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ABSTRACT

Multi-ported memories are challenging to implement with3A3
since the provided block RAMs typically have only two poiNge
present a thorough exploration of the design space of FP&#&d
soft multi-ported memories by evaluating conventionalisohs to
this problem, and introduce a new design that efficiently lziows
block RAMs into multi-ported memories with arbitrary numge

of read and write ports and true random access to any memory

location, while achieving significantly higher operatingduen-
cies than conventional approaches. For example we builda 25
location, 32-bit, 12-ported (4-write, 8-read) memory thperates
at 281 MHz on Altera Stratix [ll FPGAs while consuming an area
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Figure 1: A multi-ported memory implemented with FPGA

equivalent to 3679 ALMs: a 43% speed improvement and 84% arealogic blocks, having D single-word storage locations §), m

reduction over a pure ALM implementation, and a 61% speed im-

provement over a pure “multipumped” implementation, aligio
the pure multipumped implementation is 7.2x smaller.
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1. INTRODUCTION

As FPGAs continue to increase in transistor density, desgn
are using them to build larger and more complex systemshgn-c
that require frequent sharing, communication, queueind, syn-
chronization among distributed functional units and corapwdes.
For ASIC implementations these mechanisms would often be im
plemented withmulti-ported memories-memories that allow mul-
tiple reads and writes to occur simultaneously—since taeyawoid
serialization and contention. For example, processomnally re-
quire a multi-ported register file: more register file portiewas
the processor to exploit a greater amouninstruction-level paral-
lelism (ILP) where multiple instructions are being executed at the
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write (W) ports, and n read (R) ports (encoded asnW/nR),
andn temporary registersr. Only read and write data lines are
shown (i.e., not address lines).

same time. However, FPGA-basedft processorfiave so far ex-
ploited little ILP, limited mainly to simple instruction peélines.
This is partly due to the fact that multi-ported memories ae-
ticularly inefficient to implement using the resources tgply pro-
vided by FPGAs.

1.1 Conventional Approaches

It is possible to implement a multi-ported memory using only
the basic logic elements of an FPGA, as illustrated in Figure
which shows aD-location memory withn write ports andh read
ports. As shown, we requir® m-to-one decoders to steer writes
to the appropriate memory locations, andD-to-one multiplex-
ers to allow each read to access any memory location. Note als
that the read outputs are registereplt6 implement a synchronous
memory where the output is held stable between clock eddes. T
problem is that this circuit scales very poorly, with arearéasing
rapidly with memory depth and the decoding/multiplexingesely
limiting the maximum operating frequency.

It is normally more efficient to implement memories on FPGAs
using the provided block RAMs, each of which can be quitedarg
(e.g., 9Kbits) while supporting high operating frequescie.g.,
580MHz). However, FPGA block RAMs currently provide only
two ports for reading and/or writing. Note that Altera’s Mery
line of Programmable Logic Devices (PLDs) [2] previouslhopr
vided quad-port RAMs to support gigabit telecom appliaadie-
however, this feature has not been supported in any otheralt
device, likely due to the high hardware cost.

System designers have hence used one or a combination ef thre
conventional techniques for increasing the effective nemolb ports
of FPGA block RAMs, as shown in Figure 2. The firstéplica-
tion, which can increase the number of read ports by maintaining
a replica of the memory for each additional read port. Howeve



(c) Multipumping

Figure 2: Three conventional techniques for providing more
ports given a 1W/1R memory (read and write address values
are not depicted, only data values): (aReplication maintains
an extra copy of the memory to support each additional read
port, butis limited to supporting only one write port; (b) Bank-
ing divides data across multiple memories, but each read or
write port can only access one specific memory; (¢ultipump-
ing multiplies the number of read/write ports of a memory by
adding internal data and address multiplexers and temporay
registers (), and internally clocking the memory at a multiple
of the external clock (which quickly degrades the maximum ex
ternal operating frequency).

this technique alone cannot support more than one write giacte

the one external write port must be routed to each block RAM to
keep it up-to-date. The secondhdanking, which divides memory
locations among multiple block RAMs (banks), allowing each
ditional bank to support an additional read and write podwiver,
with this approach each read or write port can only accessite-

sponding memory division—hence a pure banked design ddes no

truly support sharing across ports. The third we talliltipump-
ing”, where any memory design is clocked at a multiple of the ex-
ternal clock, providing the illusion of a multiple of the nber of
ports. For example, a 1W/1R memory can be internally clocked
at 2X the external frequency to give the illusion of being a/2®R/
memory. A multipumped design must also include multiplexer
and registers to temporarily hold the addresses and daenaimg
reads and writes, and must carefully define the semanti¢eairt
dering of reads and writes. While reasonably straight-éwdythe
drawback of a multipumped design is that each increase imthe

ber of ports dramatically reduces the maximum external aipey
frequency of the memory.

1.2 A More Efficient Approach

In this paper we propose a new design for true multi-portechime
ories that capitalizes on FPGA block RAMs while providing (i
substantially better area scaling than a pure logic-bapptbach,
and (ii) higher frequencies than the multipumping approathe
key to our approach is a form of indirection through a strretu
called theLive Value TablgLVT), which is itself a small multi-
ported memory implemented in reconfigurable logic simiteFig-
ure 1. Essentiallythe LVT allows a banked design to behave
like a true multi-ported design by directing reads to appropri-

ate banks based on which bank holds the most recent or “live”
write value. The intuition for why an LVT-based design is more
efficient even though the LVT is purely implemented in logie-e
ments is because the LVT is much narrower than the actual mem-
ory banks since it only holds bank numbers rather than fut da
values—thus the lines that are decoded/multiplexed acenaisch
narrower and hence more efficiently placed and routed. An-LVT
based design also leverages block RAMS, which implement-mem
ory more efficiently, and has an operating frequency closénat

of the block RAMs themselves. Additionally, LVT-based dgsi
and multipumping are complementary, and we will show thak wi
multipumping we can reduce the area of an LVT-based design by
halving its maximum operating frequency. With these teghes

we can support soft solutions for multi-ported memorieshauit
expensive hardware block RAMs with more than two ports.

