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Abstract 

Building a high-petformance microprocessor presents 
many reliability challenges. Designers must verify the cor- 
rectness of large complex systems and construct implemen- 
tations that work reliably in varied (and occasionally ad- 
verse) operating conditions. To&rther complicate this task, 
deep submicron fabrication technologies present new relia- 
bility challenges in the form of degraded signal quality and 
logic failures caused by natural radiation interference. 

In this paper; we introduce dynamic verification, a novel 
microarchitectural technique that can significantly reduce 
the burden of correctness in microprocessor designs. The 
approach works by augmenting the commit phase of the 
processor pipeline with a functional checker unit. Thefunc- 
tional checker verifies the correctness of the core proces- 
sor’s computation, only permitting correct results to com- 
mit. Overall design cost can be dramatically reduced be- 
cause designers need only veri’ the correctness of the 
checker unit. 

We detail the DIVA checker architecture, a design opti- 
mized for simplicity and low cost. Using detailed timing 
simulation, we show that even resource-frugal DIVA check- 
ers have little impact on core processor peflormance. To 
make the case for reduced verification costs, we argue that 
the DIVA checker should lend itself to functional and elec- 
trical verification better than a complex core processor Fi- 
nally, future applications that leverage dynamic veri@cation 
to increase processor performance and availability are sug- 
gested. 

1 Introduction 

Reliable operation is perhaps the single most important 
attribute of any computer system, followed closely by per- 
formance and cost. Users need to be able to trust that when 
the processor is put to a task the results it renders are cor- 
rect. If this is not the case, there can be serious repercus- 
sions, ranging from disgruntled users to financial damage 
to loss of life. There have been a number of high-profile 

‘This work was performed while the author was (un)employed as an 
independent consultant in late May and June of 1999. 

examples of faulty processor designs. Perhaps the most 
publicized case was the Intel Pentium FDIV bug in which 
an infrequently occurring error caused erroneous results in 
some floating point divides [ 161. More recently, the MIPS 
RlOOOO microprocessor was recalled early in its introduc- 
tion due to implementation problems [ 181. These faulty 
parts resulted in bad press, lawsuits, and reduced customer 
confidence. In most cases, the manufacturers replaced the 
faulty parts with fixed ones, but only at great cost. For ex- 
ample, Intel made available replacement Pentium proces- 
sors to any customer that had a faulty part and requested a 
replacement, at an estimated cost of $475 million [32]. 

1.1 Designing Correct Processors 
To avoid reliability hazards, chip designers spend con- 

siderable resources at design and fabrication time to verify 
the correct operation of parts. They do this by applying 
functional and electrical verification to their designs. 2 

Functional Verification Functional verification occurs at 
design time. The process strives to guarantee that a design 
is correct, i.e., for any starting state and inputs, the design 
will transition to the correct next state. It is quite difficult 
to make this guarantee due to the immense size of the test 
space for modern microprocessors. For example, a micro- 
processor with 32 32-bit registers, 8k-byte instruction and 
data caches, and 300 pins would have a test space with at 
least 213”3g6 starting states and up to 2300 transition edges 
emanating from each state. Moreover, much of the behav- 
ior in this test space is not fully defined, leaving in question 
what constitutes a correct design. 

Functional verification is often implemented with 
simulation-based testing. A model of the processor being 
designed executes a series of tests and compares the model’s 
results to the expected results. Tests are constructed to pro- 
vide good coverage of the processor test space. Unfor- 
tunately, design errors sometimes slip through this testing 

‘Often the term “validation” is used to refer to the process of verifying 
the correctness of a design. In this paper we adopt the nomenclature used 
in the formal verification literature, i.e., verijcarion is the process of deter- 
mining if a design is correct, and validufion is the Process of determining 
if a d&.ign meets customers’ needs. In other words, verification answers 
the question, “Did we build the chip right?“, and validation answers the 
question, “Did we build the right chip?‘. 
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process due to the immense size of the test space. To min- 
imize the probability of this happening, designers employ 
various techniques to improve the quality of verification in- 
cluding co-simulation [6], coverage analysis [6], random 
test generation [ 11, and model-driven test generation [ 131. 

A recent development called formal verification [15] 
works to increase test space coverage by using formal meth- 
ods to prove that a design is correct. Due to the large num- 
ber of states that can be tested with a single proof, the ap- 
proach can be much more efficient than simulation-based 
testing. In some cases it is even possible to completely ver- 
ify a design, however, this level of success is usually re- 
served for in-order issue pipelines or simple out-of-order 
pipelines with small window sizes. Complete formal ver- 
ification of complex modern microprocessors with out-of- 
order issue, speculation, and large windows sizes is cur- 
rently an intractable problem [8,24]. 

Electrical Verification Functional verification only ver- 
ifies the correctness of a processor’s function at the logic 
level, it cannot verify the correctness of the logic imple- 
mentation in silicon. This task is performed during electri- 
cal verification. Electrical verification occurs at design time 
and fabrication time (to speed bin parts). Parts are stress 
tested at extreme operating conditions, e.g., low voltage, 
high temperature, high frequency, and slow process, until 
they fail to operate.3 The allowed maximum (or minimum) 
for each of these operating conditions is then reduced by a 
safe operating margin (typically IO-20%) to ensure that the 
part provides robust operation at the most extreme operat- 
ing conditions. If after this process the part fails to meet its 
operational goals (e.g., frequency or voltage), directed test- 
ing is used to identify the critical paths that are preventing 
the design from reaching these targets [3]. 

Occasionally, implementation errors slip through the 
electrical verification process. For example, if an infre- 
quently used critical path is not exercised during electrical 
verification, any implementation errors in the circuit will 
not be detected. Data-dependent implementation errors are 
perhaps the most difficult to find because they require very 
specific directed testing to locate. Examples of these type 
of errors include parasitic crosstalk on buses [4], Miller ef- 
fects on transistors [31], charge sharing in dynamic logic 
[31], and supply voltage noise due to 2 spikes [25]. 

