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Abstract

We introduce a dynamic scheme that captures the access pat-
terns of linked data structures and can be used to predict
future accesses with high accuracy. Our technique exploits
the dependence relationships that exist between loads that
produce addresses and loads that consume these addresses.
By identifying producer-consumer pairs, we construct a
compact internal representation for the associated structure
and its traversal. To achieve a prefetching effect, a small
prefetch engine speculatively traverses this representation
ahead of the executing program. Dependence-based
prefetching achieves speedups of up to 25% on a suite of
pointer-intensive programs.

1   Introduction

Linked data structures(LDS) such as lists and treesare usedin
many importantapplications. The importanceof LDS is growing
with theincreasingpopularityof C++, Java,andothersystemsthat
use linked object graphsand function tables. Flexible, dynamic
constructionallows linked structuresto grow large anddifficult to
cache. At thesametime, LDS aretraversedin a way thatprevents
individual accessesfrom beingoverlapped.Thesefactorsmagnify
the negative performance impact of off-chip data access.

Prefetchingcanbeanimportanttool in boostingtheperformanceof
applicationsthat useLDS. Historically, however, prefetchmecha-
nismshavehadtroublewith thesestructures. Not only dotheover-
laprestrictionsreducetheeffectivenesswith whichmemorylatency
can be hidden,but LDS accesseshave defied traditional address
predictiontechniquesthat drive prefetchingactivity. Thesetech-
niquesrely on addressstreamregularitiesto extractarithmeticpat-
ternsthat canbe usedto make predictions. Suchpatternsarenot
necessarilyfound in LDS accesssequences.In this work, we pro-
poseanew solutionthatattacksbothproblemsby exploiting depen-
dence information.

We saythat two instructionsaredependent if oneproducesa value
the other consumes,or affects its execution in someother way.
Techniquesthatexploit dependencesbaseanalysisandspeculation
on this relationship,ratherthan the actualvaluesexchanged. To
date, most microarchitecturaltechniqueshave used value-based
speculationtechniques.Cachesexploit temporalandspatiallocal-
ity in thesetof addressesreferencedby theprogram,branchesare
predictedusing outcomesof previous branches,and values are
speculatedusinghistoriesof previousinstructionresults. However,
recentwork [15][16][23][6] hasdemonstratedthatdependencerela-
tionshipsexhibit regularitiesthat canbeexploited in waysthat the
valuesthey exchangecannot.Thesestudieshave focusedprimarily
on memory dependences that exist betweenstoresand loadsthat
accessthe samelocation. Our techniqueusesload value depen-
dences, a classof dependencesbetweenloadsthat produce(load
from memory) addressesand those that subsequentlyconsume
(accessdataat) thoseaddresses.Load valuedependencescapture
regularities in the addressgenerationprocessrather than in the
addresses themselves.

Dependence-based prefetching dynamically identifies loads that
accesslinkeddatastructures.It collectstheseloadsalongwith the
dependencerelationships that connect them and constructs a
descriptionof the stepsthe programhasfollowed to traversethe
structure.Predictingthattheprogramwill continueto follow these
samesteps,a smallprefetchenginetakesthis descriptionandspec-
ulatively executesit in parallelwith the original program.Sinceit
executesonly the loadsthat are requiredto touch the datastruc-
ture’s elements,this engineinitiatesLDS accessesat a ratedictated
only by the(memory)latency of eachoperation.Sincetheproces-
sor executesall instructions,the prefetchenginemay run ahead,
producing the desired prefetching effect.

Therestof thework is organizedasfollows. We begin with a dis-
cussionof the issuesinvolved in prefetchinglinkeddatastructures
in section2. In section3, webriefly introduceourbenchmarksuite,
andpresentstatisticsthatmotivateour solutionfor this problem. A
detaileddescriptionof ourmechanismis presentedin section4, fol-
lowedby a quantitative evaluationin section5. We relateour solu-
tion to other work in section 6, then offer our conclusions.

2   Prefetching Linked Data Structures

Linked datastructures(LDS) are widely usedin compilers,data-
bases,andgraphicsapplications.LDS areconstructedby connect-
ing dataelementsto one anotherexplicitly; elementsin an LDS



containfields that nameall adjacentelementsby address. This
modeof connectivity allows the easyconstructionandmanipula-
tion of datastructuresof arbitraryshape,suchastreesandgraphs.
DynamicconstructionalsoallowsLDS to grow very large,making
themdifficult to cache. Addedto this is the fact that accessesto
successive LDS elements,andto the datathey containcannotbe
overlapped,astheprocessof addressgenerationitself requiresan
inherentlyserial evaluationthroughmemory. Commonlyknown
asthe pointer-chasing problem, this conditioneffectively exposes
thefull latency of eachLDS access.Thekey to hiding this latency
is to issueLDS accessesas early as possible,overlappingthem
with other work.

Prefetchingcan be implementedin both hardware and software.
Software schemes[17][12][10] have potentially larger analysis
scopeand add no complexity to the processor. However, we
chooseto investigatehardwareschemesfor severalreasons.Hard-
ware mechanismsrequire no a priori program information or
transformations,as well as no architectural interface changes.
They imposeno explicit execution overhead. Hardware tech-
niqueshave at their disposaltheexecutionprofile of theprogram,
aswell asotherinformation,like the addressesof LDS elements,
thatis availableonly at run-time. Dynamicsolutionsalsohave the
potentialfor adaptingto programphases,changingconditionsin
the processorand memorysystem,and behavior dictatedby the
input. Finally, a hardwareschememay be able to initiate action
earlierthanaprogramsuppliedcue,sincethelattermustbe“seen”
by the processor. This canbe a usefulpropertywhencontending
with serialized latencies caused by pointer chasing.

Hardwareprefetchersproposedto date[9][1] analyzethe address
history associatedwith an instruction or group of instructions.
They exploit regularity in the stream to compressthe access
sequence,quickly regeneratingit to produceprefetchingaddresses.
For example,addresssequencesthatexhibit arithmetic regularity,
suchastheonescorrespondingto sequentialarraytraversal,canbe
compressedto a pair of numbers:a basevalueanda stride. Not
only is this representationextremelycompact,it hasa nice prop-
erty that allows it to be usedasa formula to generatepreviously
unseen addresses that closely match actual program accesses.