1.3 Related Work

There are several prior attempts to implement multi-pamed-
ories in the context of FPGAs, mainly for the purpose of softp
cessor register files. Most soft uniprocessors exploiticapbn to
provide the 1W/2R register file required to support a threerand
ISA [6-8,13,17]. Jonest al.[9] implement a VLIW soft proces-
sor where additional register file ports support a zerotwad in-
terface to custom hardware functions. However, their mpdtted
register file is implemented entirely in the FPGA's reconfaile
logic and limits the operating frequency of their soft presar.
Saghiret al. [14, 15] implement a multi-ported register file for a
VLIW soft processor by exploiting both replication and bangk
however, this requires that the compiler schedule regsteesses
such that there are not two simultaneous reads or write®tsetime
bank. Nonetheless, this approach is sufficient to suppofti-mu
threading [10,12,13] since each thread need only rea@/tsibwn
division of the register file. Manjikian exploits an aggrigsesform
of multipumping by performing reads and writes on conseeuti
rising and falling clock edges within a processor cycle [1Hjs
approach avoids Write-After-Read (WAR) violations by penfi-
ing all writes before reads. Unfortunately this design rezgithat
the entire system use multiple-phase clocking.

1.4 Contributions

This paper makes the following contributions: (i) we prdsen
the first thorough exploration of the design space of FPGgella
soft multi-ported memories; (ii) we evaluate conventionagth-
ods of building such memories and confirm that they do notescal
well; (iii) we introduce theLive Value Tablg(LVT), an efficient
mechanism for implementing multi-ported memories with an a
bitrary number of read and write ports; (iv) we demonstrats t
LVT-based designs are smaller and faster than pure recoafifgu
logic implementations, as well as faster and more scalablepure
multipumping implementations; (v) we evaluate the impdchol-
tipumping on LVT-based designs, and demonstrate that they a
complementary.

2. EXPERIMENTAL FRAMEWORK

Memory Designs We consider only memories of 32-bit element
width as this is the common case in many computing systems. We
consider a range of multi-ported memory designs that haleaat

one write port and two read ports (1W/2R) such that all pomts a
usable simultaneously within a single external cycle. Wendb
consider one-write-one-read (1W/1R) memories as theyraral t

to implement with a single FPGA block RAM. We also do not con-
sider memories that may stall (eg., take multiple cyclesetarn



read values should they conflict with concurrent writeshalgh
such designs would be compelling future work. Additionaillye
assume that multiple writes to the same address are prevbpte
the system using the multi-ported memory, and that the resdul

doing so is undefined. Each design is wrapped in a test harness

such that all paths begin and end at registers, allowing aasare
proper timing analysis and to test each design for corrsstnéhe
Verilog sources are generic and do not contain any Alteegifip
modules or annotations.

CAD FLow We use Altera’s Quartus 9.0 to target the Altera Stratix
Il EP3SL340F1760C2, a large and fast device that allows us to
compare with published results for the Nios Il soft proce§sh

We do not bias the synthesis process to favour area or speed, n
perform any circuit transformations such as retiming. Wefice
ured the place and route process to make a standard effdtirag fi
with only two constraints: (i) to avoid 1/O pin registers teegent
artificially long paths that would affect the clock frequgnand (ii)

to set the target clock frequency to 1Ghz to optimize cirlayibut

for speed. We report maximum operating frequency by averaging
the result of place/routes across ten different randomsseed

Measuring Area We report area as thetal equivalent areawhich
estimates the actual silicon area of a design point: we kkthe
sum of all the Adaptive Logic Modules (ALMSs) plus the area of
the Block RAMs counted as their equivalent area in AMBach
ALM can contain unrelated logic and registers, avoidingrdtated
logic utilization measure due to underused ALMs.

3. STRATIX I ARCHITECTURE

The following describes the basic components provided by th
Altera Stratix Il architecture. Although our work targeistera’s
Stratix [l FPGAs, the following concepts generally tratsito the
devices of other FPGA vendors. For example, other than ffexdi
ent capacities, the block RAMs in Xilinx's Virtex-6 FPGAs uld
function identically.

Adaptive Logic Module (ALM) Memory FPGAs can implement
memory using their generic reconfigurable logic composettiai-
tive Logic Modules (ALMs). The Stratix Ill ALMs each contain
two registers, some adder logic, and Look-Up Tables (LUAEM
memory has virtually no constraints on capacity, configaratand
number of ports, but pays a large area and speed penalty¢Figu
The CAD tools may also require a prohibitive amount of timeefo
an hour) to place and route such a memory.

Block RAM (BRAM) Memory FPGAs implement block RAMs
directly on their silicon substrate. Block RAMs have twotsdhat
can each function either as a read or a write port. These nmesnor
use less area and run at a higher frequency than ones created f
the FPGA's reconfigurable logic, but do so at the expensewhpa
a fixed storage capacity and number of ports. The Stratix®BRA
devices mostly contain M9K block RAMswhich hold nine kilo-
bits of information in various widths and depths. At a widft3@
bits, an M9K holds 256 elements.

1This approach was recommended by an experienced user of Quar
tus as more practical than iterated guessing.

