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Abstract

As the issue rate and depth of pipelining of high perfor�
mance Superscalar processors increase� the importance
of an excellent branch predictor becomes more vital to
delivering the potential performance of a wide�issue�
deep pipelined microarchitecture� We propose a new
dynamic branch predictor Two�Level Adaptive Branch
Prediction� that achieves substantially higher accuracy
than any other scheme reported in the literature� The
mechanism uses two levels of branch history information
to make predictions� the history of the last k branches
encountered� and the branch behavior for the last s oc�
currences of the speci�c pattern of these k branches� We
have identi�ed three variations of the Two�Level Adap�
tive Branch Prediction� depending on how �nely we re�
solve the history information gathered� We compute the
hardware costs of implementing each of the three varia�
tions� and use these costs in evaluating their relative ef�
fectiveness� We measure the branch prediction accuracy
of the three variations of Two�Level Adaptive Branch
Prediction� along with several other popular proposed
dynamic and static prediction schemes� on the SPEC
benchmarks� We show that the average prediction ac�
curacy for Two�Level Adaptive Branch Prediction is 	�
percent� while the other known schemes achieve at most
	��� percent average prediction accuracy� We measure
the e�ectiveness of di�erent prediction algorithms and
di�erent amounts of history and pattern information�
We measure the costs of each variation to obtain the
same prediction accuracy�

� Introduction

As the issue rate and depth of pipelining of high per�
formance Superscalar processors increase� the amount
of speculative work due to branch prediction becomes
much larger� Since all such work must be thrown away
if the prediction is incorrect� an excellent branch pre�
dictor is vital to delivering the potential performance of
a wide�issue� deep pipelined microarchitecture� Even a

�

prediction miss rate of � percent results in a substantial
loss in performance due to the number of instructions
fetched each cycle and the number of cycles these in�
structions are in the pipeline before an incorrect branch
prediction becomes known�
The literature is full of suggested branch prediction

schemes ��� ��� ��� ���� Some are static in that they use
opcode information and pro�ling statistics to make pre�
dictions� Others are dynamic in that they use run�time
execution history to make predictions� Static schemes
can be as simple as always predicting that the branch
will be taken� or can be based on the opcode� or on the
direction of the branch� as in �if the branch is backward�
predict taken� if forward� predict not taken� ����� This
latter scheme is e�ective for loop intensive code� but
does not work well for programs where the branch be�
havior is irregular� Also� pro�ling ��� ��� can be used to
predict branches by measuring the tendency of a branch
on sample data sets and presetting a static prediction
bit in the opcode according to that tendency� Unfor�
tunately� branch behavior for the sample data may be
very di�erent from the data that appears at run�time�
Dynamic branch prediction also can be as simple as in

keeping track only of the last execution of that branch
instruction and predicting the branch will behave the
same way� or it can be elaborate as in maintaining
very large amounts of history information� In all cases�
the fact that the dynamic prediction is being made on
the basis of run�time history information implies that
substantial additional hardware is required� J� Smith
���� proposed utilizing a branch target bu�er to store�
for each branch� a two�bit saturating up�down counter
which collects and subsequently bases its prediction on
branch history information about that branch� Lee and
A� Smith proposed ���� a Static Training method which
uses statistics gathered prior to execution time coupled
with the history pattern of the last k run�time execu�
tions of the branch to make the next prediction as to
which way that branch will go� The major disadvantage
of Static Training methods has been mentioned above
with respect to pro�ling� the pattern history statistics
gathered for the sample data set may not be applicable
to the data that appears at run�time�
In this paper we propose a new dynamic branch pre�

dictor that achieves substantially higher accuracy than
any other scheme reported in the literature� The mech�
anism uses two levels of branch history information to
make predictions� The �rst level is the history of the



last k branches encountered� Variations of our scheme
re�ect whether this means the actual last k branches en�
countered� or the last k occurrences of the same branch
instruction�� The second level is the branch behavior
for the last s occurrences of the speci�c pattern of these
k branches� Prediction is based on the branch behavior
for the last s occurrences of the pattern in question�
For example� suppose� for k � �� the last k branches

had the behavior �������� where � represents that the
branch was taken� � that the branch was not taken��
Suppose further that s � �� and that in each of the last
six times the previous eight branches had the pattern
��������� the branch alternated between taken and not
taken� Then the second level would contain the history
������� Our branch predictor would predict �taken��
The history information for level � and the pattern

information for level � are collected at run time� elimi�
nating the above mentioned disadvantages of the Static
Training method� We call our method Two�Level Adap�
tive Branch Prediction� We have identi�ed three vari�
ations of Two�Level Adaptive Branch Prediction� de�
pending on how �nely we resolve the history informa�
tion gathered� We compute the hardware costs of im�
plementing each of the three variations� and use these
costs in evaluating their relative e�ectiveness�
Using trace�driven simulation of nine of the ten SPEC

benchmarks �� we measure the branch prediction ac�
curacy of the three variations of Two�Level Adaptive
Branch Prediction� along with several other popular
proposed dynamic and static prediction schemes� We
measure the e�ectiveness of di�erent prediction algo�
rithms and di�erent amounts of history and pattern
information� We measure the costs of each variation
to obtain the same prediction accuracy� Finally we
compare the Two�Level Adaptive branch predictors to
the several popular schemes available in the literature�
We show that the average prediction accuracy for Two�
Level Adaptive Branch Prediction is about 	� percent�
while the other schemes achieve at most 	��� percent
average prediction accuracy�
This paper is organized in six sections� Section two

introduces our Two�Level Adaptive Branch Prediction
and its three variations� Section three describes the cor�
responding implementations and computes the associ�
ated hardware costs� Section four discusses the Simula�
tion model and traces used in this study� Section �ve
reports the simulation results and our analysis� Section
six contains some concluding remarks�

� De�nition of Two�Level Adaptive Branch
Prediction

��� Overview

Two�Level Adaptive Branch Prediction uses two levels
of branch history information to make predictions� The
�rst level is the history of the last k branches encoun�
tered� Variations of our scheme re�ect whether this

�The Nasa� benchmarkwas not simulated because this bench�
mark consists of seven independent loops� It takes too long to

simulate the branch behavior of these seven kernels� so we omit�
ted these loops�

means the actual last k branches encountered� or the
last k occurrences of the same branch instruction�� The
second level is the branch behavior for the last s oc�
currences of the speci�c pattern of these k branches�
Prediction is based on the branch behavior for the last
s occurrences of the pattern in question�
To maintain the two levels of information� Two�Level

Adaptive Branch Prediction uses two major data struc�
tures� the branch history register HR� and the pattern
history table PHT�� see Figure �� Instead of accumu�
lating statistics by pro�ling programs� the information
on which branch predictions are based is collected at
run�time by updating the contents of the history regis�
ters and the pattern history bits in the entries of the
pattern history table depending on the outcomes of the
branches� The history register is a k�bit shift register
which shifts in bits representing the branch results of
the most recent k branches�
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Figure �� Structure of Two�Level Adaptive Branch Pre�
diction�

If the branch was taken� then a ��� is recorded� if
not� a ��� is recorded� Since there are k bits in the
history register� at most �k di�erent patterns appear in
the history register� For each of these �k patterns� there
is a corresponding entry in the pattern history table
which contains branch results for the last s times the
preceding k branches were represented by that speci�c
content of the history register�
When a conditional branch B is being predicted�

the content of its history register� HR� denoted as
Rc�kRc�k��������Rc��� is used to address the pattern
history table� The pattern history bits Sc in the ad�
dressed entry PHTRc�kRc�k��������Rc�� in the pattern his�
tory table are then used for predicting the branch� The
prediction of the branch is

zc � �Sc�� ��

where � is the prediction decision function�
After the conditional branch is resolved� the out�

come Rc is shifted left into the history register HR
in the least signi�cant bit position and is also used
to update the pattern history bits in the pattern his�
tory table entry PHTRc�kRc�k�� ������Rc�� � After being



updated� the content of the history register becomes
Rc�k��Rc�k��������Rc and the state represented by the
pattern history bits becomes Sc��� The transition of the
pattern history bits in the pattern history table entry
is done by the state transition function � which takes
in the old pattern history bits and the outcome of the
branch as inputs to generate the new pattern history
bits� Therefore� the new pattern history bits Sc�� be�
come

Sc�� � �Sc� Rc�� ��

A straightforward combinational logic circuit is used to
implement the function � to update the pattern history
bits in the entries of the pattern history table� The tran�
sition function �� predicting function �� pattern history
bits S and the outcome R of the branch comprise a
�nite�state Moore machine� characterized by equations
� and ��
State diagrams of the �nite�state Moore machines

used in this study for updating the pattern history in
the pattern history table entry and for predicting which
path the branch will take are shown in Figure �� The
automaton Last�Time stores in the pattern history only
the outcome of the last execution of the branch when
the history pattern appeared� The next time the same
history pattern appears the prediction will be what hap�
pened last time� Only one bit is needed to store that
pattern history information� The automatonA� records
the results of the last two times the same history pat�
tern appeared� Only when there is no taken branch
recorded� the next execution of the branch when the
history register has the same history pattern will be
predicted as not taken� otherwise� the branch will be
predicted as taken� The automaton A� is a saturating
up�down counter� similar to the automaton used in J�
Smith�s branch target bu�er design for keeping branch
history �����
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Figure �� State diagrams of the �nite�state Moore ma�
chines used for making prediction and updating the pat�
tern history table entry�

In J� Smith�s design the ��bit saturating up�down
counter keeps track of the branch history of a certain
branch� The counter is incremented when the branch

is taken and is decremented when the branch is not
taken� The branch path of the next execution of the
branch will be predicted as taken when the counter value
is greater than or equal to two� otherwise� the branch
will be predicted as not taken� In Two�Level Adap�
tive Branch Prediction� the ��bit saturating up�down
counter keeps track of the history of a certain history
pattern� The counter is incremented when the result of
a branch� whose history register content is the same as
the pattern history table entry index� is taken� other�
wise� the counter is decremented� The next time the
branch has the same history register content which ac�
cesses the same pattern history table entry� the branch is
predicted taken if the counter value is greater or equal
to two� otherwise� the branch is predicted not taken�
Automata A� and A� are variations of A��
Both Static Training ���� and Two�Level Adaptive