In line with thesemethods,we may attempt to compressLDS
accesssequences.Ordinarily, a prefetchaddressfor an LDS ele-
mentcannotbe generateduntil the addressesof all previous ele-
ments in the structure are known. Compressionis attractive
becauseit allows for generationof prefetchaddressesfor arbitrary
LDS elementswithout the needfor a serialevaluation. However,
compressingan LDS accessstream can be a difficult task.
Addressesof adjacentLDS elementsare not requiredto have a
regulararithmeticrelationship.Linearlayoutin anLDS is usually
the resultof allocatorstrategy, compactinggarbagecollection,or
careful handoptimization,and is often compromisedas the data
structureevolves. In theabsenceof suchregularity, we expectthe
size of the compressedform to be proportional(smallerbut cer-
tainly not constant)to the size of the LDS itself. This property
potentially makes compressionof large structuresinconvenient.
Even in the event that sufficient compressionis possible,it is
unlikely thatthecompressedformatcouldbeusedto generatepre-
viously unseen addresses.

To handlethe casein which addressregularitiesarenot available
andcompressionis not possible,we make theobservationthat the
instructionsusedby theprogramto accessa particularsetof LDS
elements,are themselves a compactformula for generatingthe
addressesof thoseelements.Themechanismwe presentcaptures
the processof addressgenerationitself andpredictsaddressesby
mimicking thisprocess.In addition,by creatingaseparate,depen-
dence-basedrepresentationfor this important kernel of the pro-
gram,our techniquecanissuerequestsfor LDS elementswith little
overhead,and with no interferencefrom other partsof the pro-
gram. Thedetailsof themechanismaredescribedin section4. As
motivation,we first presenta brief analysisof LDS accessbehav-
ior in a suite of programs.

3   A Study of Pointer Intensive Programs

Thetechniquewe proposeimprovesperformanceby hiding mem-
ory latency associatedwith LDS access. Its effectivenesswill bea
function of threefactors:(i) the numberof LDS accessesin the
programandtheir contribution to the total latency associatedwith
the memorysystem,(ii) the amountof work in the programthat
canbeoverlappedwith this latency, and(iii) ourmechanism’sabil-
ity to capturethisbehavior andleveragetheavailablework. In this
section,weattemptto quantifythefirst two parametersby present-
ing a characterizationof LDS accessbehavior for programsfrom
the Olden pointer-intensive benchmarksuite [20]. The Olden
benchmarksarea collectionof programsthat includessmall and
mediumsizedscientificcodes(bh andem3d), processsimulations
(health and power), graph optimization routines (mst and tsp),
graphicsutilities (perimeter andvoronoi), asortingroutine(bisort)
andatoy treebenchmark(treeadd). Weusethissetof programsas
it hadbeenpreviously usedto evaluatecompilerprefetchingalgo-
rithms[12]. A summaryof thebenchmarks,thesizesandtypesof
linkeddatastructuresused,input parametersanddynamicinstruc-
tion countsis shown in Table1. In orderto compressthe subse-
quentfigures,we will refer to the benchmarksby only the first
three letters of their name (e.g., bis for bisort).

LDS-specificmemorybehavior canbe summarizedby examining
theloadinstructionsthataccessLDS elements,or pointer loads in
our terminology. A pointerloadis a loadwhoseinputbaseaddress
wasproducedby anotherload instruction. This definitionencom-
passesLDS accesses,anddistinguishesthemfrom stackandarray
loads,whoseaddressesarecomputedarithmetically, andloadsthat
use addresses produced by a means other than an indirection.

Thelatency associatedwith pointerloadsis difficult to accountfor
in awaythatis nothighly dependentonaparticularprocessorcon-
figuration; we usedatacachemiss rate as an alternatemetric to
give a feel for themagnitudeof theproblem. Also shown in table
1 for eachbenchmarkarethenumberof loads(asa percentageof
all dynamicinstructions)andthedatamissratefor a32KB, 2-way,
32B line datacache. Pointerload behavior is summarizedunder
the headingspointer loads, which gives the fraction of all loads
that arepointerbased,andpointer load contribution, which gives
the percent of all misses caused by pointer loads.

Pointerloadsrepresenta large fraction of all loadsin the Olden
benchmarksandcontribute a disproportionatelylarger fraction of



the cachemisses,accountingfor nearlyall missesin many of the
programs.With severalexceptions,notablyhealth, em3d, andmst
most of theseprogramshave good a priori datacachebehavior.
Theseprogramsmay still benefit from prefetchingif the miss
latencies are high and enough work exists to overlap with them.

3.1   Pointer-Load Classification

We find it useful to further classify pointer loadsinto recurrent,
traversal, anddata loads.Membersof eachcategory have proper-
tiesthatrestricttheir overlapwith differentkindsof work, andcan
thereforebe thoughtof as being closeror further from the pro-
gram’s critical path. Consequently, their importanceto theperfor-
mance of the program, and to our mechanism, varies.

Recurrent loads are a subclassof pointer loads; they produce
addressesconsumedby future instancesof themselves. Recurrent
loadsare often usedas induction variablesin loops (e.g., p = p-
>next in a list or p = p->left in a tree). It is importantto note that
although our working definition is restricted to self-recurrent
loads, loadsmayfeedthemselvesindirectly (e.g.,p = p->left->right).
Indirectrecurrentloadsarelumpedtogetherwith traversal loads; a
classof loadsthat produceaddressesfor pointer loadsother than
themselves. Dataloadsareall pointerloadsthatareneitherrecur-
rentloadsnor traversal loads;they loaddataotherthanaddresses.

As an illustration of the definitions,we considera shortpieceof
codethatprocessesa list of machineinstructions,eachrepresented
by a pair of linkedstructures.Theloop sourceandassemblycode
areshown in figure1(a)and(b) respectively, thelist itself is shown
in part (c). Instruction6, which loadsthenext field of anelement,
is a recurrent load. Instruction3 loadstheaddressof thepat struc-
tureandis a traversal load. Instruction4 loadsthe code field and
is a data load. Also shown in figure 1(c) are threeinstancesof
each load corresponding to three loop iterations.