2Altera graciously provided the confidential area equivesenf
BRAMs for Stratix Il. We extrapolated the unavailable Stratl

area numbers from the Stratix Il data and other confidenéitd.d
3They also contain larger M144K block RAMs which each hold
144 kilobits (as 4k 32 for example), but exist in much fewer num-
bers than M9Ks and target bulk RAM instead.
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Figure 3: Comparison of the speed and area of various ALM,
M9K, and MLAB implementations of 32-bit 1W/2R memo-
ries of varying depth (as indicated by the number at each
data point). The prefix denotes the implementation techniga:
“Pure” for pure logic, “Repl” for replication, and “MP” for
pure multipumping. The smallest possible M9K designs have
a capacity of 256 elements, hence the two M9K designs are all
overlapping. Placement/routing fail for MLAB designs of depth
greater than 64.

Memory Logic Array Block (MLAB) Memory The Stratix IlI
FPGA architecture clusters its ALMs into Logic Array BlogkABSs),
each containing ten ALMs. Some of the LABs can function ei-
ther as a group of ALMs or as a single small block of memory, or
Memory LAB (MLAB). MLABSs provide a halfway point between
ALM and BRAM implementations: they are small, numerous, and
widely distributed like ALMs, but implement memory in a dens
constrained manner like BRAMs. A single MLAB holds up to 20
words of 16 bits. Unlike other memories, which perform aléop
ations on the rising edge of the clock, MLABs read on the gsin
edge and write on the falling edge. MLABs best implement $mal
shift registers and FIFO buffers and not arbitrarily deepnoges.

4. CONVENTIONAL MULTI-PORTING

A simple two-ported memory, with one read and one write port
(1W/1R) defines the basic conceptual and physical unit chg®
from which we build multi-ported memories. We assume thahea
port may access any one location per cycle, and if a read aitel wr
to the same location occur in the same cycle, the read paairzbt
the current contents of the location and the write port oviees
the contents at the end of the cycle (“Write-After-Read” (RJA
operation).

The simplest multi-ported memory that we consider is a 1W/2R
memory. This memory is interesting because it is not ndiusalb-
ported by FPGA structures but is commonly used, for exangsle f
soft processor register files. Figure 3 plots the area anchtipg
frequency of 1W/2R memories of varying depth (where the ldept
is indicated by the number next to each point), and of varyimg
plementation. We use these results to discuss the folloadngen-
tional techniques for building multi-ported memories orGA3:

Pure ALMs A straightforward method for constructing a multi-
ported memory on an FPGA is to do so directly in ALMs—i.e., a
design like that shown in Figure 1. We evaluate such designs i
Figure 3, shown as the Pure-ALM series of points. From thedigu
we see that even a 32-entry 1W/2R memory requires 864 ALMs



for this design. As we increase depth, area increases yagpiul
operating frequency drops significantly. This trend maésgathe
need to use block RAMs for more efficient multi-ported meresri

Replication Replication (Figure 2(a)) is an easy way to increase
the number of read ports of a simple memory (i.e., to 1W/nR):
simply provide as many copies of the memory as you requirg rea
ports, and route the write port to all copies to keep themodgatte.

We evaluate replication in Figure 3 for both M9Ks (Repl-M3A€«d
MLABs (Repl-MLAB). All of the Repl-M9K designs fit into two
M9K BRAMSs, such that those points are all co-located in therg
Replication requires no additional control logic, hencesth de-
signs are very efficient. For 1W/2R memories with a depthtgrea
than 256 elements, another pair of M9Ks would be added ayever
depth increment of 256 elements—resulting in a relativigwsn-
crease in area as memory depth increases. We also congitier re
cated designs composed of MLABs (Repl-MLAB). Unfortungtel
Quartus could not place and route any MLAB-based memory with
more than 64 elements. Since each MLAB stores the equivalent
of 160 ALMs, the Repl-MLAB implementation requires muchdes
interconnect than the Pure-ALM implementation but consibly
more than the Repl-M9K implementation. For example, the 32-
entry Repl-MLAB 1W/2R memory requires only 198 equivalent
ALMs, but still suffers a lower operating speed of 376 MHz.eTh
replicated M9K designs (Repl-M9K) are evidently far supeto

the alternatives, with an area of 90 equivalent ALMs and maxn
operating frequency of 564 MHz. However, the drawback ts thi
approach is that there is no way to provide additional wragtgp
with replication alone—we must pursue other techniquesrte p
vide more write ports.

Banking Banking (Figure 2(b)) is similar to replication, except
that the memory copies are not kept coherent; each additivera-
ory now supports an additional read and write port, proxgchm
easy way to increase ports arbitrarily (mW/mR). The corieead
way to use banking is to divide memory locations evenly antbeg
banks, such that each read and write port are tied to a centim-
ory division. However, a memory with only banking is not trul
multi-ported, since only one read from a certain divisiopassi-
ble in a given cycle. For this reason we do not evaluate bankéd
memories, although a close estimate of the Fmax/area of am®R\/
banked memory is the corresponding 1W/mR replicated design

Multipumping Multipumping (Figure 2(c)) internally uses an in-
teger multiple of the external system clock to multiplex altmu
ported memory with fewer ports, giving the external appeega
of a larger number of ports (mW/nR). This requires the additi
of multiplexers and registers to hold temporary states, el as
the generation of an internal clock, and careful managewiethie
timing of read-write operations. We further describe th&ilke of
implementing a multipumped design in the next section.