1.2 Deep Submicron Reliability Challenges 

To further heighten the importance of high-quality veri- 
fication, new reliability challenges are materializing in deep 
submicron fabrication technologies (i.e., process technolo- 
gies with minimum feature sizes below 0.25~77i). Finer fea- 
ture sizes result in an increased likelihood of noise-related 
faults, interference from natural radiation sources, and huge 
verification burdens brought on by increasingly complex 
designs. If designers cannot meet these new reliability chal- 
lenges, they may not be able to enjoy the cost and speed 
advantages of these denser technologies. 

30r fail to meet a critical design constraint such as power dissipation 
or mean time to failure (MIFF). 

Noise-Related Faults Noise related faults are the result 
of electrical disturbances in the logic values held in circuits 
and wires. As process feature sizes shrink, interconnect be- 
comes increasingly susceptible to noise induced by other 
wires [4, 231. This effect, often called crossrulk, is the re- 
sult of increased capacitance and inductance due to densely 
packed wires [2]. At the same time, designs are using lower 
supply voltage levels to decrease power dissipation, result- 
ing in even more susceptibility to noise as voltage margins 
are decreased. 

Natural Radiation Interference There are a number of 
radiation sources in nature that can affect the operation 
of electronic circuits. The two most prevalent radiation 
sources are gamma rays and alpha particles. Gamma rays 
arrive from space. While most are filtered out by the at- 
mosphere, some occasionally reach the surface of the earth, 
especially at higher altitudes [33]. Alpha particles are cre- 
ated when atomic impurities (found in all materials) decay 
1211. When these energetic particles strike a very small tran- 
sistor, they can deposit or remove sufficient charge to tem- 
porarily turn the device on or off, possibly creating a logic 
error [I 1, 231. Energetic particles have been a problem for 
DRAM designs since the late 1970’s when DRAM capac- 
itors became sufficiently small to be affected by energetic 
particles [21]. 

It is difficult to shield against natural radiation sources. 
Gamma rays that reach the surface of the earth have suffi- 
ciently high momentum that they can only be stopped with 
thick, dense materials [33]. Alpha particles can be stopped 
with thin shields, but any effective shield would have to be 
free of atomic impurities, otherwise, the shield itself would 
be an additional source of natural radiation. Neither shield- 
ing approach is cost effective for most system designs. As a 
result, designers will likely be forced to adopt fault-tolerant 
design solutions to protect against natural radiation interfer- 
ence. 

Increased Complexity With denser feature sizes, there 
is an opportunity to create designs with many millions and 
soon billions of transistors. While many of these transis- 
tors will be invested in simple regular structures like cache 
and predictor arrays, others will find their way into complex 
components such as dynamic schedulers, new functional 
units, and other yet-to-be-invented gadgets. There is no 
shortage of testimonials from industry leaders warning that 
increasing complexity is perhaps the most pressing problem 
facing future microprocessor designs [3,30, 14, lo]. With- 
out improved verification techniques, future designs will 
likely be more costly, take longer to design, and include 
more undetected design errors. 

1.3 Dynamic Verification 

Today, most commercial microprocessor designs employ 
fault-avoidance techniques to ensure correct operation. De- 
sign faults are avoided by putting parts through extensive 
functional verification. To ensure designs are electrically 
robust, frequency and voltage margins are inserted into ac- 
ceptable operating ranges. These techniques, however, are 
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Figure 1. Dynamic Verification. Figure a) shows a traditional out-of-order processor core. Figure b) shows the core augmented with a checker 
stage (labeled CHK). The shaded camponents in each figure indicate the part of the processor that must be verified correct to ensure correct computation. 

becoming less attractive for future designs due to increasing 
complexity, degraded signal integrity, and natural radiation 
interference. 

Traditional fault-tolerance techniques could address 
some of the reliability challenges in future designs, but only 
at great cost. System-level techniques such as triple modu- 
lar redundancy (TMR) [26] can detect and correct a single 
transient fault in the system at the expense of three times 
the hardware plus voting logic. Logical-level fault-tolerant 
solutions, such as self-checking logic [ 171, often have lower 
cost (typically only twice as much hardware), but they are 
still costly and can slow critical circuits. Moreover, these 
approaches only address transient errors, i.e., errors which 
manifest temporarily (such as energetic particle strikes). 
They cannot address design errors if the error occurs within 
each of the redundant components - the redundant units will 
simply agree to take the wrong action. 

In this paper, we introduce dynamic veri$cation, a novel 
microarchitecture-based technique that permits detection 
and recovery of all functional and electrical faults in the pro- 
cessor core, both permanent and transient. A dynamic im- 
plementation veri$cation architecture (DIVA) extends the 
speculation mechanism of a modem microprocessor to de- 
tect errors in the computation of the processor core. As 
shown in Figure 1, a DIVA processor is created by split- 
ting a traditional processor design into two parts: the deeply 
speculative DIVA core and the functionally and electrically 
robust DIVA checker. The DIVA core is composed of the 
entire microprocessor design except the retirement stage. 
The core fetches, decodes, and executes instructions, hold- 
ing their speculative results in the re-order buffer (ROB). 
When instructions complete, their input operands and re- 
sults are sent in program order to the DIVA checker. The 
DIVA checker contains a functional checker stage (CHK) 
that verifies the correctness of all core computation, only 
permitting correct results to pass through to the commit 
stage (CT) where they are written to architected storage. If 
any errors are detected in the core computation, the checker 
fixes the errant computation, flushes the processor pipeline, 
and then restarts the processor at the next instruction. 

Certain faults, especially those affecting core processor 
control circuitry, can lock up the core processor or put it 

into a deadlock or livelock state where no instructions at- 
tempt to retire. For example, if an energetic particle strike 
changes an input tag in a reservation station to the result tag 
of the same instruction, the processor core scheduler will 
deadlock. To detect these faults, a watchdog timer (WT) is 
added. After each instruction commits, the watchdog timer 
is reset to the maximum latency for any single instruction 
to complete. If the timer expires, the processor core is no 
longer making forward progress and the core is restarted. 
To ensure that the processor core continues making forward 
progress in the event of an unrecoverable design fault, the 
checker is able to complete execution of the current instruc- 
tion before restarting the core processor. 