The importantaspectof our classificationschemeis that it parti-
tions loadsaccordingto the type of work that can be usedto in
overlappingandhiding their latency. We illustratethis usingtwo
examples. In the first, we try to hide the latency of a recurrent

load,load6, which hasa latency longerthantheexecutiontime of
asingleiteration. Sinceloadscannotbeoverlappedwith loadsthat
dependon them,we seethat 6’s latency can only be overlapped
with work from thesameiteration(e.g.,6cwith 3cand4c),leaving
therestexposed. We cannotprefetch6c effectively becauseto do
sowould requirethat6bcompleteexecutionbeforeits correspond-
ing iteration. Similar restrictionsapply to traversal loads (e.g.,
load 3). In the secondcase,we attemptto hide the latency of a
dataload,4. This canbedoneif 6 hits in thedatacache.Namely,
we prefetch6b as soonas 6a completes,and usethe prefetched
valueto prefetch3c andthen4c. The latency of 4c is thusover-
lappedwith somework from theprevious iteration. Theseexam-
plessuggestthat handlingrecurrentandtraversalloadsefficiently
is the key to prefetching LDS.

3.2   Quantifying Available Work

In theprevioussections,we identifiedthework availablefor over-
lappingwith pointerloads,especiallyrecurrentandtraversalloads,
asbeingimportantin aprefetchingsolution. Wenow quantifythis

Figure 1. LDS traversal example. (a) Source and (b) machine
code that traverses a linked list.  (c) List layout in memory.

for (insn = f; insn; insn = insn->next)
   process(insn->pat->code);
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Table 1. Olden benchmark suite. Data structures used, input parameters, data set size, dynamic instruction count, loads, pointer loads
as a percentage of all loads, data cache miss rate for a 32KB cache and pointer load contribution to the miss rate.

Bench
Pointer Data

structur es Input Parameters
Data Set

Size
Inst

Count Loads
Pointer
Loads

Miss
Rate

Pointer Load
Contrib ution

bh octree 4K bodies 720KB 866M 29.1% 16.3% 0.7% 53.0%

bisort binary tree 250,000 numbers 1535KB 625M 15.4% 49.1% 1.1% 99.4%

em3d lists 2000nodes,arity 10 1670KB 60M 23.5% 59.2% 26.6% 81.5%

health quadtree, lists 5 levels, 500 iters 925KB 169M 36.2% 81.1% 17.3% 98.3%

mst array of lists 1024 nodes 20KB 256M 14.6% 41.3% 6.2% 83.5%

perimeter quadtree 4K x 4K image 6445KB 1619M 17.1% 16.2% 2.7% 99.7%

power multiway tree,lists 10,000 nodes 313KB 791M 18.9% 12.2% 0.2% 91.6%

treeadd binary tree 1M nodes 12300KB 196M 20.6% 15.8% 1.4% 97.2%

tsp binary tree, lists 100,000 cities 5120KB 338M 9.4% 74.0% 2.8% 99.8%

voronoi binary tree 60,000 points 11100KB 333M 14.3% 71.2% 1.1% 41.1%



available work. To do so, we measurethe distancein dynamic
instructionsbetweena pointer load andthe closest load that pro-
ducesits baseaddress. Multiple loads may producethe same
address,for examplewhentheaddressis passedasaparametervia
thestack. Althoughchoosingtheclosestloadrepresentstheworst
casefor our mechanism,it providesanunambiguousmetric. Fig-
ure2 presentscumulativedistributionsof thesedistancesfor (a)all
pointer loads and (b) recurrent loads.

Theresultsshown in figure2 aremixed. Programslike bh, bisort,
em3d, perimeter, power, and voronoi containa large numberof
recurrentloadswith long producerdistances(over 128 dynamic
instructions). Health, mst, treeadd, andtsp have a largerepresen-
tation of shortdependence-distancerecurrentloads,indicatingan
abundanceof tight loopsanda potentiallack of work for overlap-
ping with prefetches. However, dependence-basedprefetching
maystill have a positive effect by hiding someof thelatency asso-
ciatedwith theseloads. In addition,theseprogramshave traversal
anddataloadswith somewhat longerproducerdistances,indicat-
ing thatprefetchinghastheopportunityto besuccessful.We now
presenta mechanismthatattemptsto exploit asmuchof theavail-
able work as possible to tolerate pointer load latency.

4   A Dependence-Based Prefetch Mechanism

Dependence-basedprefetchingdynamicallyextractsthe program
kernel responsiblefor computingaddressesof LDS elements. It
thenspeculatively andaggressively executesthis kernelalongside
the original program. Prefetching is achieved as the engine
advancesaheadof themainprogram. In this section,we describe
the goalsandintendedoperationof a prefetchingmechanismthat
canpredict linked structureaccessandeffectively tolerateserial-
ized latencies.We usethesegoalsto derive a setof requirements
for a dependence-basedapproach.These,in turn, drive our pro-
posed implementation.

We illustratethedesiredeffect of anLDS prefetchingmechanism
usingthe linked list exampleof the previous section. Figure3(a)
shows anabstractprocessorexecutingtheprogramfragmentfrom

figure1. Weshow thedynamicinstructionstreamwith all instruc-
tions currently in the processor’s window shaded.Let us assume
thata prefetchenginehasidentifiedload1 asproducingthevalue
that initiates the load 6 recurrence,and that load 6 hasbeentar-
getedfor prefetch. We would like prefetchingto proceedin data-
flow fashion. Thatis, assoonasaninstanceof load6 completes,a
prefetchfor thenext instanceshouldbe issuedimmediately. This
rapidsequenceof prefetchesis shown in figure3(a). Theproces-
sorusesthevalueloadedby 1 to fetchthesecondlist element.The
prefetchenginetakesover from there,prefetchingan elementas
soonastheaddressof thepreviouselementbecomesavailable. We
note that, using this schemeandallowing for someroughtiming
assumptions,the prefetch for the fourth element (6c) may be
issuedby the prefetchenginebeforethe processoreven seesthe
load corresponding to thethird element.