4.1 Multipumping Implementations

Since multipumped memories multiplex ports over time, the o
der of read/write operations must be carefully managedatiig
the precedence of reads and writes would break the extepral a
pearance of them occurring at the same time. In particuldaresv
must be performed at the end to avoid Write-After-Read (WAR)
violations where an earlier internal write updates a valefte it
has been read by a subsequent internal read.

For non-multipumped designs, each block RAM port supports
either a read or a write, hence we use the block RAMs in “simple
dual-port” mode where a port is statically defined to be fadiag

or writing. Since multipumped designs time-multiplex tHedk
RAM ports we can potentially exploit “true dual-port” modehere

a block RAM port can be dynamically configured for reading or
writing. For the simplest multipumped design consisting single
block RAM, true dual-port mode can allow us to configure both
ports for reads and perform pairs of reads until all are dtmen
configure both ports as writes and perform pairs of writed afit
are done.

A larger but more aggressive multipumped design can also ex-
ploit banking to reduce the number of cycles required togrerf
reads: each bank can perform two unique reads, and all bamnks c
operate in parallel; when reads are completed, one pair ibésvr
can be performed across all banks each cycle until all wetes
performed. In other words, the block RAMs are read like a bdnk
memory and are written like a replicated memory. Similahtec
niques have been published by Xilinx [16] and Actel [1] butyon
for certain forms of quad-port memories, whereas our impieta-
tion supports arbitrary numbers of read and write ports.

True dual-port mode is not free: for Stratix Ill FPGAs [3] an
M9IK block RAM in simple dual-port mode has 256 locations of
32 bits, while in true dual-port mode it has 512 locations 6f 1
bits since the RAM output drivers are split to support twodsea
Therefore true dual-port mode requires two M9K block RAMs to
create a 32-bit-wide memory. Despite this doubling, the lnenof
block RAMs required remains practical: even an 8W/16R purel
multipumped memory would need only one block RAM pair to
support each read port, for a total of 32.

The following summarizes the design of a pure multi-portesim
ory using true dual-port mode for the block RAMs. Given an-arb
trary mW/nR memory, the number of cycles required to perfalim
the m writes andn reads follows[m /2 + n/2z], wherez counts
the number of block RAMs. The:/2 term stems from each write
being replicated to all the block RAMSs to avoid data fragraéion,
making the whole memory appear to have only two write porte T
n/2z term comes from each block RAM being able to service any
two reads at once since the writes replicate their data tbladk
RAMs. The ceiling function handles cases where there aherit
more internal ports than there are external read or writespor the
number of internal ports does not evenly divide the numbextsr-
nal ports. A fractional number of cycles in a term impliestttiar
one of the cycles, some ports remain free and some writes imégh
done simultaneously with the last reads. The typical caséhen
the number of block RAMs equals the number of read portswallo
ing all reads to be performed in one cycle while leaving hiadf t
ports available for one of the writes, which may save oneecyrl
certain port configurations. Larger numbers of block RAM# wi
not further reduce the number of cycles.

As a simple example, in Figure 3 we implement 1W/2R memo-
ries by double-pumping M9Ks (MP-M9K 2X) and MLABs (MP-
MLAB 2X)“. While 2X multipumping does halve the number of
M9Ks or MLABs used, the overhead of the required control cir-
cuitry negates any area savings for memories with so feve pdte
maximum external operating frequencies of the double-patue-
signs are also a little under half those of the replicatedgdss
(186 MHz for MP-MLAB 2X, and 279 MHz for MP-M9K 2X).
As we will demonstrate later, multipumping can be an imparta
technique to reduce area when building memories with larger-
bers of ports.

4Again, due to Quartus’ difficulty with MLABS, the multipurmj
implementation uses simple dual-port MLABs only. For 1W/2R
only, this does not affect the area or external operation.



Figure 4: A generalized mW/nR memory implemented using a
Live Value Table (LV'T'). Each write updates its own replicated
memory bank (M) and updates its entry at the same address in
the LVT. For each read, the LVT selects the memory bank that
holds the most recently written value for the requested memiy
address.

4.2 Summary

A 1W/2R memory can easily be extended to have more read
ports by increasing the amount of replication, but this tégphe
cannot be used to add more write ports. While banking eakily a
lows multiple write ports, such designs must map reads aitésvr
to divisions of the memory, and do not allow true sharing. Atimu
ported memory implemented purely in ALMs scales poorly. Mul
tipumping by itself causes a large drop in operating frequein
the next section, we introduce a method for transparenthyagiag
and keeping coherent banked memories to effectively allaltim
ple readandwrite ports.

5. LVT-BASED MULTIPORTED MEMORIES

We propose a new approach to implementing multi-ported mem-
ories on FPGAs that can exploit the strengths of all three con
ventional techniques for adding port®ur approach comprises
banks of replicated block RAMs where a mechanism of indi-
rection steers each read to the bank holding the most-recent
write value. Multipumping is orthogonal to our approach, and can

mW/nR mW/nR
Addresses Bank # Addresses Bank # Bank #
Wo ;L. Bank # Ro i’ Bank # LRO
W, 9. p|[Bank # R, 9. p|Bank# Q—Rl
W= Ra s PR

(a) Write Operation (b) Read Operation

Figure 5: A Live Value Table (LVT) for a multi-ported memory
of depth D with m write ports (1) and n read ports (R). Each
LVT location corresponds to a memory location, and tracks tle
bank number of the memory bank that holds the most recent
write value. Every write updates the corresponding locatio
with the destination bank number, and every read is directed
to the appropriate bank by the bank number stored in the cor-
responding LVT location. The width (b) of the bank numbers
islog2(m). The width (d) of the addresses i$og2 (D).