On the surface, it may seem superfluous to add hard- 
ware to perform a verification function that is today accom- 
plished at design time. However, there are at Least four pow- 
erful advantages of dynamic verification: 

l The approach concentrates functional and electrical 
verification into the checker unit. As a result, the core 
processor has no burden of functional or electrical cor- 
rectness, and no requirement of forward progress. If 
the checker design is kept simple, the approach can 
reduce the cost and improve the overall quality of pro- 
cessor verification. 

l Transistors outside of the checker unit can scale to 
smaller sizes without fear of natural radiation interfer- 
ence. If these transistors experience an energetic par- 
ticle strike and produce incorrect results, the checker 
will detect and correct any errant computation. 

l The fault-avoidance techniques used to produce elec- 
trically robust designs are very conservative. By lever- 
aging a dynamic verification approach, voltage and 
timing margins in the core can be significantly tight- 
ened, resulting in faster and cooler implementations. 

l Without the necessity to be correct, it becomes pos- 
sible to simplify the processor core, e.g., infrequently 
used circuits can be eliminated to improve the speed or 
reduce the size of critical circuit paths. 

In the remainder of this paper, we present and evaluate 
the DIVA checker architecture. In Section 2, we detail the 
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Figure 2. A Dynamic Implementation Verification Architecture (DIVA). F’g I we a) illustrates the DIVA architecture and its interface IO 

the core processor. Figure b) details the DIVA CHKcomm pipeline operation for each instruction class. 

architecture and operation of the DIVA checker unit. We 
also present arguments why the DIVA checker should be 
low cost and lend itself to functional and electrical verifica- 
tion, more so than the complex core processor it monitors. 
In Section 3, we present analyses of the runtime impacts 
of dynamic verification. Through detailed timing simula- 
tion, we examine the performance impacts of various DIVA 
checker architectures. We also study the effect of fault rates 
on core processor performance. Section 4 describes related 
work, and Section 5 suggest other applications of dynamic 
verification. Finally, Section 6 gives conclusions. 

2 The DIVA Checker Architecture 

The DIVA checker architecture presented in this section 
makes a number of important assumptions concerning the 
underlying microarchitecture. First, it is assumed that all ar- 
chitected registers and memory employ an appropriate cod- 
ing technique (e.g., ECC) to detect and correct any storage- 
related faults. As a result, any value the DIVA checker reads 
or writes to a register or memory will complete without er- 
ror. Second, it is assumed that the record of instructions 
fetched by the DIVA core are correctly communicated to the 
DIVA checker. Once again, coding techniques can be used 
to detect and correct errors in this communication. (Note 
that it is not assumed that accesses to instruction or data 
storage occurred in the right order or to the correct address, 
the DIVA checker will verify these requirements.) 

2.1 Basic Operation 

Figure 2a details the architecture of the DIVA checker. 
The DIVA core processor sends completed instructions in 
program order to the DIVA checker. With each instruction, 
it also sends the operands (inputs) and result (output) values 
as computed by the DIVA core processor. The checker ver- 

ifies the instruction result using two parallel and indepen- 
dent verification pipelines. The CHKcomp pipeline verifies 
the integrity of all core processor functional unit compu- 
tation. The CHKcomm pipeline ensures that register and 
memory communication between core processor instruc- 
tions occurred without error. If both pipelines report correct 
operations (and no earlier instruction declared an error), the 
core computation succeeded with the correct inputs. Hence, 
the instruction result is correct and it can be safely retired to 
architected storage in the commit stage (CT) of the pipeline. 

CHKcomp Pipeline The CHKcomp pipeline verifies the 
integrity of all functional unit computation. In the EX’ stage 
of the CHKcomp pipeline, the result of the instruction is 
re-computed. In the CMP stage, the re-computed result is 
compared to the functional unit result delivered by the core 
processor. If the two results differ, the DIVA checker raises 
a CHKcomp exception which will correct the errant core 
result with the value computed in the EX’ stage. 

Because instructions are delivered by the DIVA core to 
the CHKcomp pipeline with pre-computed inputs and out- 
puts, there are no inter-instruction dependencies to slow 
pipeline progress. In addition, bypass datapaths are not 
required, and pipeline control logic is trivial, making the 
CHKcomp pipeline simple and fast. 

It may seem redundant to execute the instruction twice: 
once in the functional unit and again in the CHKcomp 
pipeline, however, there is good reason for this approach. 
First, the implementation of the CHKcomp pipeline can 
take advantage of a simpler algorithm to reduce functional 
unit verification costs. Second, the CHKcomp pipeline 
can be implemented with large transistors (that carry am- 
ple charge) and large timing and voltage margins, making it 
resistant to natural radiation interference and noise-related 
faults. 
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CHKcomm Pipeline Figure 2b details operation of the 
CHKcomm pipeline for each instruction class. For the pur- 
pose of demonstration, it is assumed that the underlying 
architecture is a simple load/store instruction set (although 
this is not required). In addition, load and store operations 
are decomposed into two sub-operations: an address gener- 
ation operation (AGEN) which adds a register and constant 
to produce an effective address, and a corresponding load 
(LD) or store (ST) primitive that accepts the effective ad- 
dress. This decomposition simplifies the mapping of load 
and store operations onto the CHKcomm pipeline. 

The CHKcomm pipeline verifies that the processor core 
produced the correct register and memory input operands 
for each instruction. It does this by re-executing all com- 
munication in program order just prior to instruction retire- 
ment. In the RD stage of the CHKcomm pipeline, the reg- 
ister and memory operands of instructions are read from ar- 
chitected storage. In the CHK stage of the pipeline, these 
values are compared to the input values delivered by the 
core processor. If the operands delivered by the core pro- 
cessor match those read by the RD stage, the processor core 
successfully implemented instruction communication and 
processing may continue. Otherwise, the DIVA checker 
raises a CHKcomm register or memory exception which 
will restore the correct input operand with the operand value 
read in the KD stage. 