The ability to forge aheadof the currentinstructionwindow is an
importantfeaturethat allows a potentialsolution to attackserial-
ized latenciesmore efficiently than a typical dynamically-sched-
uled processor. An out-of-ordermachine,shown in figure 3(a),
canapproximate theeffectof theschemewepresentby scheduling
pointerloadsassoonastheir inputsareready. It may, for example,
issueinstruction6 assoonasinstruction1 completes.However, to
do sorequiresthat theprocessorboth(i) seeinstruction6, and(ii)
understandthatit is in somewaymoreimportantthaninstruction3
andissueit first. Dependence-basedprefetchingeffectively meets
thesetwo requirementsby consideringonly pointerloads. First, it
prioritizes recurrent loads. More importantly, it can initiate
prefetchesfor loadsthat the processorhasnot seen. Advancing
sufficiently far aheadof theprocessorandopeningup enoughdis-
tancebetweentheprefetchandthetargetload,allowsdependence-
basedprefetchesto cover long LDS accesslatencies. While this
doesnot constitutea solution to the pointer-chasingproblemper
se,it doesoverlapthelatency of agivenpointerloadwith all avail-
able work starting with the production of its base address.

To achieve theeffect we described,a mechanismmust:(i) identify
instructionsthatparticipatein traversal(1, 3, 4 and6 in our exam-
ple), (ii) activateinstancesof theseinstructionswith theappropri-
ate input values and (iii) do so as soon as those input values

Figure 2. Cumulative address-producer distance distribution.
Distance between a pointer load and the closest producer of its
base address. Distances of at most 8, 16, 32, 64, 128 (gray),
and 256 (black) dynamic instructions for (a) all pointer loads
and (b) recurrent loads.
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Figure 3. High-level dependence-based prefetching example.
(a) High level description of the prefetch effect we hope to
achieve. (b) The abstract internal representation of the list
required to drive this mechanism.
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becomeavailable. We satisfytheserequirementsby exploiting the
dependencerelationshipthatexistsbetweentheloadsthatproduce
addressesandthosethat usethem. We usedependenceinforma-
tion to rephraseour requirements:as eachaddressis loaded,we
predicttheloadsthatwill usethataddress,andissueprefetchesfor
themimmediately. It is interestingto notethatthisprocessis self-
recurrent,asthe completedprefetchesmay themselvesbe usedto
launch new prefetches.

We aim to provide structuresthat make the processof finding
potentialconsumersof a given addresssimple, and usetheseto
drive theprefetchingprocess.At anabstractlevel, theinformation
we needto representcan be thoughtof as a graph. Figure 3(b)
shows the graphrepresentationfor the list traversal. This graph
encodesboth the structural definitionof the list andthe stepsthe
programtook to traverseit. Theprefetchschedulein part (a) was
generated by “unrolling” the shaded part of this representation.

With a high level understandingof how the dependence-based
prefetchingfunctions,we go into a detaileddescriptionof several
of its importantaspects.Section4.1 describeshow informationis
gatheredand usedto constructa representationfor a particular
LDS. In section4.2, we show how prefetchesarerequestedand
servicedby the memorysystem. Section4.3 describeshow the
prefetchingprocessis throttledto minimize erroneousprefetches.
In eachsection,we provide a simpleimplementationof thecorre-
spondingstructuresanduseour runningexample(insn = insn->next)
to demonstratetheir function. Finally, we give a shortqualitative
example in the context of prefetching a binary tree.

4.1   Constructing an LDS Representation

In thissection,wedescribehow LDS traversalis representedusing
dependences,andhow thesedependencesare identifiedandcap-
tured. To make therestof thediscussionmoreconcrete,we begin
with the representation.

Thecomponentresponsiblefor storingdependenceinformationis
theCorrelationTable (CT). Eachcorrelation representsa depen-
dencebetweena load instruction that producesan address(PR)
anda subsequentloadthatuses(consumes)thataddress(CN). In
addition to producer and consumeridentities (an instruction’s
identity is its PC),eachcorrelationalsocontainsanaddressgener-
ation template(TMPL), which is acondensedform of theconsum-
ing load itself. A templatecontainsanopcodeandanoffsetonly.
A correlationimplicitly containsa sourceidentifier(theproducer).
Destinationspecifiersare incidentalsincetemplatesare instanti-
atedfor theirprefetchingeffectonly. TheCT maybeimplemented
as a cacheindexed by the producerand shouldbe associative to
some degree, as a single producer may feed multiple consumers.

The dynamic creation of correlationsrequiresthat we identify
loads that produceaddresses,identify loads that consumethose
addresses,and pair producerswith consumerseven though they
might befar apartin thedynamicinstructionstream.To do so,the
processormaintainsa list of the most recentlyloadedvaluesand
the correspondinginstructions. This structure,the Potential Pro-
ducerWindow (PPW),maybeimplementedasa queueor a cache
containing load value (ADDRVAL) and producer (PR) pairs,

indexedby theloadvalueto facilitatematching.Figure4(a)shows
the CT and PPW.

Correlationsare createdat instruction commit time. As a load
commits,its baseaddressvalue is checked against entriesin the
PPW, with acorrelationcreatedonamatch. Theloadandits target
value are then recordedin the PPW for checkingagainst future
loads. This processis illustratedin figure4(b), which shows how
the self dependenceof load 6 (insn = insn->next) is captured. As
load6 commits,its baseaddressvalue(BASEVAL) is lookedup in
the PPW, which indicatesthat the previous instanceof 6 wasthe
last to load this address(action1, circled). A new correlationis
insertedinto the CT establishingthe dependencefrom 6 to itself
(action2). Finally, thevalueloadedby thecurrentinstanceof load
6 is entered into the PPW (action 3).

We close this sectionwith two commentsregarding the depen-
dencedetectionprocess. First, we note that not all loads are
potential consumers,nor are all loads producercandidatesthat
mustbe enteredinto the PPW. As an optimization,we dismiss
loadsbasedoff thestackandglobalpointersaspotentialconsum-
ers since their baseaddressesare computedvia addition. As
potentialproducers,we consideronly loadsthat accessaddress-
sizedquantities. This is only aheuristicandby nomeansasubsti-
tute for truetype information. Many loadsthatfit thesizecriteria
(e.g.,instruction4 in our runningexample)do not loadaddresses.
Thesefalseaddressloadsreducetheeffectivesizeof thePPWand
contendfor CT ports. A furtheroptimizationwould involve identi-
fying (true)addressloadsusingcompileranalysisor profiling, and
communicating this information to the processor using a hint.