Branch Prediction are dynamic branch predictors� be�
cause their predictions are based on run�time informa�
tion� i�e� the dynamic branch history� The major dif�
ference between these two schemes is that the pattern
history information in the pattern history table changes
dynamically in Two�Level Adaptive Branch Prediction
but is preset in Static Training from pro�ling� In Static
Training� the input to the prediction decision function�
�� for a given branch history pattern is known before
execution� Therefore� the output of � is determined be�
fore execution for a given branch history pattern� That
is� the same branch predictions are made if the same
history pattern appears at di�erent times during execu�
tion� Two�Level Adaptive Branch Prediction� on the
other hand� updates the pattern history information
kept in the pattern history table with the actual results
of branches� As a result� given the same branch his�
tory pattern� di�erent pattern history information can
be found in the pattern history table� therefore� there
can be di�erent inputs to the prediction decision func�
tion for Two�Level Adaptive Branch Prediction� Predic�
tions of Two�Level Adaptive Branch Prediction change
adaptively as the program executes�
Since the pattern history bits change in Two�Level

Adaptive Branch Prediction� the predictor can adjust to
the current branch execution behavior of the program to
make proper predictions� With these run�time updates�
Two�Level Adaptive Branch Prediction can be highly
accurate over many di�erent programs and data sets�
Static Training� on the contrary� may not predict well
if changing data sets brings about di�erent execution
behavior�

��� Alternative Implementations of Two�Level
Adaptive Branch Prediction

There are three alternative implementations of the Two�
Level Adaptive Branch Prediction� as shown in Figure
�� They are di�erentiated as follows�

Two�Level Adaptive Branch Prediction Using a
Global History Register and a Global Pattern
History Table �GAg�
In GAg� there is only a single global history regis�
ter GHR� and a single global pattern history table
GPHT� used by the Two�Level Adaptive Branch Pre�
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Figure �� Global view of three variations of Two�Level
Adaptive Branch Prediction�

diction� All branch predictions are based on the same
global history register and global pattern history table
which are updated after each branch is resolved� This
variation therefore is called Global Two�Level Adaptive
Branch Prediction using a global pattern history table
GAg��
Since the outcomes of di�erent branches update the

same history register and the same pattern history table�
the information of both branch history and pattern his�
tory is in�uenced by results of di�erent branches� The
prediction for a conditional branch in this scheme is ac�
tually dependent on the outcomes of other branches�

Two�Level Adaptive Branch Prediction Using a
Per�address Branch History Table and a Global
Pattern History Table �PAg�
In order the reduce the interference in the �rst level
branch history information� one history register is as�
sociated with each distinct static conditional branch to
collect branch history information individually� The his�
tory registers are contained in a per�address branch his�
tory table PBHT� in which each entry is accessible by
one speci�c static branch instruction and is accessed by
branch instruction addresses� Since the branch history
is kept for each distinct static conditional branch indi�
vidually and all history registers access the same global
pattern history table� this variation is called Per�address
Two�Level Adaptive Branch Prediction using a global
pattern history table PAg��
The execution results of a static conditional branch

update the branch�s own history register and the global
pattern history table� The prediction for a conditional
branch is based on the branch�s own history and the
pattern history bits in the global pattern history table
entry indexed by the content of the branch�s history
register� Since all branches update the same pattern
history table� the pattern history interference still exists�

Two�Level Adaptive Branch Prediction Using
Per�address Branch History Table and Per�
address Pattern History Tables �PAp�

In order to completely remove the interference in both
levels� each static branch has its own pattern history ta�
ble a set of which is called a per�address pattern history
table PPHT�� Therefore� a per�address history register
and a per�address pattern history table are associated
with each static conditional branch� All history regis�
ters are grouped in a per�address branch history table�
Since this variation of Two�Level Adaptive Branch Pre�
diction keeps separate history and pattern information
for each distinct static conditional branch� it is called
Per�address Two�Level Adaptive Branch Prediction us�
ing Per�address pattern history tables PAp��

	 Implementation Considerations

	�� Pipeline Timing of Branch Prediction and
Information Update

Two�Level Adaptive Branch Prediction requires two se�
quential table accesses to make a prediction� It is dif�
�cult to squeeze the two accesses into one cycle� High
performance requires that prediction be made within
one cycle from the time the branch address is known�
To satisfy this requirement� the two sequential accesses
are performed in two di�erent cycles as follows� When a
branch result becomes known� the branch�s history reg�
ister is updated� In the same cycle� the pattern history
table can be accessed for the next prediction with the
updated history register contents derived by appending
the result to the old history� The prediction fetched
from the pattern history table is then stored along with
the branch�s history in the branch history table� The
pattern history can also be updated at that time� The
next time that branch is encountered� the prediction is
available as soon as the branch history table is accessed�
Therefore� only one cycle latency is incurred from the
time the branch address is known to the time the pre�
diction is available�
Sometimes the previous branch results may not be

ready before the prediction of a subsequent branch takes
place� If the obsolete branch history is used for making
the prediction� the accuracy is degraded� In such a case�
the predictions of the previous branches can be used to
update the branch history� Since the prediction accu�
racy of Two�Level Adaptive Branch Prediction is very
high� prediction is enhanced by updating the branch his�
tory speculatively� The update timing for the pattern
history table� on the other hand� is not as critical as that
of the branch history� therefore� its update can be de�
layed until the branch result is known� With speculative
updating� when a misprediction occurs� the branch his�
tory can either be reinitialized or repaired depending on
the hardware budget available to the branch predictor�
Also� if two instances of the same static branch occur
in consecutive cycles� the latency of prediction can be
reduced for the second branch by using the prediction
fetched from the pattern history table directly�

	�� Target Address Caching

After the direction of a branch is predicted� there is
still the possibility of a pipeline bubble due to the time
it takes to generate the target address� To eliminate



this bubble� we cache the target addresses of branches�
One extra �eld is required in each entry of the branch
history table for doing this� When a branch is predicted
taken� the target address is used to fetch the following
instructions� otherwise� the fall�through address is used�
Caching the target addresses makes prediction in con�

secutive cycles possible without any delay� This also
requires the branch history table to be accessed by the
fetching address of the instruction block rather than by
the address of the branch in the instruction block being
fetched because the branch address is not known until
the instruction block is decoded� If the address hits in
the branch history table� the prediction of the branch
in the instruction block can be made before the instruc�
tions are decoded� If the address misses in the branch
history table� either there is no branch in the instruction
block fetched in that cycle or the branch history infor�
mation is not present in the branch history table� In this
case� the next sequential address is used to fetch new in�
structions� After the instructions are decoded� if there is
a branch in the instruction block and if the instruction
block address missed in the branch history table� static
branch prediction is used to determine whether or not
the new instructions fetched from the next sequential
address should be squashed�

	�	 Per�address Branch History Table Imple�
mentation

PAg and PAp branch predictors all use per�address
branch history tables in their structure� It is not fea�
sible to have a branch history table large enough to
hold all branches� execution history in real implemen�
tations� Therefore� a practical approach for the per�
address branch history table is proposed here�
The per�address branch history table can be imple�

mented as a set�associative or direct�mapped cache� A
�xed number of entries in the table are grouped together
as a set� Within a set� a Least�Recently�Used LRU� al�
gorithm is used for replacement� The lower part of a
branch address is used to index into the table and the
higher part is stored as a tag in the entry associated
with that branch� When a conditional branch is to be
predicted� the branch�s entry in the branch history ta�
ble is located �rst� If the tag in the entry matches the
accessing address� the branch information in the entry
is used to predict the branch� If the tag does not match
the address� a new entry is allocated for the branch�
In this study� both the above practical approach and

an Ideal Branch History Table IBHT�� in which there
is a history register for each static conditional branch�
were simulated for Two�Level Adaptive Branch Predic�
tion� The branch history table was simulated with four
con�gurations� ��way set�associative ����entry� ��way
set�associative ����entry� direct�mapped ����entry and
direct�mapped ����entry caches� The IBHT simulation
data is provided to show the accuracy loss due to the
history interference in a practical branch history table
implementations�

	�
 Hardware Cost Estimates

The chip area required for a run�time branch predic�
tion mechanism is not inconsequential� The following
hardware cost estimates are proposed to characterize
the relative costs of the three variations� The branch
history table and the pattern history table are the two
major parts� Detailed items include storage space for
keeping history information� prediction bits� tags� and
LRU bits and the accessing and updating logic of the
tables� The accessing and updating logic consists of
comparators� MUXes� LRU bits incrementors� and ad�
dress decoders for the branch history table� and address
decoders and pattern history bit update circuits for the
pattern history table� The storage space for caching tar�
get addresses is not included in the following equations
because it is not required for the branch predictor�
Assumptions of these estimates are�

� There are a address bits� a subset of which is used
to index the branch history table and the rest are
stored as a tag in the indexed branch history table
entry�

� In an entry of the branch history table� there are
�elds for branch history� an address tag� a predic�
tion bit� and LRU bits�

� The branch history table size is h�

� The branch history table is �j�way set�associative�

� Each history register contains k bits�

� Each pattern history table entry contains s bits�

� Pattern history table set size is p� In PAp� p is
equal to the size of the branch history table� h� while
in GAg and PAg� p is always equal to one��

� Cs� Cd� Cc� Cm� Csh� Ci� and Ca are the constant
base costs for the storage� the decoder� the com�
parator� the multiplexer� the shifter� the incremen�
tor� and the �nite�state machine�

Furthermore� i is equal to log�h and is a non�negative
integer� When there are k bits in a history register� a
pattern history table always has �k entries�
The hardware cost of Two�Level Adaptive Branch

Prediction is as follows�

CostScheme�BHT �h� j� k�� p� PHT ��k � s��

� CostBHT �h� j� k� � p�CostPHT ��
k
� s�

� fBHTStorage Space �BHTAccessing Logic �

BHTUpdating Logicg� p� fPHTStorage Space �

PHTAccessing Logic � PHTUpdating Logicg

� f�h� �Tag�a�i�j� bit �HRk bit � Prediction Bit� bit

�LRU Bitsj bit�� �

���Address Decoderi bit � �j �

Comparators�a�i�j� bit � �� �jX� MUXk bit� �

�h� Shifterk bit � �j � LRU Incrementorsj bit�g�

p� f��k �History Bitss bit� �

���Address Decoderk bit� � �State Updaters bit�g



� fh � ��a� i� j� � k � � � j��Cs �

�h� Cd � �j � �a� i� j��Cc � �j � k �Cm� �

�h� k� Csh � �j � j � Ci�g� p� f��k � s�Cs� �

��k � Cd� � �s� �s�� � Ca�g� a� j � i� �	�

In GAg� only one history register and one global pat�
tern history table are used� so h and p are both equal to
one� No tag and no branch history table accessing logic
are necessary for the single history register� Besides�
pattern history state updating logic is small compared
to the other two terms in the pattern history table cost�
Therefore� cost estimation function for GAg can be sim�
pli�ed from Function � to the following Function�

CostGAg�BHT ��� � k�� �� PHT ��k� s��

� CostBHT ��� � k� � �� CostPHT ��
k
� s�

� f�k� ���Cs � k �Cshg�

f�k � �s� Cs � Cd�g �
�

It is clear to see that the cost of GAg grows exponen�
tially with respect to the history register length�
In PAg� only one pattern history table is used� so p

is equal to one� Since j and s are usually small com�
pared to the other variables� by using Function �� the
estimated cost for PAg using a branch history table is
as follows�

CostPAg�BHT �h� j� k�� �� PHT ��k� s��

� CostBHT �h� j� k� � � �CostPHT ��
k
� s�

� fh � ��a� �� j � k � �� i�� Cs � Cd �

k �Csh�g�

f�k � �s� Cs � Cd�g� a� j � i� ���

The cost of a PAg scheme grows exponentially with
respect to the history register length and linearly with
respect to the branch history table size�
In a PAp scheme using a branch history table as de�

�ned above� h pattern history tables are used� so p is
equal to h� By using Function �� the estimated cost for
PAp is as follows�

CostPAp�BHT �h� j� k�� h� PHT ��k� s��

� CostBHT �h� j� k� � h�CostPHT ��
k
� s�

� fh � ��a� �� j � k � �� i�� Cs � Cd �

k �Csh�g�

h � f�k � �s� Cs � Cd�g� a� j � i� ���

When the history register is su�ciently large� the cost
of a PAp scheme grows exponentially with respect to the
history register length and linearly with respect to the
branch history table size� However� the branch history
table size becomes a more dominant factor than it is in
a PAg scheme�


 Simulation Model

Trace�driven simulations were used in this study� A Mo�
torola ����� instruction level simulator is used for gen�
erating instruction traces� The instruction and address
traces are fed into the branch prediction simulator which
decodes instructions� predicts branches� and veri�es the
predictions with the branch results to collect statistics
for branch prediction accuracy�


�� Description of Traces

Nine benchmarks from the SPEC benchmark suite are
used in this branch prediction study� Five are �oat�
ing point benchmarks and four are integer benchmarks�
The �oating point benchmarks include doduc� fpppp�
matrix���� spice�g� and tomcatv and the integer ones
include eqntott� espresso� gcc� and li� Nasa� is not in�
cluded because it takes too long to capture the branch
behavior of all seven kernels�
Among the �ve �oating point benchmarks� fpppp�

matrix��� and tomcatv have repetitive loop execution�
thus� a very high prediction accuracy is attainable� in�
dependent of the predictors used� Doduc� spice�g� and
the integer benchmarks are more interesting� They have
many conditional branches and irregular branch behav�
ior� Therefore� it is on the integer benchmarks where a
branch predictor�s mettle is tested�
Since this study of branch prediction focuses on the

prediction for conditional branches� all benchmarks
were simulated for twenty million conditional branch
instructions except gcc which �nished before twenty
million conditional branch instructions are executed�
Fpppp�matrix���� and tomcatv were simulated for ���
million instruction because of their regular branch be�
havior through out the programs� The number of static
conditional branches in the instruction traces of the
benchmarks are listed in Table �� History register hit
rate usually depends on the number of static branches
in the benchmarks� The testing and training data sets
for each benchmark used in this study are listed in Table
��

Benchmark Number of Benchmark Number of
Static Static

Name Cnd Br Name Cnd Br
eqntott ��� espresso ���
gcc ���� li 
��
doduc ��
� fpppp ��	
matrix	�� ��	 spice�g� ���
tomcatv 	��

Table �� Number of static conditional branches in each
benchmark�

Benchmark Training Testing
Name Data Set Data Set
eqntott NA int pri 	eqn
espresso cps bca
gcc cexpi dbxouti
xlisp tower of hanoi eight queens
doduc tiny doducin doducin
fpppp NA natoms
matrix	�� NA Built�in
spice�g� short greycodein greycodein
tomcatv NA Built�in

Table �� Training and testing data sets of benchmarks�



In the traces generated with the testing data sets�
about �� percent of the dynamic instructions for the
integer benchmarks and about � percent of the dy�
namic instructions for the �oating point benchmarks
are branch instructions� Figure � shows about �� per�
cent of the dynamic branch instructions are conditional
branches� therefore� the prediction mechanism for con�
ditional branches is the most important among the pre�
diction mechanisms for di�erent classes of branches�
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�� Characterization of Branch Predictors

The three variations of Two�Level Adaptive Branch
Prediction were simulated with several con�gura�
tions� Other known dynamic and static branch
predictors were also simulated� The con�gura�
tions of the dynamic branch predictors are shown
in Table �� In order to distinguish the di�erent
schemes we analyzed� the following naming conven�
tion is used� Scheme History Size� Associativity�
Entry Content�� Pattern Table Set Size � Pattern
Size� Entry Content�� Context Switch�� If a predictor
does not have a certain feature in the naming conven�
tion� the corresponding �eld is left blank�
Scheme speci�es the scheme� for example� GAg�

PAg� PAp or Branch Target Bu�er design BTB�
����� In History Size� Associativity� Entry Content��
History is the entity used to keep history information
of branches� for example� HR A single history register��
IBHT� or BHT� Size speci�es the number of entries in
that entity� Associativity is the associativity of the ta�
ble� and Entry Content speci�es the content in each
branch history table entry� When Associativity is set
to �� the branch history table is direct�mapped� The
content of an entry in the branch history table can be
any automaton shown in Figure � or simply a history
register�
In Pattern Table Set Size � Pattern