Like the CHKcomp pipeline, the DIVA core delivers in- 
structions to the CHKcomm pipeline with pre-computed in- 
puts and outputs. This eliminates any inter-instruction de- 
pendencies that can stall the flow of instructions. A single 
bypass exists across the CHK stage to handle the case of 
an instruction checking an input written by the immediately 
previous instruction. Since this value is not visible until the 
CT stage of the pipeline (when the value is written to archi- 
tected state), a single bypass is provided to eliminate any 
stalls. 

It may seem superfluous to re-execute all storage oper- 
ations in the CHKcomm pipeline, especially given the as- 
sumption that all storage is protected from faults using cod- 
ing techniques such as ECC. However, coding techniques 
are insufficient to detect all communication errors. While 
coding can detect storage values that were damaged by tran- 
sient errors, it cannot detect failed or misdirected commu- 
nication in the processor core. For example, if the register 
renamer points an operand to an incorrect physical storage 
location, or if the store forward buffers miss a communi- 
cation through aliased virtual memory, coding techniques 
will not detect these errors. These errors are, however, de- 
tected by the CHKcomm pipeline as it re-executes register 
and memory communication. Instruction fetch accesses, on 
the other hand, do not need to be re-executed because the 
order of accesses to this storage is not important (save self- 
modifying code writes). 

2.2 Fault Handling 
In the event a fault is detected in the DIVA core computa- 

tion, the DIVA checker will raise an exception to correct the 
errant condition and restart the processor. Figure 3 shows 

the DIVA exceptions that can occur, their priority, and the 
specific method used to recover machine state. 

Exceptions are handled in program order at the commit 
(CT) stage of the pipeline. If an instruction declares mul- 
tiple exceptions in the same cycle, the exception with the 
highest priority is always handled first. When any excep- 
tion is taken, the DIVA checker fixes the errant instruction 
with the correct value (returned by either the CHKcomp or 
CHKcomm pipeline), flushes the processor pipeline, and 
then restarts the DIVA checker and processor core. 

It is crucial that the DIVA checker be able to correct 
whatever condition resulted in a DIVA exception. If the 
DIVA checker were not able to correct a particular excep- 
tion condition, it would not be able to guarantee program 
forward progress in the presence of a permanent core fault 
(e.g., a design error or stuck-at fault). As shown in Fig- 
ure 3, all exception conditions are corrected. In fact, the 
DIVA checker is sufficiently robust that it can completely 
take over execution of the program in the event of a total 
core failure. However, its performance would be very poor, 
especially if it had to rely on the watchdog timer to expire 
before starting each instruction. 

There is slightly different handling of the watchdog timer 
exception. When the watchdog timer expires, the DIVA 
checker fetches the next instruction to execute and injects 
it into the DIVA pipe with zero value inputs and outputs. 
The checker then restarts the processor. The CHKcomm 
and CHKcomp pipelines will correct these operands and re- 
sults as incorrect values are detected, eventually completing 
execution of the stalled instruction. 

2.3 Working Examples 

Figure 4 shows two examples of the DIVA checker in op- 
eration. In Figure 4a, an AGEN operation produces an in- 
correct result that it forwards to a LD operation. The CHK- 
camp pipeline detects the incorrect result in the CMP stage 
and then declares a CHKcomp exception which corrects the 
result of the AGEN operation, allowing it to retire three cy- 
cles later. 

Figure 4b shows the operation of the DIVA checker in 
the event of a catastrophic core processor failure. In this ex- 
ample the core is not attempting to retire instructions, thus 
the DIVA checker must completely execute each instruc- 
tion. The example starts out with a watchdog timer reset 
that forces insertion of the next instruction with zero value 
inputs and outputs. The instruction first detects in the CHK- 
comm pipeline that its inputs are incorrect which results in a 
CHKcomm exception that fixes the inputs. Next, the CHK- 
camp pipeline detects that the result is incorrect which de- 
clares a CHKcomp exception that fixes the result. Finally, 
the instruction completes without an exception and retires 
its results to the architected register file. 

2.4 Verification of the DIVA Checker 

Paramount to the success of dynamic verification is a 
functionally correct and electrically robust DIVA checker 
implementation. It had better work correctly all the time, 
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Figure 4. Example Operation of the DIVA checker. Two working pipeline examples are shown in Figures a) and b). In the pipeline diagrams, 

program execution runs from top to bottom, the instruction executed is shown to the left of the pipeline. Time runs from left lo right; instructions list 

which pipeline stage they are in for each cycle they are active. Below the pipeline stage designators are listed the one output and two input values for each 

instruction. The vertical bars represent declarations of DIVA checker exceptions. 
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# instr # instr % Id % st Base RUU Mem BP 
Program Input fwd (M) exec (M) exe exe CPI occ Util Act 
compress ref.in 0 93 26.7 9.4 0.60 84.2 0.41 90.2 
CCC 1stmt.i 100 100 24.6 11.5 0.64 25.5 0.32 85.4 
go 2stone9.in 100 100 30.7 8.2 0.61 23.3 0.42 76.1 
ibeg vigo.ppm 100 100 18.5 5.6 0.38 132.0 0.39 88.6 
Ii boyer.lsp 100 100 25.8 15.1 0.47 52.9 0.44 93.1 
per1 scrabble.pl 100 100 22.7 12.2 0.48 55.0 0.39 93.7 
hydro2D hydro2D.in 100 100 20.7 8.7 0.46 106.4 0 37 96.3 
tomcatv tomcatv.in 100 100 20.4 8.7 0.42 50.2 0:40 95.6 
turbo3D turbo3D.in 100 100 23.6 16.2 0.38 149.7 0.42 94.9 

Table 1. Program statistics for the baseline architecture. 

otherwise, it may impair correct operation of the proces- 
sor core. Moreover, the cost of DIVA checker verification 
should be lower than the cost of verifying a traditional pro- 
cessor design, otherwise, there is no overall gain to the em- 
ploying dynamic verification. It is difficult to quantitatively 
assess the ease (or difficulty) in building a correct DIVA 
checker in a paper design such as this. To accurately assess 
these costs would require the construction of a real DIVA 
checker in VLSI. In lieu of this level of detail, we describe 
the attributes of the DIVA checker design that we feel will 
lend the approach to high-quality and low-cost functionat 
and electrical verification. 