Finally, we observe that althoughthe prefetchengineis depen-
dencebased,dependencesare capturedusing values(addresses).
This organization is particularly suitable for our application.
Pointer addressesflow from producer to eventual consumer
unchangedby arithmeticmanipulation.Furthermore,numericval-
ues associatedwith addressesare rarely seenin other contexts,
allowing us to assumesafely that two instructionsthat namethe
sameaddressareactuallyrelated. More importantly, usingvalues
allowsusto capturedependencesaccurately, ignoringintermediate
register moves and spills to and from memory. Finding earlier
producers enables more work to be overlapped with a given miss.

Figure 4. CT and PPW working example. (a) Block schematic
of PPWand CT. (b) ThePPWand CT capture the recurrence
between instruction 6 and itself (insn = insn->next).
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4.2   Prefetch Issue and Use

In this section,we describehow prefetchrequestsareissued,how
they areservicedby the memorysystem,andhow the resultsare
usedby subsequentloads. The organizationwe presentis driven
by the beliefsthat dataportsarepreciousandthe prefetchengine
should use them only when they are idle, and that prefetched
blocksshouldbekeptoutof thedatacacheuntil they areknown to
beuseful. In line with theserequirements,we introducetwo new
structures. The Prefetch RequestQueue(PRQ) buffers prefetch
requestsuntil data ports are available to service them. The
Prefetch Buffer (PB) is a small datacachethat temporarilyholds
prefetched blocks.  The PRQ and PB are shown in figure 5(a).

Prefetchrequestsareissuedto thePRQwhenanaddressloadcom-
pletesin theprocessor. A completedloadprobestheCT in search
of potentialconsumers.On a match,a prefetchaddressis formed
by applyingtheaddressgenerationformulato thevaluejust loaded
and a requestis enqueuedonto the PRQ on behalf of the con-
sumer. Figure5(b) illustratesthissequencefor our runningexam-
ple. An instanceof load 6 completesandqueriesthe CT (action
1). Findingtheself correlation,it computestheaddressof thenext
list elementusing the loadedvalue and the correlationformula
(action2). A prefetchrequestfor this addressis taggedwith the
appropriate consumer and enqueued (action 3).

Prefetchrequestsaredequeuedfrom thePRQandservicedby the
memorysystemwhenadatacacheport is free. ThePBattemptsto
extract theblock from thefirst level cache,issuinga requestto the
secondlevel cacheon a miss. Spuriousrequests(e.g.,attempting

to chasea null pointer or accessan unmappedpage)are simply
dropped. In figure 5(c), the requestmade by instruction 8 is
dequeuedandplacedinto thePB(action4). Sincethecorrespond-
ing block is not foundin thefirst level cache,a requestis issuedto
the next level (action 5).

Sincewewould liketheprefetchengineto runaheadof theproces-
sor, it is importantthatcompletedprefetchesbethemselvesableto
spawn otherprefetches.To facilitatethis, the PB maintainsa list
of requesting consumers(CN) with each block. When a
prefetchedblock arrives, eachconsumeron the list assumesthe
role of a producer, probestheCT andpotentiallygeneratesfurther
requests.An illustrationof thesestepscanbeobtainedby substi-
tuting a completed prefetch for the completed load in figure 5(b).

In figure5(d),a loadinstructionpicksupa valuefrom theprefetch
buffer. The PB and the datacacheare accessedin parallel. A
cachemisswill bring the block into the cacheasusual.However,
the processor need not wait if the data is available in the PB.

4.3   Simplifying Prefetch Throttle and Control

Allowing theprefetchengineto runarbitrarily faraheadof thepro-
cessoris undesirable. First, if the prefetchenginegets too far
ahead,it mayoverwriteusefuldatabeforetheprocessorhashada
chanceto useit. We call this phenomenonearly prefetching. Sec-
ond, prefetchingis speculative, and by definition subjectto mis-
speculation. Should the prefetch engine choose the wrong
prefetchingpath, when traversinga tree for instance,we would
like to keep the length of this excursion to a minimum.

Craftinga generalsolutionthatwould throttleprefetchingactivity
seemscomplicated.First, we would probablyneedto keepa run-
ning log of prefetchesmadeon behalfof every load so that later
programinstancesdo not spawn prefetchesthat duplicateearlier
ones. Second,thismechanismwouldneedto detectdiscrepancies
betweenper-load accesssequencesof the processorand thoseof
theprefetchengine,andbeableto initiate properrecovery. Fortu-
nately, we have found that for our benchmarks,allowing the
prefetchengineto run arbitrarily far aheadis unnecessary. In fact,
prefetching a single instance ahead of a given load is sufficient.

To reasonaboutwhy this might beso,we revisit our list example
from figure 1(c), andconsiderthe questionof whethera prefetch
for 6b, triggeredby the completionof 6a, shoulditself trigger a
prefetchfor 6c. Therearetwo basiccasesto considerhere,andthe
answerfor bothis no. In thefirst case,thereis enoughwork start-
ing with 6ato fully overlapwith themisslatency of 6b. We there-
fore assumethat therewill be enoughwork to hide the latency of
6c if theprefetchis triggeredby thecompletionof 6b. Thereis no
advantageto triggering the prefetchany earlier. In the second
case,thereis not enoughwork andthe latency of 6b is only par-
tially hidden. Here, the program instruction and its intended
prefetchwill completeat thesametime,andit shouldmakenodif-
ference which one triggers the prefetch for 6c.