RAM bank with the new value, and the LVT simultaneously up-
dates its corresponding location with the bank numbéo (» — 1).
During a read, the read port sends the address to every bdrtk an
the LVT. All the banks return their value for that locationdatine
LVT returns the number of the write port which last updateat th
location, driving the multiplexer of the read port to seléha output

of the proper block RAM bank.

5.2 Implementing the LVT

Figure 5 illustrates the overall structure and operation b¥/T
for a multi-ported memory of deptt® with m write ports (V)
andn read ports R). Each LVT location corresponds to a
memory location, and tracks the bank number of the memory
bank that holds the most recent write value for that memory
location. Despite being implemented entirely in ALMs, the area of
a LVT remains tractable due to its narrow width= log2(m). For
example, compared to the 864 ALMs of the 32-element 1W/2R
Pure-ALM memory in Figure 3, a LVT of the same depth with
2R/2W ports uses only 75 ALMs Even with 8W/16R ports, the
corresponding LVT consumes only 649 ALMs.

During writes, the LVT uses the memory write addresses to up-
date the corresponding locations with the numbers of théspor
performing the writes. These numbers identify the block RAM

be applied to reduce the area of a memory in cases where arslowebanks that hold the written values. During reads, the LVTsuse

operating frequency can be tolerated, as we demonstrateifat
Section 7. We name our indirection mechanismlthe Value Ta-
ble (LVT), since it tracks which bank contains the “live” or mest
recently updated value for each memory location. A briefinat
of this approach is described by Altera [4], but provides atats
of operation, no comparisons, and limits itself to only fports.

5.1 The Basic Idea

Figure 4 illustrates an LVT-based multi-ported memory. The
memory is composed of. banks (M, to M,,—1), each of which
contains alWW/n R memory (constructed via replication of block
RAMSs) such that: is equal to the desired number of read poRs (
toR,,—1). Each write port writes to its own bank, and each read port
can read from any of all the banks via its multiplexer. Thekeghn
memory allows for arbitrary concurrent writes, while thelrea-
tion within each bank supports arbitrary concurrent redtie LVT
is a mW/nR multi-ported memory implemented using ALMs.

At a high level, the design operates as follows. During aewrit
to a given address, the write port updates that locatiorsiblack

the read addresses to fetch the bank numbers that in tumtisese
outputs of those banks to the read ports. All addresses aviltif
d = log2(D).

5.3 LVT Operation

As an example of the operation of a Live Value Table, Figure 6
depicts two writes and two reads to a multi-ported memonylam
to the one depicted in Figure 4. The memory contains one memor
bank for each write portif, andW;). Each memory bank is a
replicated block RAM memory with enough ports for each read
port (Ro andR;). The LVT at the top is implemented using ALMs
only, has the same depth as each memory bank, but stores e mu
narrower bank numbers. The write ports place their bank rumb
in the LVT at the same address at which they write their dathgo
banks. The LVT controls the output multiplexer of each read.p
The memory begins empty or otherwise uninitialized.

5A 2W/2R LVT is the smallest meaningful case here, as a memory
with a single write port does not need an LVT.



———————————————————————————— a mW/nR LVT without the use of ALM-based storage, but no such

I 2W/2R LVT

Read —— Read @%. = block RAMs exist on FPGAs. Additionally, any inner LVT used
Addr. — =] Addr. © s to coordinate block RAMs implementing a larger outer LVT \bu
Write %L ! Write —|| 1 | ! necessarily be implemented using ALMs and would have theesam
Addr. €2 0 | Addr. —-+|L O | depth and control the same number of banks and ports as the out
| awer ; | aweR LVT it sought to replace. This inner LVT would thus have thenga
— = | | — D — area as the outer LVT, and hence is not worth it.
W= AT W= AR
— = | [z = 6. LVT PERFORMANCE
- weR | aweR While an LVT does solve the problem of adding write ports to a
@ iy | — - | S— - 23 memory, it also introduces additional delay due to the bamklver
W13 25 |— 1 Ry WI%E%D%RI quk-up and thg regd port multiplexers, and increasgs mme
— =] ! ] — to internal replication of each memory bank. In this sectionl

b it ) the next, we demonstrate that the LVT-based approach pme\ij
(a) Write Operation (b) Read Operation substantially better area scaling than a pure logic-bagptbach,
and (ii) higher frequencies than multipumping approaches.

Figure 6: Example operation of a 2W/2R LVT-based multi-
ported memory: during write operation, Wy writes 42 to ad- 6.1 Speedvs. Area
dress 3 andiW/; writes 23 to address 2, and the LVT records for
each address the bank that was last written; during read oper
ation, Ry reads address 2 andR; reads address 3, and the LVT
selects the appropriate bank for each read address.

Figure 7(a) and Figure 8(a) plot the average maximum operati
frequency (Fmax) versus area for 2W/4R and 4W/8R memories of
increasing depth (denoted by the number next to the data)pdin
is apparent that the pure ALM implementation (Pure-ALMhisfi

Figure 6(a) shows the state of the memory banks and the LVT ficient: for the 4W/8R memory, 32 elements requires 3213 ALMs
after porti¥, writes the valuei2 to address 3 and poit; writes23 and 256 elements requires 23767 ALMs. The larger of these pur
to address 2. The values are stored into the separate meantkg b~ ALM designs are likely impractially large for most appliiats.
of portsWy and Wi, while the LVT stores their bank numbers at Looking at the MLAB-based LVT implementations (LVT-MLAB)
the same addresses. for 2W/4R, the designs are smaller but achieve a slower Fhreax t