Simple: The DIVA checker is inherently simpler than a 
traditional processor core. It contains only the mechanisms 
necessary to check the function of the program, and it lacks 
all of the mechanisms used to speed computation, e.g., pre- 
dictors, renamers, dynamic schedulers, etc. In addition, the 
pre-computed inputs and outputs from the core processor 
eliminate the inter-instruction dependencies and stall condi- 
tions that complicate traditionai high-performance pipeline 
designs. 

Latency-Insensitive: With sufficient buffering of specu- 
lative core results, the latency of the DIVA checker will not 
impact core processor performance. As a result, wide and 
deeply pipelined implementations are possible. These de- 
signs will permit checker implementations with large tim- 
ing margins and large (and slow) transistors, affording the 
checker high resistance to transient faults and natural radia- 
tion interference. Since there are few dependencies between 
instructions, widening or lengthening the DIVA pipeline is 
quite straightforward. 

Reusable: The DIVA checker design is more reusable 
than traditional processor cores, making it possible to lever- 
age correctness established in previous designs. Since the 
checker sits at retirement, new designs need only scale with 
the retirement bandwidth of the new core it is checking. 
Retirement bandwidth scales very slowly from generation 
to generation, any additional bandwidth requirements can 
be accommodated by simply lengthening or widening the 
DIVA checker pipelines. 

In addition to these attributes, we are currently investi- 
gating formal verification of the DIVA checker. The DIVA 
checker resembles a simple in-order processor with little 

microarchitectural state and few inter-instruction dependen- 
cies - properties that simplify formal verification [8, 241. 
We believe the DIVA checker will also lend itself to for- 
mal verification, making it possible to formally verify large 
complex microarchitectures by only verifying the correct- 
ness of the DIVA checker. 

3 Experimental Evaluation 

In this section, we examine the impact of dynamic ver- 
ification on processor core performance. Core slowdowns 
are measured, using detailed timing simulation for DIVA 
checkers with varied resource configurations, checker la- 
tency, and fault rates. 

3.1 Methodology 

The simulators used in this study are derived from the 
SimpleScalar/Alpha 3.0 tool set [9], a suite of functional 
and timing simulation tools for the Alpha AXP ISA. The 
timing simulator executes only user-level instructions, per- 
forming a detailed timing simulation of an aggressive 4- 
way dynamically scheduled microprocessor with two lev- 
els of instruction and data cache memory. Simulation is 
execution-driven, including execution down any speculative 
path until the detection of a fault, TLB miss, or branch mis- 
prediction. 

To perform our evaluation, we collected results for nine 
of the SPEC95 benchmarks [28]. All programs were com- 
piled on a DEC Alpha AXP-21164 processor using the DEC 
C and Fortran compilers under OSF/l V4.0 operating sys- 
tem using full compiler optimization (-04 -if 0). Table 1 
shows the data set we used in gathering results for each pro- 
gram, the number of instructions that were executed (fast 
forwarded) before actual simulation began, and the number 
of instructions simulated for each program (up to 100 mil- 
lion). Also shown are the percent of dynamic instructions 
that were loads and stores, the baseline machine CPI, the av- 
erage number of entries in the instruction window (RUU), 
the fraction of time the memory ports were in use, and the 
branch predictor accuracy for each program. 

3.2 Baseline Architecture 

Our baseline simulation configuration models a future 
generation out-of-order processor microarchitecture. We’ve 
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selected the parameters to capture underlying trends in mi- 
croarchitecture design. The processor has a large window 
of execution; it can fetch and issue up to 4 instructions per 
cycIe. It has a 256 entry re-order buffer with a 64 entry 
load/store buffer. Loads can only execute when a11 prior 
store addresses are known. In addition, all stores are issued 
in program order with respect to prior stores. There is an 8 
cycle minimum branch misprediction penalty. The proces- 
sor has 4 integer ALU units, 2-load/store units, 2-FP adders, 
l-integer MULTIDIV, and I-FP MULT/DIV. The latencies 
are: ALU 1 cycle, MULT 3 cycles, Integer DIV 12 cycles, 
FP Adder 2 cycles, FP Mult 4 cycles, and FP DIV 12 cy- 
cles. All functional units, except the divide units, are fully 
pipelined allowing a new instruction to initiate execution 
each cycle. 

The processor we simulated has a 32k 2-way set- 
associative instruction and data caches. Both caches have 
block sizes of 32 bytes. The data cache is write-back, write- 
allocate, and is non-blocking with 2 ports. The data cache 
is pipelined to allow up to 2 new requests each cycle. There 
is a unified second-level 5 12k 4-way set-associative cache 
with 32 byte blocks, with a 10 cycle cache hit latency. If 
there is a second-level cache miss it takes a total of 60 cy- 
cles to make the round trip access to main memory. We 
model the bus latency to main memory with a 10 cycle bus 
occupancy per request. There is a 32 entry 8-way associa- 
tive instruction TLB and a 32 entry g-way associative data 
TLB, each with a 30 cycle miss penalty. 

3.3 DIVA Checker Baseline Architecture 
The DIVA checker in all experiments is a four instruction 

wide pipeline that instructions enter when they have com- 
pleted and are the oldest instruction in the machine that has 
not yet entered the DIVA checker pipeline. Instructions are 
processed in-order, any instruction that stalls causes later 
instructions to also stall. In the baseline configuration, the 
CHKcomp pipeline latency is one cycle longer than the 
functional unit it checks (for the result comparison). It is 
assumed that there is a CHKcomp pipeline for each of the 
functional units, as a result, there are no structural hazards 
introduced. The baseline CHKcomm pipeline takes two cy- 
cles (for RD and CHK) unless there are structural hazards 
in accessing register file and cache ports. In the baseline 
checker architecture, the RD stage competes with the core 
processor for four architected register file ports and two 
cache ports, with priority given to the DIVA checker ac- 
cesses. The core processor only accesses the architected 
register file when an operand is not found in the physical 
register file (i.e., it is not in flight). Re-order buffer entries 
are not deallocated until instructions exit the commit (CT) 
stage of the pipeline, after the DIVA checker verifies the op- 
eration. The watchdog timer countdown is reset to 60 cycles 
(the round trip latency to memory) whenever an instruction 
commits. 

