Instruction Set

Conventional arithmetic and scientific
computational processes and all input-output
operations for Harvest are performed in the
Stretch computer which is part of the system,
When Stretch instructions are used, the
system operates in the arithmetic mode; when
streaming mode control is imposed, the
unusual instructions unique to Harvest are
available, There are about'85 instruction
families (i.e.,, instruction types plus associated
operation modifiers) in Stretch alone. The
Harvest stream instructions add a variety of
extremely powerful data processing tools to
the several thousand basic Stretch operations,
Throughout the system the instruction formats
vary in length: single-address instructions are
32 bits long, two-address instructions and
instructions that operate on variable length
fields are 64 bits long, and stream instructions
have an effective length of 192 bits,

Streaming mode instructions are very
much like built-in subroutines or macro-
instructions. Just as it is necessary to
initialize a programmed subroutine, it is also
necessary to initialize or set up the Harvest
processor. Roughly abou?_l_EO—Toarameters and
control bits may influence streaming, Harvest
is set up by loading values of some of these
parameters into and setting the desired control
bits in specific, addressable setup registers
prior to the execution of a stream instruction.
Certain changes in the parameter values or

control bit settings generate stimuli which
may be used to terminate or cause automatic
adjustments to be made to the stream, or to
cause a change to the arithmetic mode of
operation, The adjustment operations
essentially constitute a second level of stored
program and are used most generally to
handle the exception cases that occur during
processing operations. Thus the programmer
sets up Harvest to execute a stream instruc-
tion; execution begins and is automatically
modified as changing data or setup dictates;
much routine bookkeeping is done automati-
cally by the several independent pattern
generating (indexing) mechanisms; changing
values of parameters are always available for
programmed inspection if automatic inspec-
tion is not sufficient for the particular opera-
tion being performed.

While most of the programming in the
streaming mode of operation is centered
around the Stream-Byte-by-Byte instruction,

a number of other instructions derive from

the unique organization of Harvest. The
arrangement of the Harvest data paths and pro-
cessing units facilitates the inclusion of opera-
tions that perform within one instruction each
many of the routine collating functions such as
merging, sorting, and file searching and main-
tenance that are so common to commercial data
processing. Facilities of the table lookup unit
are used extensively in these as well as in
several other instructions designed primarily
for the logical manipulation of data.

Since such extensive use is made of tables
of parameters, table transformations, and
other data arrays in the Harvest approach to
data processing, a special Clear Memory
instruction is available for clearing large
blocks of memory in minimum time and with
minimum programming effort. A single
execution of this instruction will clear as few
as 64 consecutive words or as many as 2048,
depending on the programmer's wishes, The
ex ecution time in the latter case is less than
3-1/2 psec, and only one instruction access
from memory is made. A full memory com-
plement of 218 words can be cleared in less
than one millisecond.

Collating Operations

Generally speaking, in order to perform
merging, file searching, and other such
collating operations, it is necessary to specify
a number of parameters such as record length
file length, control field length and position,
etc. For Harvest, these parameters need

only be tabulated in proper order by the pro-
grammer., They are then utilized by the
indexing mechanisms to cause data to be
picked from and later be stored into memory
according to the patterns that naturally occur
in such data.

The Merge instruction family actually
contains eight independent control sequences
that may be used to merge files or even to
completely sort blocks of records with but a
single instruction access from memory. The
particular option chosen by the programmer
depends upon whether files are to be arranged
in ascending or descending order, whether or
not the record block can be contained in at
most half the available memory, and whether
the control field heads the record or is offset.

As an indication of the processing speed of
Harvest, in the most favorable case (one-word
records with control fields at the beginning of
records) a block of 30,000 records already in
memory can be completely sorted in 1-1/4
seconds or less.

The Search instruction complex consists of
twelve control sequences, each of which facili-
tates abstracting from a master file all records
whose control fields bear any specific one of six
possible relationships to the control field of each
record of a detail file, The possible relation-
ships are the six standard comparison conditions
<,&,>,2,=,#. If it is not desired to move
the records that meet the search condition, it is
possible to tabulate their addresses automatically.