An access from any read port will simultaneously send the ad- the corresponding pure ALM designs. For the 4W/8R desides, t
dress to the LVT and to each memory bank. The bank number re- MLAB-based LVT implementations are both larger and sloweant
turned by the LVT directs the output multiplexer to seleetdutput the corresponding pure ALM designs. Furthermore, the MLAB-
of the block RAM memory bank containing the most currentealu  based designs cannot support memories deeper than 64 &demen
for the second memory element. In Figure 6(b), gortreads from since Quartus cannot place and route them. Overall the MLAB-
address 3 and thus get8 from bank0, while port Ry reads from based designs are uncompelling, except for providing aaxBEneax

address 2 and ge®s from bankl. trade-off relative to the pure ALM designs for 2W/4R memesrie
. From the figures it is evident that the M9K-based implementa-
5.4 Block RAM Requirements tions are superior. The area of the 2W/4R and 4W/8R LVT-M9K

Having memory banks which can hold the entire memory con- implementations increases much more slowly with depth than
tents for each write port and having each of these banksiaitgr pure ALM implementation. Furthermore, as an indicationtuit
replicated once for each read port means that the total nuofbe  usability, these designs achieve a clock frequency closetbetter
block RAMs within all the banks equals the product of the nemb  than the 290MHz clock frequency of a Niosll/f soft processor
of write ports and read ports, times the number of block RAKIs N the same Stratix Il device [5]. For example, the 4W/8R \asi
essary to hold the entire memory contents in a single bankeXxo has an operating frequency ranging from 361 MHz at 32 element
ample, the rather large case of a 32-bit 8W/16R multi-pamed- down to 281 MHz for 256 elements, with enough ports to support
ory requires 128 block RAMs for depths of up to 256 elements. four such soft processors.

Even the smallest Stratix [l FPGAP3SL50) contains 108 M9K

block RAMs, while mid-range devices contain 275 to 355. Also 6.2 Area Breakdown

the relatively large depth of the M9K block RAMs allows carre Figure 7(b) and Figure 8(b) display the total equivalenaart
spondingly large multi-ported memories to be implementedger various implementations of the same 2W/4R and 4W/8R memorie
memories would likely require the use of deeper block RAMshsu  broken down into their components. The Pure-ALM implementa
as the Stratix M144K. In Section 7, we will demonstrate how-mu  tion is a single multi-ported memory without any specifiedsam-

tipumping can reduce the number of required block RAMSs. ponents: the synthesis process implements all of the nexgps,
. . decoders, and storage implicitly. These increase in ptipowith
5.5 Recursive LVT |mplementatlon the depth of the memory and rapidly become impracticallgdar
An LVT implements a multi-ported memory using ALMs and The LVT-MLAB implementation, despite using denser memory,
thus grows proportionately with depth—however, since dach- suffers from higher interconnect area overhead. The areheof

tion stores only the few bits required to encode a memory bank LVT-MLAB memory banks increases quickly with the memory
number, the memory size remains practical. It would seerit-des depth since each MLAB can only store 20 words of 16 bits. Also,
able to repeat this area-saving and implement the LVT itssitig Quartus could not place and route MLAB-based memories deepe
block RAMs, managed by a still smaller, inner LVT. Howevee w  than 64 elements. The absence of output multiplexers fo64he
cannot avoid implementing a LVT using ALMs since FPGAs do element 2W/4R memory is due to a fortuitous synthesis optmi
not provide any suitable multi-ported block RAMs with enbug  tion by Quartus: each register in an ALM has two load linesictvh
write ports and the narrow width of an LVT. Ideally, a numbér o may eliminate the multiplexer when there are only two sasirce
mW/1r block RAMs could be used as areplicated memory toereat ~ The LVT-M9K block RAM Memory Banks have the lowest area
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due to their higher density and lower interconnect requingis
Most of the multiplexing and decoding overhead in the Put#4A
and LVT-MLAB implementations becomes implicit in the cifoy

of the M9K block RAMs. The area of the LVT-M9K 4W/8R Mem-
ory Banks remains constant at 1446 equivalent ALMs sincefall
the memory depths fit into the same number of block RAMs. Even
with the non-trivial overhead of the LVT, the LVT-M9K implezn-
tations consume much less total area than the alternatives.

The LVTs of the LVT-MLAB and LVT-M9K implementations
have the exact same internal structure and the same depfie as t
corresponding Pure-ALM memory implementation and thus als
scale proportionately with the depth of the memory. Howgether
LVTs only store the one or two bits required to identify a meyno
bank, reducing their growth to tractable levels. As an eXantpe
area of the LVT of the LVT-M9K 4W/8R memory ranges from 280
ALMs up to 1977 ALMs: approximately one-tenth the area of the
corresponding Pure-ALM memory. The area of the 4W/8R output
multiplexers, when present, remains constant at 256 ALMsesi
the number of banks in the LVT-MLAB and LVT-M9K memories
also remains constant. For the 2W/4R memory, the multiplesea

implementations of a 4W/8R memory with an increasing

fluctuates between 77 and 93 ALMs, likely due to optimizagion
made possible when an ALM has inputs from only two banks.

7. MULTIPUMPING PERFORMANCE

In the previous section we observed that M9K implementation
of LVT-based multi-ported memories are faster and smahlant
the alternatives—for some applications the achievablexrimpo-
tentially overkill. In such cases we could apphultipumping(in-
troduced earlier in Section 4) to trade Fmax for reduced asdhe
application allows. In this section we describe and measurke
tipumping applied to LVT-based designs, and also compatk wi
pure multipumping-based multi-ported memory designs.