3.4 DIVA Checker Resource Requirements 
The DIVA checker requires register file and data cache 

storage bandwidth to verify program communication. (Dur- 
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Figure 5. DIVA Checker Impact on Core Processor Perfor- 
mance for Varied Register File and Cache Bandwidth. AII 
performance numbers are normalized to the CPI of an unchecked core pro- 
cessor. Results are shown with no extra register file or cache ports (+O), 
with 4 extra register file ports (+R), with one extra memory port (+M), and 
with 4 extra register file ports and one extra memory port (+R+M). 

ing the RD stage of the CHKcomm pipeline all register and 
memory communication is re-executed in program order.) 
Without dedicated ports into the architected register file and 
data cache, the DIVA checker must compete for bandwidth 
with the core processor. This competition can create struc- 
tural hazards which can slow core processing. 

In Figure 5, we show the impact of DIVA checker re- 
sources on core processor performance. All performance 
numbers are normalized to the CPI of an unchecked core 
processor. Results are shown with no extra register file or 
cache ports (+O), with 4 extra register file ports dedicated to 
the DIVA checker (+R), with one extra dedicated memory 
port (+M>, and with 4 extra register file ports and one extra 
memory port (+R+M). 

Even without extra resources, i.e., experiment (+O), the 
cost of employing the DIVA checker is quite low. Without 
any extra register file or memory ports, average program 
slowdown was only 3%. In general, there was a high corre- 
lation between pipeline utilization (e.g., branch prediction 
accuracy, RUU occupancy, and memory port utilization) 
and slowdown. When the processor pipeline is efficiently 
utilized, any additional DIVA checker register file and cache 
accesses create structural hazards that slow core processing. 
Turbo3D had the largest slowdown of 14% without addi- 
tional resources. This benchmark is highly efficient, it has 
high branch predictor accuracy, high RUU occupancy and 
high memory utilization. GCC and and GO, on the other 
hand, have poor branch prediction and thus poor pipeline 
utilization; additional DIVA checker resource usage has lit- 
tle impact on the core processor performance of these pro- 
grams. 

Experiment (+R) adds four more read ports to the archi- 
tected register file for use by the DIVA checker CHKcomm 
pipeline. These additional register ports eliminate most 
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structural hazards into the architected register file. This 
change had little impact on overall performance (at most 
an improvement of 0.9% for Hydru2D). Since many of the 
register accesses are satisfied by the physical register file 
(which has its own access ports), there appears to be suf- 
ficient bandwidth left into the architected register file for 
DIVA checker accesses. 

Experiment (+M) adds one more read port to the data 
cache for use by the DIVA checker CHKcomm pipeline. 
This additional cache port eliminates nearly all structural 
hazards into the data cache. Adding this port has a no- 
ticeable impact on core processor performance. Most core 
processor performance impacts are eliminated and overall 
slowdown drops to only 0.1%. 

Finally, in experiment (+R+M), four register ports and 
two memory ports are added for DIVA checker use. With an 
additional memory port, the extra register file ports provide 
little benefit, and overall slowdown drops to 0.03%. 

3.5 Effects of Increased DIVA Checker Latency 
In an effort to build an electrically robust implementa- 

tion of the DIVA checker, it may be necessary to construct 
it with large timing margins and large transistors (to re- 
sist noise and tolerate natural radiation interference, respec- 
tively). The most straightforward approach to achieve this is 
to deeply pipeline the DIVA checker. Deeply pipelining the 
DIVA checker, however, will increase its latency which can 
delay retirement of instructions. These delays may cause 
congestion in the instruction window, effectively reducing 
the instruction window size and amount of ILP that can be 
exploited. Figure 6 shows the impact of DIVA checker la- 
tency of core processor performance. All performancenum- 
bers are normalized to the CPI of a DIVA checker config- 
uration with no extra register file or cache port resources, 
i.e., experiment (+O) from Figure 5. 4 Results are shown for 
a checker with two times as many stages (2x), and a checker 
with four times as many stages (4x) 

Overall, the impact of checker latency on core perfor- 
mance is quite low. At two times the latency slowdowns 
increase by 0.7%, and with four times the checker latency, 
slowdowns only increase by 0.8%. Even the programs with 
high branch predictor accuracy. e.g., Hydro2D, cannot get 
sufficiently far ahead of the execution core to keep the in- 
struction window full, as a result, adding extra checker la- 
tency has little impact on core performance. 

3.6 Effects of DIVA Checker Exceptions 
In the event that the DIVA checker detects a failed com- 

putation or communication, it will declare a DIVA excep- 
tion and reset the checker and processor core. The perfor- 
mance penalty for exception handling is quite large, at least 
8 cycles for the experiments simulated, more if the faulty 
instruction takes a while to reach retirement. To gauge the 
performance impact of DIVA exceptions, we ran experi- 
ments with random exceptions injected at random times but 

4We compare to this configuration because it was the worst performing 
DIVA checker configuration, thus it will have the most instruction window 
congestion to start with and be most sensitive to DIVA checker latency. 
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Figure 6. DIVA Checker Impact on Core Processor Perfor- 
mance with Varied DIVA Checker Latency. All performance 
numbers are normalized to the CPI of the baseline DIVA checker config- 

uration (+O). Results are shown for a checker with two times the latency 

(2x), and a checker with four times the latency (4x). 

with a fixed exception interval (in core processor cycles). 
The results are shown in Figure 7. All performance num- 
bers are normalized to the CPI of the baseline DIVA checker 
configuration (+O). Results are shown on a log scale for ex- 
ception rates of one per one million core processor cycles 
(IM), one per 1000 processor cycles (Ik), and one every 
processor cycle (I). The experiment labeled (Core Lock) 
examined the performance impacts of a catastrophic core 
failure in which the core is no longer attempting to commit 
instructions, consequently, instructions are not fetched until 
the watchdog timer counter expires (once every 60 cycles). 