Of course,theargumentwe just gave is not thewholestory. It is
possiblefor different loop iterationsto have different execution
latencies,andit is possibleto “borrow” work from oneiterationfor

Figure 5. Prefetch example. (a) Block schematicof thePBand
PRQ. (b) A completedload probesthe CT, finds a potential
consumerandenqueuesa prefetch requestontothePRQ. (c) If
a datacacheport is free, theprefetch requestis dequeuedand
issuedto theprefetch buffer. Theprefetch buffer checksthefirst
level cache for the block, issuinga requestto the secondlevel
cache on a miss. (d) A load uses the prefetched block.
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use in another. Thesesituationsmay arise if the loop contains
someconditionalcode,in which casea recurrentloadmissduring
a shortiterationcanbehiddenusingwork from a previous,longer
iteration. Anotherpossibility is for structureelementsto be laid
out sequentiallyandpackedtwo or moreto a cacheline. Here,the
processorwould incur a miss followed by one or more hits.
Prefetchingonly a singleinstanceaheadpreventsus from exploit-
ing situations like these.

Despite this drawback, single instance prefetching has many
advantages,not the leastof which is a greatly simplified imple-
mentation. Enforcing single-instanceprefetching can be done
using a counterattachedto eachprefetchrequest,and doesnot
requireper-instructionprefetchingstate. Second,it issuesasingle
prefetch request per actual memory reference(allowing each
instructionto spawn prefetchesfor thenext two instanceswill gen-
erate two requestsfor every actual load), a feature that keeps
prefetchingoverheadlow andtrims thebandwidthrequirementsof
the correlationtable and prefetchbuffer. Finally, it limits errant
prefetch chains to a length of one.

4.4   An Example: Prefetching a Binary Tree

The purposeof this sectionis to provide a qualitative feel for the
operation of dependencebased prefetching. Specifically, we
examinehow dependence-basedprefetchinghandlesan in-order
binarytreetraversal(oftenusedin reductionoperations).In-order
tree traversalis often implementedrecursively (depthfirst) using
two inductionvariablesandthreeinstructions:onefetchesthe left
child, thesecondrestorestheaddressof thecurrentnodeafter the
left traversalhasfinished,andthethird fetchestheright child using
therestoredvalue. Theseinstructionsareassembledinto four cor-
relationswhich areshown in figure 6(a): (ll) left feedsleft (con-
tinue traversal down a left path), (rl) right feeds left (begin
traversaldown left path),(lr) left feedsright (only at leaf nodes),
and (sr) restore feeds right (going back up the tree).

Traversal, and consequentlyideal prefetching,proceedsin the
mannershown in figure6(b),prefetchesareshown next to thetree
andshadedto matchthecorrespondingcorrelation.Theprefetches
in this sequenceare issuedusing only correlations(ll), (rl), and
(sr), and prefetch left chains left-to-right and bottom-up. Our
mechanismissuesprefetchesusingall correlationsasshown in fig-
ure 6(c). The resultingeffect is a left-to-right, top-down prefetch
order which we callwavefront.

Wavefront correctly prefetchesdown the tree but along the way
performsa lot of uselessprefetcheswhich correspondto traversal
backup the tree. This occursbecausethe left-feeds-rightcorrela-
tion is assumedto hold at all levels of the tree,even thoughit is
only valid at theleaves. We expecttheoverall effect of wavefront
prefetchingto be positive. Nearthe bottomof the tree,all nodes
arelikely to fit in theprefetchbuffer makingorderirrelevant. Near
the top, wavefront will producesomeearly prefetches.However,
thesewill not befollowedpastthefirst node. Wavefrontprefetch-
ing shouldtoleratesomelatency for at leasthalf thenodes(all the
left children),with addedbenefitneartheleavesof thetree. A pos-
sible improvementto our schemethatwould help in treeprefetch-
ing would allow it to unlearn or turn off the left-to-right
correlation, and eliminate these uselessrequests. We do not
explore such an improvement in this paper.

5   Evaluation

In this section,we provide experimentalevidenceof theeffective-
nessof ourproposedmechanism.Section5.1describesourexper-
imental framework, our benchmarkssuite and our simulation
environment. In section5.2, we useexecution-driven functional
simulationto evaluateour mechanism’s ability to correctlypredict
LDS accesses,measuringprediction accuracy as a function of
PPWandCT sizes. We usetheseto establishanaccurateyet rea-
sonablepredictor configuration. In section5.3 we measurethe
performance impact of dependencebased prefetching using
detailed timing simulations,and comparethe speedupsagainst
other, simpleprefetchingmechanisms.Finally, in sections5.4and
5.5, we take a closer look at prefetchingitself, and try to gain
insight into our performancenumbersby measuringits efficiency,
overhead, and interaction with the memory system.

5.1   Experimental Framework

OurexperimentswereperformedusingtheOldenpointer-intensive
benchmarksuite[20]. Thebenchmarksweremodifiedby handto
executeon a single processor, and all CM-5 specific code was
removed. We compiledthe programsfor the MIPS-I architecture
using the GNU GCC 2.7.2compilerwith optimizationflags -O2
and-funroll-loops. Many of thebenchmarkscontainlengthy, allo-
cation-dominatedinitialization phasesthat are not sped up by
dependence-basedprefetching;we did not optimize or discount
thesein any way. Finally, thesuggestedinputsetsfor somebench-
marks were changed to produce longer execution samples.

For our simulations,we usethe SimpleScalarsimulator[2]. We
modela 4-way superscalar, out-of-orderprocessorwith a conven-
tional five stagepipeline that allows a maximumof 32 in-flight
instructions. The branchunit usesa hybrid schemewith an 8K-
entry selectortable choosingbetweenthe outcomesof an 8K-
entry, 10bit historygshareschemeandan8K-entry2-bit predictor.
Targetsarestoredin 2K entry, 4-way BTB. The processorhas4
integerALUs, 4 floatingpoint adders,andsingleintegerandfloat-
ing point multiply/divide units. ALU operationscompletein sin-
gle cycle, multiply and divide have 3 and 20 cycle latencies.
Floatingpoint operationstake 2 cyclesfor addition,4 for multipli-
cationand24 for division. The adderis pipelined. The memory

Figure 6. Tree traversal and prefetching. (a) Four correlations
representing tree traversal. (b) Ideal tree prefetching (c)
Wavefront tree prefetching performed by our mechanism.
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systemconsistsof 32KB, 32-byteline, 2-way set-associative first-
level instructionanddatacachesanda 512K, 64-byteline, 4-way
set associative sharedsecondlevel cache. The first level data
cachecan be accessedin a single cycle, the secondlevel cache
latency is 12 cycles to the first word and an additionalcycle for
eachword thereafter. Latency to mainmemoryis 70 cycles. The
processor uses 2 read/write ports and a 16 entry load-store queue.