Size� Entry Content�� Pattern Table Set Size is the
number of pattern history tables used in the scheme�
Pattern is the implementation for keeping pattern his�
tory information� Size speci�es the number of entries in
the implementation� and Entry Content speci�es the

content in each entry� The content of an entry in the
pattern history table can be any automaton shown in
Figure �� For Branch Target Bu�er designs� the Pattern
part is not included� because there is no pattern history
information kept in their designs� Context Switch is
a �ag for context switches� When Context Switch is
speci�ed as c� context switches are simulated� If it is
not speci�ed� no context switches are simulated�
Since there are more taken branches than not taken

branches according to our simulation results� a history
register in the branch history table is initialized to all ��s
when a miss on the branch history table occurs� After
the result of the branch which causes the branch history
table miss is known� the result bit is extended through�
out the history register� A context switch results in
�ushing and reinitialization of the branch history table�

Model BHT Config� PHT PHT Config�

� of Asc Entry Set � of Entry

Name Entr� Cont� Size Entr� Cont�

GAg�HR��� �r�sr�� � r�bit � 	r Atm

��PHT�	r �A	��
c�� sr A	

PAg�BHT�	����r�sr�� 	� � r�bit � 	r Atm

��PHT�	r �A	��
c�� sr A	

PAg�BHT�	����r�sr�� 	� � r�bit � 	r Atm

��PHT�	r �A	��
c�� sr A	

PAg�BHT���	���r�sr�� ��	 � r�bit � 	r Atm

��PHT�	r �A	��
c�� sr A	

PAg�BHT���	���r�sr�� ��	 � r�bit � 	r Atm

��PHT�	r �A���
c�� sr A�

PAg�BHT���	���r�sr�� ��	 � r�bit � 	r Atm

��PHT�	r �A	��
c�� sr A	

PAg�BHT���	���r�sr�� ��	 � r�bit � 	r Atm

��PHT�	r �A���
c�� sr A�

PAg�BHT���	���r�sr�� ��	 � r�bit � 	r Atm

��PHT�	r �A���
c�� sr A�

PAg�BHT���	���r�sr�� ��	 � r�bit � 	r Atm

��PHT�	r �LT��
c�� sr LT

PAg�IBHT�inf� �r�sr�� � r�bit � 	r Atm

��PHT�	r �A	��
c�� sr A	

PAp�BHT���	���r�sr�� ��	 � r�bit ��	 	r Atm

��	�PHT�	r �A	��
c�� sr A	

GSg�HR��� �r�sr�� � r�bit � 	r PB

��PHT�	r �PB��
c�� sr

PSg�BHT���	���r�sr�� ��	 � r�bit � 	r PB

��PHT�	r �PB��
c�� sr

BTB�BHT���	���A	�� ��	 � Atm

�
c�� A	

BTB�BHT���	���LT�� ��	 � Atm

�
c�� LT

Asc � Table Set�Associativity� Atm � Automaton� BHT � Branch

History Table� BTB � Branch Target Bu�er Design� Con�g� �

Con�guration� Entr� � Entries� GAg � Global Two�Level Adap�

tive Branch Prediction Using a Global Pattern History Table� GSg �

Global Static Training Using a Preset Global Pattern History Table�

IBHT � Ideal Branch History Table� inf � In�nite� LT � Last�Time�

PAg � Per�address Two�Level Adaptive Branch Prediction Using a

Global Pattern History Table� PAp � Per�address Two�Level Adap�

tive Branch Prediction Using Per�address Pattern History Tables�

PB � Preset Prediction Bit� PSg � Per�address Static Training Us�

ing a Preset Global Pattern History Table� PHT � Pattern History

Table� sr � Shift Register�

Table �� Con�gurations of simulated branch predictors�

The pattern history bits in the pattern history table
entries are also initialized at the beginning of execution�
Since taken branches are more likely for those pattern
history tables using automata A�� A�� A�� and A�� all
entries are initialized to state �� For Last�Time� all en�
tries are initialized to state � such that the branches at



the beginning of execution will be more likely to be pre�
dicted taken� It is not necessary to reinitialize pattern
history tables during execution�
In addition to the Two�Level Adaptive schemes� Lee

and A� Smith�s Static Training schemes� Branch Tar�
get Bu�er designs� and some dynamic and static branch
prediction schemes were simulated for comparison pur�
poses� Lee and A� Smith�s Static Training scheme is sim�
ilar in structure to the Per�address Two�Level Adaptive
scheme with an IBHT but with the important di�erence
that the prediction for a given pattern is pre�determined
by pro�ling� In this study� Lee and A� Smith�s Static
Training is identi�ed as PSg� meaning per�address Static
Training using a global preset pattern history table�
Similarly� the scheme which has a similar structure to
GAg but with the di�erence that the second�level pat�
tern history information is collected from pro�ling is
abbreviated PSg� meaning Global Static Training using
a preset global pattern history table� Per�address Static
Training using per�address pattern history tables PSp�
is another application of Static Training to a di�erent
structure� however� this scheme requires a lot of storage
to keep track of pattern behavior of all branches stati�
cally� Therefore� no PSp schemes were simulated in this
study� Lee and A� Smith�s Static Training schemes were
simulated with the same branch history table con�gu�
rations as used by the Two�Level Adaptive schemes for
a fair comparison� The cost to implement Static Train�
ing is not less expensive than the cost to implement the
Two�Level Adaptive Scheme because the branch history
table and the pattern history table required by both
schemes are similar� In Static Training� before program
execution starts� extra time is needed to load the preset
pattern prediction bits into the pattern history table�
Branch Target Bu�er designs were simulated with

automata A� and Last�Time� The static branch pre�
diction schemes simulated include the Always Taken�
Backward Taken and Forward Not Taken� and a pro�
�ling scheme� Always Taken scheme predicts taken for
all branches� Backward Taken and Forward Not Taken
BTFN� scheme predicts taken if a branch branches
backward and not taken if the branch branches for�
ward� The BTFN scheme is e�ective for loop�bound
programs� because it mispredicts only once in the exe�
cution of a loop� The pro�ling scheme counts the fre�
quency of taken and not�taken for each static branch
in the pro�ling execution� The predicted direction of
a branch is the one the branch takes most frequently�
The pro�ling information of a program executed with a
training data set is used for branch predictions for the
program executed with testing data sets� thus calculat�
ing the prediction accuracy�

� Branch Prediction Simulation Results

Figures � through �� show the prediction accuracy of
the branch predictors described in the previous session
on the nine SPEC benchmarks� �Tot GMean� is the ge�
ometric mean across all the benchmarks� �Int GMean�
is the geometric mean across all the integer benchmarks�
and �FP GMean� is the geometric mean across all the
�oating point benchmarks� The vertical axis shows the

prediction accuracy scaled from �� percent to ��� per�
cent�

��� Evaluation of the Parameters of the Two�
Level Adaptive Branch Prediction Branch
Prediction

The three variations of Two�Level Adaptive Branch
Prediction were simulated with di�erent history regis�
ter lengths to assess the e�ectiveness of increasing the
recorded history length� The PAg and PAp schemes
were each simulated with an ideal branch history ta�
ble IBHT� and with practical branch history tables to
show the e�ect of the branch history table hit ratio�

����� E�ect of Pattern History Table Automa�
ton

Figure � shows the e�ciency of using di�erent �nite�
state automata� Five automata A�� A�� A�� A�� and
Last�Time were simulated with a PAg branch predic�
tor� having ���bit history registers in a four�way set�
associative ����entry BHT� A�� A�� A�� and A� all per�
form better than Last�Time� The four�state automata
A�� A�� A�� and A� maintain more history information
than Last�Time which only records what happened the
last time� they are therefore more tolerant to the devi�
ations in the execution history� Among the four�state
automata�A� performs worse than the others� The per�
formance of A�� A�� and A� are very close to each other�
however� A� usually performs best� In order to show
the following �gures clearly� each Two�Level Adaptive
Scheme is shown with automaton A��
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Figure �� Comparison of Two�Level Adaptive Branch
Predictors using di�erent �nite�state automata�

����� E�ect of History Register Length

Three variations using history registers of the
same length
Figure � shows the e�ects of history register length on
the prediction accuracy of Two�Level Adaptive schemes�
Every scheme in the graph was simulated with the same
history register length� Among the variations� PAp per�
forms the best� PAg the second� and GAg the worst�



GAg is not e�ective with ��bit history registers� because
every branch updates the same history register� causing
excessive interference� PAg performs better than GAg�
because it has a branch history table which reduces the
interference in branch history� PAp predicts the best�
because the interference in the pattern history is re�
moved�
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Figure �� Comparison of the Two�Level Adaptive
schemes using history registers of the same length�

E�ects of various history register lengths
To further investigate the e�ect of history register
length� Figure � shows the accuracy of GAg with var�
ious history register lengths� There is an increase of 	
percent in accuracy by lengthening the history register
from � bits to �� bits� The e�ect of history register
length is obvious on GAg schemes� The history regis�
ter length has smaller e�ect on PAg schemes and even
smaller e�ect on PAp schemes because of the less inter�
ference in the branch history and pattern history and
their e�ectiveness with short history registers�
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Effect of history register length

Figure �� E�ect of various history register lengths on
GAg schemes�

����	 Hardware Cost Eciency of Three Vari�
ations

In Figure �� prediction accuracy for the schemes with
the same history register length were compared� How�
ever� the various Two�Level Adaptive schemes have dif�
ferent costs� PAp is the most expensive� PAg the second�
and GAg the least� as you would expect� When evaluat�
ing the three variations of Two�Level Adaptive Branch
Prediction� it is useful to know which variation is the
least expensive when they predict with approximately
the same accuracy�
Figure � illustrates three schemes which achieve about

	� percent prediction accuracy� One scheme is chosen
for each variation to show the variation�s con�guration
requirements to obtain that prediction accuracy� To
achieve 	� percent prediction accuracy� GAg requires an
���bit history register� PAg requires ���bit history regis�
ters� and PAp requires ��bit history registers� According
to our cost estimates� PAg is the cheapest among these
three� GAg�s pattern history table is expensive when a
long history register is used� PAp is expensive due to
the required multiple pattern history tables�
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Two-Level Adaptive Schemes achieving 97% prediction accuracy

Figure �� The Two�Level Adaptive schemes achieve
about 	� percent prediction accuracy�

����
 E�ect of Context Switch

Since Two�Level Adaptive Branch Prediction uses the
branch history table to keep track of branch history� the
table needs to be �ushed during a context switch� Fig�
ure 	 shows the di�erence in the prediction accuracy
for three schemes simulated with and without context
switches� During the simulation� whenever a trap oc�
curs in the instruction trace or every ������� instruc�
tions if no trap occurs� a context switch is simulated�
After a context switch� the pattern history table is not
re�initialized� because the pattern history table of the
saved process is more likely to be similar to the current
process�s pattern history table than to a re�initialized
pattern history table� The value ������� is derived
by assuming that a �� MHz clock is used and context
switches occur every �� ms in a � IPC machine� The
average accuracy degradations for the three schemes are



all less than � percent� The accuracy degradations for
gcc when PAg and PAp are used are much greater than
those of the other programs because of the large num�
ber of traps in gcc� However� the excessive number of
traps do not degrade the prediction accuracy of the GAg
scheme� because an initialized global history register can
be re�lled quickly� The prediction accuracy of fpppp
using GAg actually increases when context switches are
simulated� There are very few conditional branches in
fpppp and all the conditional branches have regular be�
havior� therefore� initializing the global history register
helps clear out the noise�
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Figure 	� E�ect of context switch on prediction accu�
racy�

����� E�ect of Branch History Table Imple�
mentation

Figure �� illustrates the e�ects of the size and associa�
tivity of the branch history table in the presence of con�
text switches� Four practical branch history table imple�
mentations and an ideal branch history table were sim�
ulated� The four�way set�associative ����entry branch
history table�s performance is very close to that of the
ideal branch history table� because most branches in the
programs can �t in the table� Prediction accuracy de�
creases as table miss rate increases� which is also seen
in the PAp schemes�

��� Comparison of Two�Level Adaptive Branch
Prediction and Other Prediction schemes

Figure �� compares the branch prediction schemes� The
PAg scheme which achieves 	� percent prediction ac�
curacy is chosen for comparison with other well�known
schemes� because it costs the least among the three vari�
ations of Two�Level Adaptive Branch Prediction�
The ��way set�associative ����entry BHT is selected

to be used by all schemes which keep the �rst�level
branch history information� because it is simple enough
to be implemented� The Two�Level Adaptive scheme
and the Static Training scheme were chosen on the ba�
sis of similar costs�
The top curve is achieved by the Two�Level Adaptive

scheme whose prediction accuracy is about 	� percent�
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Comparison of branch history table configurations used in PAg

Figure ��� E�ect of branch history table implementa�
tion on PAg schemes�

Since the data for the Static Training schemes are not
complete due to the unavailability of appropriate data
sets� the data points for eqntott� fpppp�matrix��� � and
tomcatv are not graphed� PSg is about � to � percent
lower than the top curve for the benchmarks that are
available and GSg is about � to �	 percent lower with av�
erage prediction accuracy of 	��� percent and �	 percent
individually� Note that their accuracy depends greatly
on the similarities between the data sets used for train�
ing and testing� The prediction accuracy for the branch
target bu�er using ��bit saturating up�down counters
���� is around 	� percent� The Pro�ling scheme achieves
about 	� percent prediction accuracy� The branch tar�
get bu�er using Last�Time achieves about �	 percent
prediction accuracy� Most of the prediction accuracy
curves of BTFN and Always Taken are below the base
line �� percent�� BTFN�s average prediction accuracy
is about ���� percent and Always Taken�s is about ����
percent� In this �gure� the Two�Level Adaptive scheme
is superior to the other schemes by at least ��� percent�

Benchmark

A
c
c
u
r
a
c
y

0.7600

0.8000

0.8400

0.8800

0.9200

0.9600

1.0000

T
o

t 
G

M
e

a
n

In
t 

G
M

e
a

n

e
q

n
to

tt

e
s
p

re
s
s
o

g
c

c

x
li

s
p

F
P

 G
M

e
a
n

d
o

d
u

c

fp
p

p
p

m
a

tr
ix

 
3

0
0

s
p

ic
e

 
2

g
6

to
m

c
a

tv

PAg( BHT(512,4,12sr),
PHT(2^12,A2),)

GSg( BHR(1,,18sr),
PHT(2^18,PB),)

PSg( BHT(512,4,12sr),
PHT(2^12,PB),)

BTB( BHT(512,4,LT),)

BTB( BHT(512,4,A2),)

Prof i l ing

BTFN (68.5%)

Always Taken (62.5%)

Comparison of Branch Prediction Schemes

Figure ��� Comparison of branch prediction schemes�



� Concluding Remarks

In this paper we have proposed a new dynamic branch
predictor Two�Level Adaptive Branch Prediction� that
achieves substantially higher accuracy than any other
scheme that we are aware of� We computed the hard�
ware costs of implementing three variations of this
scheme and determined that the most e�ective imple�
mentation of Two�Level Adaptive Branch Prediction
utilizes a per�address branch history table and a global
pattern history table�
We have measured the prediction accuracy of the

three variations of Two�Level Adaptive Branch Pre�
diction and several other popular proposed dynamic
and static prediction schemes using trace�driven sim�
ulation of nine of the ten SPEC benchmarks� We have
shown that the average prediction accuracy for Two�
Level Adaptive Branch Prediction is about 	� percent�
while the other known schemes achieve at most 	���
percent average prediction accuracy�
We have measured the e�ects of varying the param�

eters of the Two�Level Adaptive predictors� We noted
the sensitivity to k� the length of the history register�
and s� the size of each entry in the pattern history ta�
ble� We reported on the e�ectiveness of the various
prediction algorithms that use the pattern history table
information� We showed the e�ects of context switch�
ing�
Finally� we should point out that we feel our 	� per�

cent prediction accuracy �gures are not good enough
and that future research in branch prediction is still
needed� High performance computing engines in the
future will increase the issue rate and the depth of
the pipeline� which will combine to increase further the
amount of speculative work that will have to be thrown
out due to a branch prediction miss� Thus� the � per�
cent prediction miss rate needs improvement� We are
examining that � percent to try to characterize it and
hopefully reduce it�
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