At an exception rate of one exception every one million 
cycles (an average of one exception every 2 msec on a 500 
MHz processor), there was virtually no impact on core pro- 
cessor performance. At intervals of 1000 cycles (an average 
of one exception every 2 usec on a 500 MHz processor), im- 
pacts were higher but still small, with an overall slowdown 
of only 2.6%. With an exception every cycle (as would be 
the case for a catastrophic core processor failure), perfor- 
mance impacts rise dramatically. Overall, performance is 
.&th normal speed. In this experiment, the DIVA checker 
is completely executing the program. When the core pro- 
cessor is locked up, performance is quite low, on average 
&th the performance of the unchecked core. In Section 5, 
we suggest a simple change to detect this case and provide 
more graceful degradation in processor performance. 

3.7 Discussion 

Core processor slowdowns (due to structural hazards, 
checker latency, and exception handling) are not the only 
costs associated with the DIVA checker, other costs include 
silicon area, power consumption, among others. While it 
is difficult to gauge these costs without building an ac- 
tual DIVA checker implementation, we feel overall DIVA 
checker costs should be low for at least two reasons. 
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Figure 7. Performance Impact of Varied Exception Rates. 
AII performance numbers are normalized to the CPI of the baseline DIVA 
checker configuration (+O). Results are shown on a log scale for exception 

rates of one per one million core processor cycles (164). 1000 processor 
cycles (Ik), and every processor cycle (I). The experiment labeled (COW 
Luck) examines the performance of a catastrophic core failure in which the 
core is no longer attempting to commit instructions. Bar values are shown 
for the (Core Lock) and (Ik) experiments. 

First, the DIVA checker only replicates the part of core 
pertaining to actual function. All core processing struc- 
tures related to program performance (e.g., predictors and 
schedulers) need not be represented in the DIVA checker. 
In addition, the DIVA checker design is a very simple 
pipeline. It uses in-order instruction processing and has few 
inter-instruction dependencies. These advantages make the 
DIVA checker significantly simpler than the core processor 
pipeline, and they should serve to reduce its size and cost. 

Second, the CHKcomp pipeline can be implemented 
with simple, area-efficient algorithms. For example, if the 
core uses a carry-select carry-lookahead adder for fast ad- 
dition, the DIVA checker can instead use a pipelined ripple 
carry adder to reduce implementation costs. The pipeline 
will be slower, but as shown earlier, core performance is 
mostly insensitive to DIVA checker latency, making this a 
good tradeoff. 

Ultimately, a more quantitative assessment of DIVA 
checker area and power costs will have to be made, first 
through circuit level simulation and later through an actual 
silicon implementation. We are currently working toward 
these goals. 

4 Related Work 
The idea of dynamic verification at retirement was in- 

spired by Breach’s Multiscalar processor simulator [7]. 
During the programming and verification of this very com- 
plex simulator, a functional verification stage was added 
at retirement. The approach was sufficiently robust that it 
could mask functional bugs that were introduced during the 
simulator’s development permitting its use for performance 
analysis before it was fully debugged. The DIVA checker 

works in precisely the same manner, but for a hardware sys- 
tem. 

Rotenberg’s AR-SMT processor [22] employs a time- 
redundant execution technique that permits an SMT pro- 
cessor to tolerate some transient errors. We borrow on this 
work; the DIVA checker leverages the idea of using an ume- 
liable processor’s results to speed the execution of instruc- 
tion checking. We improve upon Rotenberg’s work in a 
number of ways. Rotenberg’s approach checks all aspects 
of execution, include program function and the mechanisms 
used to optimize program performance. The DIVA checker, 
on the other hand, only checks program function, permit- 
ting a simpler checker implementation. While Rotenberg’s 
approach only detects some transient errors, a functionally 
correct and electrically robust DIVA checker can recover all 
permanent and transient core processor faults. 

A number of fault-tolerant processor designs have been 
proposed and implemented, in general, they employ redun- 
dancy to detect and/or correct transient errors. IBM’s G4 
processor [27] is a highly reliable processor design simi- 
lar to the design in this paper in that it checks all instruc- 
tions results before committing them to architected state. 
Checking is accomplished by fully replicating the proces- 
sor core. An R-Unit is added to compare all instruction re- 
sults, only permitting identical results to commit. If a fail- 
ure in the processor is detected, it is addressed at the system 
level through on-line reconfiguration. The ERC32 is a re- 
liable SPARC compatible processor built for space applica- 
tions [ 121. This design augments the microarchitecture with 
parity on all register and memory cells, some self-checking 
control logic, and control flow checking. In the event a fault 
is detected, a software interrupt is generated and the host 
program initiates recovery. 

Unlike these designs, the DIVA checker can keep costs 
lower by only checking the function of the program compu- 
tation. The G4 and ERC32 designs check both the function 
of the program and the mechanisms used to optimize pro- 
gram performance. This results in more expensive checkers, 
typically 2 times as much hardware in the core processor. 
Additionally, the DIVA checker can detect design errors. 
Simple redundant designs cannot detect design errors if the 
error is found in each of the redundant components. 

Tamir and Tremblay [29] proposed the use of micro roll- 
back to recover microarchitecture state in the event of a 
detected fault. The approach uses FIFO queues to check- 
point a few cycles of microarchitectural state. In this work, 
we use a similar parallel checking approach, but employ a 
global checking strategy to reduce checker cost. In addi- 
tion, we use the existing control speculation mechanism to 
restore correct program state. 

5 Other DIVA Applications 

The next logical step in this work is to explore ways to 
further exploit fault tolerance in the DIVA core. In this sec- 
tion, we present two other application of dynamic verifica- 
tion. 