Ourprefetchingconfigurationincludesa128entryPPW, anda256
entry CT. Prefetchrequestswait on a 32 entry PRQ,andareser-
viced only on cycleswheneitherof the datacacheports is avail-
able. We usea 32 entry, 1KB fully associative PB with 4 read/
requestportsandanaccesslatency of 1 cycle. ThePB sharesthe
off-chip databus with the instructionanddatacaches;contention
on the bus is modeled.

5.2   Address Prediction Accuracy

We measuretheability of our mechanismto capturedependences
andusethemto predict future LDS addresses.At this point, we
are not interestedin timing or even the utility of the prefetches
themselves. We simply count the fraction of all dynamicpointer
loadsfor which,at thetime they werereadyto issue,a correlation
waspresentin theCT thatboth: (i) namedthepointerloadasthe
consumer, and(ii) would have producedthecorrectaddress.Fac-
tors that determinepredictionaccuracy are the maximumdetect-
able load dependencedistance,which preventsthe detectionand
predictionof pointerloadswith longerdependences,andthework-
ing setsizeof thecorrelationsthemselves. Themaximumdetect-
able dependencedistanceis determinedby the size of the PPW,
while the correlationworking set that can be efficiently repre-
sentedis givenby thenumberof entriesin theCT. Thispartof the
evaluationallows usto estimatetheimplementationresourcesthat
shouldbedevotedto thesecomponentsin orderto achieve reason-
ablepredictionaccuracies.Figure7 shows (a) addressprediction
accuracy asa functionof PPWsizegivenaninfinite CT, and(b) as
a function of CT sizewith a fixed 64-entryPPW. We evaluatea
fully-associative CT to eliminate aliasing effects.

As we claimedearlier, a dependence-basedrepresentationhasthe
ability to predictpointerloadaddressesnearlyperfectly. Oncethe
addressgenerationprocess(producer)for a givenpointerloadhas
been identified, addressesfor all future instancesof the same
instructioncan be accuratelypre-computed. The nearly perfect
prediction accuracieswe achieve testify to the stability of the
dependencerelationships.Therelatively smallstructuresrequired
to achieve high accuracy, 64 PPW entriesand 256 correlations,
implies that the correlation working set is small.

5.3   Speedups

We now measurethe performanceimpact of dependencebased
prefetching. Thebasemachinefor theexperimentis describedin
section5.1. We implementtwo flavors of the dependence-based
prefetchingscheme.Thefirst is theonewe have beendescribing
all along. The secondis augmentedwith a coarseconfidence
mechanismthat turns off prefetchesif the correspondingstatic
load hashit in the first level datacache8 or moretimesin a row.
Thesespeedupsareshown in aslight anddark gray bars,respec-
tively in figure8. Wecomparethesespeedupsagainstanaive form
of prefetching,namelya systemthat hastwice the on-chip data
cacheanduses64, ratherthan32,bytelines. Speedupsassociated
with this double data cache configuration are shown in black.

Dependence-basedprefetchingimproves the performanceof sev-
eral benchmarkssignificantly, while having a slight negative per-
formanceimpactin only onecase,voronoi. Theaveragespeedup
for a 1KB prefetchbuffer is 10%, significantlyoutperformingan
extra 32KB of datacache.More significantspeedupsareobtained
for health, em3d, mst, andperimeter.

Em3d,health, andmstarelist-basedprogramswith relatively poor
cachebehavior. Dependence-basedprefetchingeasilycaptureslist
traversalbehavior andoverlapsthe elementaccesslatencieswith
the available work. Performanceimprovementfor thesebench-
marksis roughly proportionalto the amountof work in a single
loop iteration. Mst’s lists areusedto implementbucketsin a hash
tableandthe loopsthat traversethemaretight andunableto hide
much latency. Performanceimprovementin mst is due to many
partially hiddenmisses. Eachiterationof em3d’s main loop con-
tainsa smallerloop of dependentfloatingpoint loads(datapointer
loads). This work in eachiterationis sufficient to hidethelatency
of the recurrentloop induction access,and additional benefit is
gainedby prefetchingthefloatingpointdataattachedto eachnode.
Theouterloop in healthcontainsquitea bit of computation,but it

Figure 7. Address prediction accuracy. Percentage of
accuratelypredictedpointer-load addresses.(a) An infinite CT
andPPWsizesof 1,4,16,and64 (black). (b) A 64-entryPPW
and CT sizes of 4,16,64 and 256 (black).
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Figure 8. Performance impact of dependence-based
prefetching. Speedupsof dependencebased prefetching
without (lt gray) and with (dk gray) a coarse confidence
scheme, compared to a systemthat prefetchesby doublingthe
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is the tight inner loops that are responsiblefor the majority of
misses.Thebenefitwe seein this programis dueto theterriblea
priori  miss rate and a high dose of partially covered latencies.

Perimeter uses a quadtree and benefits from the wavefront
prefetchingeffect explainedin section4.4. Bisort, treeaddandtsp
usebinary treesas their primary datastructure,and also benefit
from the sameeffect. Perimeterseesa larger improvementthan
theothersbecausemorework is availablefor overlappingat each
recursive step. Treeaddhassolittle work at eachrecursive step,in
fact,thattheonly benefitcomesfrom thewavefronteffect nearthe
leavesof the tree. Whenfollowing the correcttraversal,the pro-
cessoris issuingrequestsas fastas the prefetchengine. Bh and
poweraremultiway-treebasedprograms,but both start out with
extremely good cache behavior.

Voronoi usespointers,but mostof its mostof its cachemissesare
causedby arrayandscalarloads. Most prefetchesissuedduring
executionareuselessand,combinedwith a low initial miss rate,
contributelittle otherthanbuscontention.Theresulting2% slow-
down promptedour experimentwith the confidencemechanism.
The addition of confidence eliminates these unnecessary
prefetchesand lifts our impact on voronoi back into the positive
range.However, it alsoeliminatesmostof theusefulprefetcheson
treeadd, cutting our gains on that benchmark. Experimentation
with more elaborateconfidencemechanismsis warranted,but is
outside the scope of this work.

