Efficient Multi-Ported Memories for FPGAs

Eric LaForest Greg Steffan

University of Toronto
Computer Engineering Research Group

February 22, 2010

Parallelism in FPGAs

- Larger SoCs on FPGAs → Parallel Systems
- Parallel systems on FPGAs will need:
 - Queueing
 - Data sharing
 - Communication
 - Synchronization
- Boils down to:
 - FIFOs
 - Register files

We can do all these with multi-ported memories

Multi-Ported Memory

Existing workarounds are ad-hoc, "roll-your-own", and have limited parallelism.

3

Conventional Approaches

2W/2R Multi-Ported Memory

Doesn't exist on FPGAs
Altera used to have one (Mercury)

Stratix III Building Blocks

Adaptive Logic Modules

- Registers
- LUTs
- Adders

Flexible, but slow

Block RAMs

- •M9K (eg: 32 x 256)
- •M144K (eg: 32 x 4098)

Fast, but inflexible

2W/2R Pure-ALM

Scales very poorly with memory depth

1W/nR Replication

Only one write port

Multiple read ports

mW/nR Banking

Multiple write ports Fragmenţed data

mW/nR "Multipumping"

- Multiple read/write ports
- No fragmentation

- Divides clock speed
- Read/write ordering

Block RAMs: Simple Dual Port

Block RAMs: True Dual Port

"Pure Multipumping"

Read as banked memory (multiple reads)

"Pure Multipumping"

Write as replicated memory (avoids fragmentation)

Methodology

- Generate design variations over space
 - Vary # of ports, depth, type of memories
 - 1W/2R to 8W/16R
 - 2 to 256 elements deep
 - Pure-ALM, M9K, MLAB, Multipumped
 - Wrap in testbench for timing and correctness
- Target Quartus 9.0 to Stratix III
 - No synthesis optimizations for speed or area
 - Standard P&R effort (speed, avg. over 10 runs)
- Measure area as Total Equivalent Area
 - Expresses area in a single unit (ALMs)

Conventional Multi-Porting Performance

1W/2R Pure-ALM Area vs. Speed

1W/2R Replicated vs. Pure-ALM

1W/2R "Pure Multipumping"

LVT-Based Multi-Ported Memories

Begin with one block RAM

Replicate for two read ports

Bank for two write ports

Select bank to read from

Live Value Table Operation

LVT Operation

LVT Operation

LVT Operation: Write

Records which write port last updated a location

LVT Operation: Read

Steers read port to correct memory bank

LVT Implementation

LVT remains practical because it is vegy narrow

LVT Operation

Small Pure-ALM memory controlling larger3block RAMs

Advantages of LVTs

- LVTs add a layer of indirection
 - Everything operates in parallel
 - Makes banked memory behave as consistent unit
- LVTs are narrow
 - Word width = log₂(# of write ports) < 4 bits typically
 - Pure-ALM, but practical size and speed

LVT Performance

2W/4R Pure-ALM

2W/4R LVT-based vs. Pure-ALM

2W/4R Multipumping

Must be careful about read/write ordering!

Multipumping Performance

2W/4R Multipumping

2W/4R Multipumping

4W/8R Multipumping

2W/4R Multipumping

Conclusions

- LVT-based memories are faster and smaller than Pure-ALM memories.
- LVT-based memories are faster than pure multipumping, but at a cost in area.
- Pure multipumped memories are better for memories with few ports or low speed.

Future Work

- Pure multipumping for LVT-based memories
 - Build banks with 2W/4R pure multipumping blocks
 - Possible further area improvement
- Relaxing the read/write order for multipumping
 - Allows multiplexing the write ports
 - Leaves designer to watch for WAR violations

Thank You