205 



insts to verifv . , 
and commit DIVA .+ elk’ 

) Checker .+ Vdd’ 

Figure 8. A Self-Tuned System. 

5.1 Self-Tuned Systems 

The techniques used to provide reliability in VLSI logic 
implementations are very conservative. Systems are de- 
signed with frequency and voltage margins that ensure reli- 
able operation in even the most adverse environments (e.g., 
high temperature, high clock skew, slow transistors). This 
is one of the reasons why hobbyists can overclock [20] pro- 
duction parts for more performance. It should be possible 
to use the DIVA checker to reclaim much of the power and 
performance consumed by operating margins. 

In a self-tuned system [ 191, clock frequency and voltage 
1eveIs are tuned to the system operating environment, e.g., 
temperature. The approach minimizes timing and voltage 
margins which can improve performance and reduce power 
consumption. Using the DIVA checker, a self-tuned system 
could be constructed by introducing a voltage and frequency 
control system into the processor, as shown in Figure 8. 
The control system decreases voltage and/or increases fre- 
quency while monitoring system temperature and error rates 
until the desired system performance-power characteristics 
are attained. If the control system over steps the bounds of 
correct operation in the core, the DIVA checker will correct 
the error, reset the core processor, and notify the control 
system. To ensure correct operation of the DIVA checker, 
it is sourced by a fixed voltage and frequency that ensures 
reliable operation under all operating conditions. 

5.2 Highly Available Designs 

As shown earlier, if the core processor completely fails 
and no longer attempts to retire instructions, processor per- 
formance will be severely impacted. Without any instruc- 
tion retiring, the DIVA checker will have to wait for the 
watchdog timer to timeout before an instruction can be re- 
tired and the next instruction fetched. As a result, one in- 
struction will complete for each interval of the watchdog 
timer, one per 60 clock cycles in the experiments presented. 

It would be relatively straightforward to detect the case 
where the core processor was no longer contributing to the 
program execution. For example, a counter could record the 
number of watchdog timer exceptions with no intervening 
instruction retirements. If a suitable threshold was reached, 
it could be assumed that the core processor has failed and 
the DIVA checker could take over execution of the program. 
A simple change to the DIVA design would permit it to 
fetch and execute instruction much quicker, simply by per- 

Figure 9. Graceful Degradation in the Presence of a Catas- 
trophic Core Processor Failure. All performance numbers are nor- 

malized to the CPI of an unchecked core processor. Results are shown on 
a log scale for the baseline DIVA checker with a locked core (COW Lock), 
and for a DIVA checker with graceful degradation (CD). 

mitting it to execute the next instruction without having to 
wait for the watchdog timer to expire. 

As shown in experiment (CD) in Figure 9, this grace- 
ful degradation approach improves processor performance 
considerably in the event of a catastrophic core processor 
faiiure. Program performance degrades to only &th the per- 
formance of the original working core processor. This is a 
marked improvement over the (Core Lock) experiment, in 
which the core processor locks and instructions proceed at 
watchdog timer exceptions, an average of &th the speed 
of the working core processor. The graceful degradation 
mode also outperforms a core processor that is still retir- 
ing instructions but always incorrect results, i.e., experi- 
ment (I) from Figure 7, with an overall performance of 
&th the speed of the working core. In this case, the DIVA 
checker benefits from not having to wait for the core pro- 
cessor pipeline to first execute the instruction incorrectly. 

In addition, the availability of a system using the DIVA 
checker could be further improved by replicating the DIVA 
checker to detect errors within its own circuitry, or by ap- 
plying triple modular redundancy (TMR) [26] to detect and 
correct permanent faults in the DIVA checker. 

6 Conclusions 

Many reliability challenges confront modem micropro- 
cessor designs. Functional design errors and electrical 
faults can impair the function of a part, rendering it useless. 
While functional and electrical verification can find most of 
the design errors, there are many examples of non-trivial 
bugs that find their way into the field. Concerns for relia- 
bility grow in deep submicron fabrication technologies due 
to increased noise-related failure mechanisms, natural radi- 
ation interference, and more challenging verification due to 
increased design complexity. 

206 



To counter these reliability challenges, we introduced 
dynamic verification, a technique that adds a functional 
checker to the retirement phase of a processor pipeline. The 
functional checker ensures that all core processor compu- 
tation is correct, and if not, the checker fixes the errant 
computation, and restarts the core processor using the pro- 
cessor’s speculation recovery mechanism. Dynamic verifi- 
cation focuses the verification effort into the checker unit, 
whose simple and flexible design lends itself to functional 
and electrical verification. Using this approach, the core 
processor carries no burden of correctness or any require- 
ment for forward progress. The DIVA checker architecture 
was presented as a checker design optimized for simplicity 
and low cost. 

Detailed timing-simulation based analyses were used 
to examine the performance impact of the DIVA checker. 
Overall, performance impacts, even for resource-frugal de- 
signs, were small. For the least expensive design analyzed, 
the DIVA checker only slowed the core processor an aver- 
age of 3%. With the addition of a single memory port for 
use by the DIVA checker, slowdowns were negligible. Also, 
increased DIVA checker latency had only a small impact on 
core processor performance. The DIVA checker can tol- 
erate very high fault rates without significantly impacting 
processor core performance. At rates of one fault per 1000 
processor cycles, the core processor only slowed by 2.6%; 
at intervals of 1M cycles, performance impacts were negli- 
gible. 

Finally, other applications of dynamic verification were 
proposed. A self-tuned clock and voltage scheme was pro- 
posed in which dynamic verification is used to reclaim fre- 
quency and voltage margins. A highly available checker 
design was also proposed. The design provides more grace- 
ful degradation in system performance in the event of a total 
core processor failure. 

We feel that dynamic verification holds significant 
promise as a means to address the cost and quality of verifi- 
cation for future microprocessors, while at the same time 
creating opportunities for faster, cooler, and simpler de- 
signs. The next step in this work is to better quantify the 
benefits and costs of dynamic verification, and to further 
develop and refine other applications of the fault tolerant 
processor core. 
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