Another complex called Select permits the
programmer to select from a file that record
having the least or greatest control field,

For the purpose of facilitating file main-
tenance operations, Harvest includes a collating
instruction complex called Take-Insert-Replace.
When the operation is executed under "instruc-
tion control, " then whenever master and detail
record control fields match, either the master
record is taken out of (deleted from) the master
file or is replaced by the detail record. Under
"data control' the action taken whenever control
fields match is indicated by the contents of a
special control byte in the detail record. The
masters can be deleted or replaced, or the
detail record can be inserted in the master file;
or under certain circumstances the maintenance
procedure can be interrupted when master
records with special characteristics are located,
and resumed with a minimum of programming
effort when desired.

27
1.2

Instructions such as the collating operations
described above lead to a considerable reduction
in the length of the generalized report genera-
tors, file maintenance routines, sorting and
merging programs, etc., that might be expected
to become associated with such a computer
system,

Table Lookup Operations

It is often desired to be able to obtain data
from or store data at an address that is not
directly dependent on the data itself, The
Indirect Load-Store instruction complex permits
wide latitude in the formation of such addresses
and in the subsequent manipulation of the
original data. In essence the operation is as
follows: parameters from one of the source
stream units are used in the formation of an
address in the table lookup unit; either this
primary address itself or either of the addresses
found in the word at the memory location
specified by the primary address becomes
either the origin of a field of data to be entered
via the other source stream unit or the location
at which the data field is to be stored by the
sink stream unit; the data is moved from source
to sink and the entire cycle is repeated. The
counting and ORing features of the table lookup
unit are available to the programmer as modi-
fications of the basic instruction control
sequence.

The second instruction complex built around
the table lookup unit is called Sequential Table
Lookup. An extremely powerful but concep-
tually simple instruction, it permits a class of
transformations to be performed that may best
be described as data dependent. The instruc-
tion causes a series of table references to be
made, each successive reference after the first
being made in a table whose address is extract-
ed automatically from the previously refer-
enced table entry., Also, as each reference is
completed, a variable amount of data may be
extracted from the table entry. Moreover, the
indexing of the input or output data may be
adjusted according to the contents of the table
entry (similar to the operation of the Turing
machine). The applications of Sequential Table
Lookup are manifold; the editing for printing
of numerical data, the transliteration of Roman
numerals to Arabic, and the scanning of sym-
bolic computer instructions for assembly and
compilation purposes are but a few.

The extensive use of tables in problem
solution typifies the different approach the
programmer will take with Harvest. The

28
1.2

problem of transliteration of Roman numerals
to Arabic illustrates the power of the method.
Several simplifying assumptions have been made
so that the flow chart is easier to follow. First,
the data -~ a set of numbers expressed in Roman
numerals, each number separated from the next
by a blank (B) - is assumed to be perfect, and
only the characters I, V, X, L, C, D, and M
are used. Second, the set of numbers is ter-
minated by two blanks, Third, the use of four
successive identical characters (as Roman pring
for Arabic 4) is outlawed. Finally, the numbers
to be transformed are all assumed to lie on the
range 1 to 1000, inclusive.

The flow chart (Figure 6) shows the eight-
een tables (consisting of a total of eighty-two
memory words) used. Under each table
heading a two-part entry is shown, the parts
separated by a colon. On the left of the colon
is the argument being looked up, followed in
parentheses by an indication of the range on
which the number or digit that will eventually
result must lie. On the right of the colon the
parameters of the table word corresponding to
the argument are indicated symbolically: e.g.,
RO-1B (meaning '"read out the integer 1 followed
by the character for blank') or NRO (meaning
""no readout")., This is followed by an integer in
parentheses indicating what data byte is the next
argument (_(l means same byte, 1 means next
byte, etc.); the arrow indicates the table in which
the next argument is looked up.

As an illustration, consider the trans-
literation of DCLXXVIIIL:

1. D is looked up in the First Table; the
number must be on the range 500 through 899.
No digit is read out. The next argument is the
next data byte.

2. C is looked up in the D; Table; the

range must be 600 through 899. No readout.
The next argument is the next data byte.

3. L is looked up in the DC1 Table; the

range is 650 through 689, Read out 6. The
next argument is the next data byte,

4, X is looked up in the L, Table; the
range of the unknown part of the number is 60
through 89. No readout. The next argument
is the next data byte.