7.1 Speedvs. Area

Multipumping can bring about a useful reduction in area & th
speed of the original memory is significantly higher thanuresg
by the surrounding system. Figure 9(a) and Figure 10(a) eoenp
the maximumexternaloperating frequency (Fmax) and the total
area of M9K-based LVT 2W/4R and 4W/8R memories with 2X
and 4X multipumping, along with the equivalent pure multigp:
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ing (MP) implementations. For all cases, timernal operating
frequency remains approximately equal to the Fmax of thgiral
baseline memory prior to multipumping, which ranges forlti@
4W/8R memory from 361 MHz to 281 MHz as the depth increases,
and 523 MHz for all depths of the MP 3X 4W/8R memory.
Despite the high internal operating frequencies, dividingm
by a multipumping factor does bring about a harsh externe¢dp
penalty. For example, the 4W/8R LVT 2X multipumped implemen
tations in Figure 10(a) operate externally at frequenceeming
from 176 MHz to 149 MHz, which may still be practical speeds.
The MP 3X implementations also hold at 174 MHz. For either im-
plementation, it is evident that only small multipumpingtfars can
be used before the drop in Fmax becomes too great to be @lactic
Although we have tested multipumping factors of up to eigg,
expect that most designs will use a factor of two or three.
Furthermore, although the pure multipumping (MP) implemen
tations seem to have better performance and a greatly réduee,
a multipumping factor of two is only possible for 1W/2R (Fig.B)

and 2W/4R memories (Figure 9(a)). Pure multipumping meesori
with more ports will always require a multipumping factor aif
least three or four, which quickly drops the Fmax. By conmganj

a multipumping factor of two is always feasible for any LVT me

ory with an even number of read ports. The slower drop in spéed
an LVT memory as the number of ports increases (Figure 9(a) vs
Figure 10(a)) is a consequence of its internal parallelisstead of

the mostly serial operation of a pure multipumping memory.

7.2 Area Breakdown

The primary benefit of multipumping is reducing the area ef th
memory banks at the expense of clock frequency. Although the
area of the memory banks reduces proportionally to the atrafun
multipumping, the LVT does not scale down as much and lirhigs t
overall area reduction.

As discussed in Section 5.4, the number of block RAMs in a
multi-ported LVT memory is equal to the product of the numbter
read and write ports. Since multipumping divides the nundfer



internal read ports, the number of block RAMs per bank is cedu Although most FPGAs do not provide block RAMs with more
by the same factbr The number of read ports on the Live Value than two ports, some of the smaller pure multipumping meesori
Table reduces to match, as does the number of output mukifsle might provide usable substitutes. This speculation is stpd by
Figure 9(b) and Figure 10(b) show how multipumping affebs t  the interesting performance of the ‘MP 2X' 2W/4R pure multi-
area of each of these components for the same LVT 2W/4R and pumping design from Figure 9: 255 equivalent ALMs at 279 MHz,
4W/8R memories when using factors of two (2X) and four (4X), using four M9K block RAMs. If we used this memory to con-
compared to a factor of one (1X) as the baseline non-multyaan struct the banks of the ‘LVT 1X' 4W/8R LVT-based memory in
case, which is identical to the LVT-M9K bars of Figure 7(bdan  Figure 10, two banks would be required instead of four, witbhe
Figure 8(b). The figures also show the area breakdown of thg-eq  bank internally replicated once to support the read porta fotal
alent pure multipumping (MP) memories. of four 2W/4R memories. This sums to only 16 M9K block RAMs
For LVT memories, the multipumping factor exactly dividee t instead of 32, and even with the additional area overheadutif-m
area of the memory banks by itself since now only one-half or pumpind the area of the memory banks would decrease by 29%,
one-quarter the number of internal read ports exists, whlsb while the area of the LVT would be halved. It is easy to see from
reduces the area of the output multiplexers by the same riatio Figure 10(b) that these changes would significantly redoeatea
the 4W/8R memory, the area of the Live Value Table shrinks by of the 256-element 4W/8R ‘LVT 1X' implementation. The impac
only 24% for 2X and 36% for 4X on average since its number of on speed is harder to predict due to the large changes inrtie st

write ports remains unchangedThe “Multipumping Overhead” ture of the memory banks, but it is conceivable that the dpera
fraction contains the additional overhead of multipumpsugh as frequency would remain near that of the underlying 2W/4Repur
the Multipumping Controller, internal multiplexers, arertporary multipumping memory.

registers. Regardless of the depth of the memory, multipognip-

troduces a small, nearly constant overhead: 145 ALMs for8Rv/ 8.2 Relaxed Read/Write Ordering

LVT 2X rSnuItlpurgp;mg,tﬂnd ﬁg AL.MdS. f%r AYV/?\R LVT ?Xt%%a\gw The primary obstacle to getting the most area benefit frontimul

erage. summed together, these individual changes 1o pumping is the relatively small area reduction of the LV Tcsithe

LVT memories reduce the total area by an average of 36% for 2X |\ .10 ¢\ rite ports cannot be divided. The writes must @tio

multlpurr;]plrll_%/,Tanq 54?’ 1|‘9r.4xr.] The unﬁhanged nlémberhof write together after the reads to prevent WAR violations. If waxehe

ports in the primartly imits owmuch we can re ucet €& readiwrite ordering and allow writes to occur before allraf teads
The pure multipumping memories (MP) use much less area since have completed, then time-multiplexing the internal wpibets be-

they do not requg:e akI_F;\'/AeMVaIl_Je Tat‘ﬁ"? %r Okutput Mutltlplexerts comes possible. The multipumping factor can now divide bia¢h
noruse as many bloc s since their banks are not replicate , yper of internal memory banks and the number of write @orts

For e>§ample, the 4W/ER M.p 3X memory in. Figure 10(b) uses the Live Value Table, further improving the area reduction.
only eight M9K block RAMs inside a total equivalent area ofl.51 For example, with a multipumping factor of two and the reattav

ALMs, of which 105 are multipumping overhead. Unfortungtel orderingpreservedour 4W/8R multi-ported memory example in-

pure mult;putmplng gw;ahmonels tencli:to hat\;]e h'%t‘/?rr minimum mul:h ternally becomes a 4W/4R memory. Halving the number of read
pumping factors and thus slower Fmax than memories as the ports only halves thaize of the memory banks and reduces the

number of ports ir_lcreas_es. In Sect_ion 8_'1' we will exploeitiea size of the LVT to a lesser degree. By comparison, if we allow
of using pure _multlpumplng memories with a small numbe_r otpo relaxed read/write ordering, then the multipumping factam also
to potentially improve the efficiency of LVT-based memories divide the number of write pords which will in turn divide the

numberof memory banks in addition to their size and further re-

8. MORE AGGRESSIVE DESIGNS duce the area of the LVT. In effect, except for the small ogath
In this section we describe potential design avenues thahare of the multipumping control circuitry, the entire 4W/8R mem
aggressive than those we have presented: a way to build an eve would internally reduce to a 2W/4R instance which uses abs%i
more efficient LVT-based design, and relaxing read/writéedng less hardware. This quadratic area reduction is immegligisible
to ease constraints on the design of the multi-ported memory when comparing the LVT entries in Figure 9(b) and Figure 10(b
as well as the LVT-M9K entries in Figure 7(b) and Figure 8(b).
8.1 LVT-Based Memory Based on Pure Mul- Relaxing the read/write ordering requires the designeched-
tlpumped Banks ule the reads and writes to the multi-ported memory to avodRW

If even moderately multi-ported block RAMs became avaitabl ~ Vviolations which would corrupt data. For example, given4/8R
on FPGAs, some very significant area improvements to LVEBthas example multi-ported memory with a multipumping factor wbt
multi-ported memories would follow. For example, doublithg: and relaxed read/write ordering, the reads and writes mtgirnally
number of read and write ports on a block RAM would mean need- €xecute as two consecutive 2W/4R sets, each using one Itak of
ing only half as many memory banks to support the write ports €xternal ports. If the designer wants to simultaneouslyl r&ad
of an LVT-based memory, with each bank containing only half a write to the same location within a system cycle, both openat

many replicated memories to service the read ports, raguiti must be grouped in the same read/write set by performing them
needing only a quarter of the number of block RAMs to construc  ©n the appropriate external ports. If the designer canrastaege
a given LVT-based multi-ported memory. Furthermore, hajvthe them, then the write operations must explicitly occur atftercon-
number of banks reduces the width of the LVT by one bit, which i ~ flicting reads, either by placing them in the following reufe set,
significant since a typical LVT is only three bits wide or less or in the next system cycle. Fortunately, this problem isfibal to

Py - - L dependence analysis for optimizing software loops.
This assumes the multipumping factor can evenly divide thra-n

ber of read ports. For example, a 4W/8R LVT memory supports
factors of two, four, or eight only. 8This is pessimistic. For example, all of the multipumped rem
"This fact suggests that the narrower but more numerous poite  ies could share a single multipumping controller.

multiplexers and decoders have the largest impact on tteeaire  °This assumes that the multipumping factor can evenly dithige
pure ALM memories. number of write ports.




9. CONCLUSIONS

FPGA systems provide efficient block RAMs, but with only two
ports. Conventional approaches to building memories onAPG
with a larger number of ports are either very area inefficisio,
or both. We introduced a smaller and faster implementatasn f
multi-ported memories based on the Live Value Table (LVT)—a
small, narrow, multi-ported memory implemented in logiereknts
that coordinates read and write accesses such that a bardad m
ory design to behave like a true multi-ported design. Thaltieg
multi-ported memories provide true Write-After-Read (WARN-
dom access to any value, from an arbitrary number of portbout
the need to schedule reads and writes.

For example, using a LVT controlling 32 M9K block RAMs, we
were able to implement a 256-element 12-ported (4W/8R)imult
ported memory which operates at 281 MHz on Altera Stratix Il
FPGAs while consuming an area equivalent to 3679 ALMs: a 43%
speed improvement and 84% area reduction over the equivalen
pure ALM implementation, and a 61% speed improvement over a
pure multipumping implementation, despite being 7.2xdarghe
higher speeds of our LVT-based designs presented the pibgsib
of exchanging speed for area by applying multipumping. Ger-av
age, 2X multipumping reduced the total area by 36%, while #X d
so by 54%. Our designs also allowed for lower and more pralctic
multipumping factors than pure multipumping implemerntas as
the number of ports increased.

We also proposed two potential avenues for further incngasi
the efficiency of LVT-based designs: (i) relaxing the ordgrof
reads and writes which avoided WAR violations would incesas
the area reduction from multipumping to about 75% at 2X, minu
the overhead of multipumping, at no additional cost in spgigd
implementing the memory banks of a 4W/8R LVT-based memory
using 2W/4R pure multipumping memories could reduce tha are
of the memory banks by 29% and halve the area of the LVT while
conceivably keeping the operating frequency in a usefidean

In summary, our exploration of the design space led us tethre
main conclusions: (i) LVT-based multi-ported memories se
perior to logic-element-based designs in both area andis(fige
LVT-based implementations are faster than pure multipaigpn-
plementations although with an area cost; (iii) pure multiping
implementations can be sufficient if the number of requireds
or external operating frequency are modest.
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