5, X is looked up in the LX, Table; the
range is reduced to 70 through 89. No readout,
The next argument is the next data byte,

6. YV is looked up in the LX., Table; the
range is now 75 through 79. Read out 7. The
next argument is the next byte.

7, 1Iis looked up in the V. Table; the range
of the final digit is 6 through 8, No readout.
The next argument is the next data byte,

8. Iis looked up in the V, Table; the
final digit is 7 or 8. No readout. The next
argument is the next byte,

9. Iis looked up in the V3 Table; the final
digit is 8. Read out 8 B. The next argument is
the second following-l-)-;r-fe (the next byte is a B),
i.e., the first byte of the next number to be
transliterated, and is looked up in the First
Table.

The process just described yielded the
number 678 for DCLXXVIII, Only one instruc-
tion was accessed from memory (th?_S_equential
Table Lookup) and, in fact, this single access
served to transform the entire set of numbers.
The process terminated when the character B
was looked up in the First Table.

Clearly the decision logic for the problem
is incorporated in the structure of the tables.
However, in constructing these tables the
programmer must concentrate on precisely
this logic; most of the bookkeeping and other
peripheral programming considerations are
automatically taken care of, Wherever it was
possible, this philosophy guided the systems
planning of Harvest,

MEDIUM SPEED MEMORIES
16,384 WORDS EACH

INPUT-OUTPUT

HIGH SPEED MEMORIES
1024 WORDS EACH

UNITS
L / / {
ol © - -)
0’) MEMORY
BUS CONTROL
- //
7 S)
EXCHANGE ARITHMETIC SECTION STREAMING MODE SECTION
(STRETCH)
Fig. 1. The Harvest System.
_-FROM MEMORY <
v !
64 BITREGISTER _[64 BIT REGISTER _
M E
SWITCH MATRIX A = BYTE
DIAGONAL SELECTOR
(128 WAY)
MEMORY
[woro appRessi] [BiT ADDRESS]
~ ~ @ —————— -

T~TOTAL ADDRESS -24 BITS ~
Fig. 2.

The stream unit.

0 {es {Jss

P REGISTER P
INBﬁﬂNG 128 —> 8 MATRIX ——Ig >8 S
STREAM UNIT P
0 {}es {sa
Q REGISTER Q
INDEXING 8 TABLE
UNIT 128 —> 8 MATRIX |INDEXING N AégEsEBEER %
STREAM UNIT Q
I -
e UNIT
STREAM UNIT R . §>
INDI?XING 8 —> 128 MATRIX <—D
UNIT REGISTER R
”64 l 64
Fig. 3. Transformation facilities.
\ /
\ /
|:,5 Q5
BYTES FROM \ /7 BYTES FROM
STREAM UNIT P \ / STREAM UNIT Q
Fa Q
\ /
\ /
\ __/ TABLE
P; | Q ADDRESS
W ° : N ASSEMBLER
/ \
/ \
T T3P
/
/ \
Z///umu AN
TO ME&IORY TO EX1"RACT UNIT

(WORD ADDRESS) (BIT ADDRESS)

Fig. 4. Formation of lookup address.

TABLE
STORED
IN
MEMORY

*suoridoeax juswisnipe 1eord4} Yyyim s2anjesy [ed13Sijels pue SUTIOHUOWN °G *Sid

suQ ppY o
jesay

LINN |
HOLYW]

deys 4o

4 LINN AV3YLS \—T

ELITEIEIETY 158y
SHIANMYW _ ding
JON3LSIX3 Lig-| . y10S FINWILS SuJa}4g
0000002 = m xapu|
SY3IINNOD l1li9-8 abuoy)
000'9l =~)
] oy 20UDAPY
AHOW3IW NI ssoppy 9spg
r 9|qoy abubysy

1INN
HOLVIN

d LINN WV3H1S

- O LINN WV3N1S \T

1INN
HOIVIN

32
1.2

FIRST TABLE

B (End of Problem). RO-B, Go to Arithmetic Mode
I(1sn<4 or n=9).NRO(|}—————# I, Table

B{n=1} RO-1B{1)~—————————% Furst Table
I(25ns3). NRO(l) —————————— I, Table

B(n=2) RO-2B(])—————————— First Table
I(n=3) RO-3B(2) ———— First Table
¥ (n=4) RO-4B(2) —————————> First Table

X (n=9): RO-9B (2) ———————— First Toble

X (55n58) NRO(1)——————> X; Table

B(n=5) RO-5B(l) ~——————————> First Table
I(6sn<8). NRO(1}—————————+ X, Table

B(n=6) RO-6B(I)
I(7sn58) NRO(|) ——————————> ;3 Table

B{n=7} RO-7B(l) —————————— First Table
I{n=8) RO-8B(2) ———————" First Table
X (10$n<49 or 90sn<99) NRO(1)—p X Table
B(n=10) RO-10B (I} ———————— First Table
I(l1snsi4or n=I9) RO-1 (|} ———— I, Table
L (15<n518) RO-[{|)————————» X, Table
X (205n<39).NRO (1) ————————— X, Tabie

B{n=20). RO-20B (1) ——————— First Table
I(21sns24 or n=29) RO-2(1)——» I, Table
T(25<n<28): RO-2(l) —————» ¥, Table
X (30<n<39) RO-3(1} ————————— Ones Table

B(n=0) RO-0B(|)——————————® First Table
I(1<ng4 or n=9). NRO (I)—— » I, Table
¥ (55n58) NRO (1) —————————— X[Table

L{40<n549) RO-4(1)——————— Ones Table
C(905n599) RO-4(1)———————— Ones Table
L{505n<88) NRO()) —————— L; Table

B(n=50). RO-50B(]) ——————— First Table
T(51sns54 or n=59), RO-5(|) ————— I, Table
T RO-5(1} ¥, Table
X (605n<89). NRO{|) ————— = LX; Table

B{n=60): RO-60B(|) ———————> Firs! Table
I(6lsns64 or n=69) RO-6(I)—— I Table
(65). RO~6(1): » ¥, Table
X{70sn589) NRO(1) —————» X, Table

B(n=70). RO-708B(|) ~~—-——————— First Table
I(71Sn$74 or n=79) RO-7{())———— I, Table
X(755n£78) RO-7()—————» X Table
X{80<n<89) RO-8(1) ————— Ones Table

CI00s ns 499 or 900 <n$999) NRO()—> C; Table

B{n=100) RO-I00B() —————» First Table
I{I0I< n <104 or n=109) RO-I0{l) ————— I, Table
T(105 <n<108) RO~10{1) —————— ¥;Table
X(II0<n<1490r190n199) RO-I{) ——— X Table
L(1505n5189) RO-I{l) ————————— L Table
C(200%n <399) NRO()) —————————» C,Tabie

8(n=200). RO~200B(l) ———— First Table
I{201$n<204 or n=209).RO-20()) —— I, Table
¥ (2055n5208) RO-20()) ——— X, Table
X (210 £n<2490r290 << 299) RO-2()— X, Table
L(2505 ns 289).RO~2() —————— L Table
€(300 5n $399): RO-3(]) ——— Tens Table

B(n=00} RO—-00B(l)) ————— First Table
T{0I< n<04 orn=09). RO-0(1) ——— I, Table
T(0550508). RO-0(l) ———————— ¥, Table
X(10: 90<n<99). NRO(I) X Table
L{505n<89) NRO(l)—————— L, Table

D{400<n < 499) RO-4(f) ————> Tens Table
M(200<n£999) RO-9(1) ———————» Tens Table

D{500n < 899). NRO()) ———————» D, Table
-—

B(n=500). RO~-5008(1) ————————— First Table

1(501Sn<504 or n=508) RO-50(1) — I, Table

X (505 n508) RO—50(1) ——— X Table

X(5105n<549 or 5905n<599) RO-5(1)— X, Table

L(5505n5589):R0O-5() ————— L, Toble

€(600<n$899) NRO(1) —————————» DC; Toble

8(n=600) RO~600B(I) ——— First Table
I(601Sn<604 or n=609).RO-60(I)—— I, Table
T (6055 n$608): RO-60{1) ———— ¥ Table
X (61051649 or 690<n<699) RO-6()—» X, Table
L(650 RO-6(N L) Table
C{7005n5899) NRO(l) ——— = DC;Table

B{n=700): RO-700B(l)——————— First Tabie
I(701$n<704 or n=709):RO~70{I)— I, Table
¥(7055n$708) RO-70(l) ——————— I Table
X(7I0SnS749 or 7905n<799)RO-7(1)— X Teble
L(7505n<789) RO-7(l) —— L, Table
C(800<ns$899). RO—~8(1)) ——» Tens Table
M{n=1000). RO-I0Q0B {2) —————— First Table

[is tables; 82 words (table entries]]