5.4   A Closer Look at Prefetching

In this section,we attemptto gain someinsightsinto the perfor-
manceof dependence-basedprefetchingby takinga closerlook at
prefetchingactivity. We begin by presentinga breakdown of all
cacheblocksprefetchedby our mechanismalongtwo axes:block
origin (i.e., level in thememoryhierarchy) andblockutility. These
breakdownsareshown perbenchmarkin figure9. Thebaron the
left representsblocksthatwereresidentin thefirst level cache,the
one on the right thosethat were fetchedfrom the secondlevel
cacheandpotentiallymain memory. The bottom,darker, portion
of eachbar representsthe fractionof blocksthatwereused. The
combinedheightsof the two barsadd up to 100%,but we split
them for clarity.

Thedarkportionof thebarson theright representstheusefulwork
performedby dependencebasedprefetching.This is thefractionof
blocksthatwereprefetchedfrom thesecondlevel cacheandused.
This category accountsfor nearlyhalf of all prefetchedblocksin
all benchmarksexcept for treeadd, and dominatesthosebench-

marks for which the greatestperformanceimprovement was
observed,em3d, health, mst, andperimeter. Thefactthis category
is so dominantmeansthat dependencebasedprefetchingis both
accurateandefficient. The only applicationfor which this block
distribution doesnot hold true is treeadd, which has very little
work ateachrecursivestep. Theresultis that,exceptnearthebot-
tomof thetree,theprefetchenginecanonly repeatthework of the
processor, it cannot prefetch ahead.

The left bar in eachseriesrepresentsthe prefetchingoverheadin
somesense.Thesearetheprefetchedblocksthatwerefoundin the
first level cacheandcopiedinto theprefetchbuffer. Theseblocks
arenot entirelyuseless,sinceoncein theprefetchbuffer they may
spawn othermoreusefulprefetches.Moving cacheblocksinto the
prefetchbuffer hastwo otherpositive effectswhich areillustrated
by the fact that theseblocksareactuallyusedvia thebuffer. One
possibility is that theblock mayhave beensubsequentlydisplaced
from the first level cache,in which casethe prefetchbuffer is
assumingtheroleof pointer-loadvictim buffer. Thesecondpossi-
bility is that the prefetchbuffer wasusedbecausethe datacache
portswerebusy, in which casethe prefetchbuffer actsasa band-
width amplifier. We do not separatethe contribution of the two
effects here.

5.5   Memory System Performance Metrics

Fromthememorysystemstandpoint,we quantifyboth the(hope-
fully) positive aspectsandthe overheadin the form of additional
bandwidthconsumed.We begin by measuringthe latency toler-
atedby prefetchedblocks. Here,datacachemissratesdo not tell
thewholestorysincethelatency of many pointerloads,aswell as
otherloadsthataccessonpointerloadcachelines,maybepartially
hidden.  Instead, we present two more telling metrics.

Prefetchcoverage measuresthe fraction of would-beload misses
servicedby theprefetchmechanism.Theheightof eachbarin fig-
ure 10(a) is the sum of the percentageof would-be load misses
whoselatency was fully toleratedby prefetching(dark, bottom
portion),andthosewhoselatency wasonly partially hidden(light,
top portion). For eachbenchmark,the bar on the left represents
pointerloads,andthe bar on the right all loads. Sincethe bar on
the right samplesmore loads than the one on the left, we may
expect its overall height to be shorter. However, if enoughnon-
pointer loadsbenefitfrom prefetching,by virtue of being on the
samecacheline asa pointertarget for instance,thentheeffective-
nessfor loadsin generalwill be higher than for pointer loadsin
particular. As we predictedin section3.2, the shortdependence
distancesdo not provide muchwork for overlapping,andconse-
quently, many loadmissesareonly partiallymasked. However, for
the benchmarksthat showed the greatestspeedups,as many as
75% of all would-be load misses saw some latency reduction.

Prefetchcoverageis only a histogram;it doesnot sayhow much
latency wastoleratedfor eachservicedloadnor what that latency
is in relationto theotherloads. For this reason,we alsomeasure
reduction averageload wait time, which representsthe overall
improvementin memorysystemperformance.Normalizedaver-
age load latenciesare shown in figure 10(b), again with pointer
loadson the left (in gray) andall loadson the right (black). Not

Figure 9. Prefetched block breakdown. Blocksprefetchedfrom
the first level (left) and secondlevel (right) caches. Useful
blocks (bottom, dark), and unused blocks (top, light).
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coincidentally, the sharpestimprovementscorrespondto those
benchmarksfor which dependencebasedprefetchingperforms
best. For these,the averageload wait time wascut by 25%. On
several others, bisort and tsp, a significant decreasein load
responsetime is not translatedinto a muchhigherexecutioneffi-
ciency. For thesebenchmarks,mostof the usefulprefetchesare
associatedwith traversalanddataloadsthat do not executealong
the critical path. Voronoi is theonly programthat experiencesan
increase in load latency.

We quantify the overheadof dependence-basedprefetching in
termsof increasein thenumberof accessesto theon chip andsec-
ondlevel datacaches,aswell asto mainmemory. Theseincreases
areshown in figure 11. The dominatingoverhead,althoughit is
certainlytolerable,is the increasedbandwidthdemandon thefirst
level datacacheports. This increase,anaverageof 15%acrossthe
benchmarks,is aproductof ourdecisionto checkprefetchrequests
for residencein thefirst level cache,beforesendingthemoff-chip.
This policy greatly reducesthe turn-aroundtime for prefetch
requeststhat are alreadycacheresident,and more importantly,
allows dependentusefulrequeststo issuemuchmorequickly. We
reiteratethat this overheadis not seenby the processorsincethe
ports are used for prefetching only when they are otherwise idle.

Anotherbenefitof checkingblocksfor datacacheresidencebefore
issuinga requestoff-chip is a substantialreductionin second-level
cachebus traffic. The increasewe observe in secondlevel cache

accesses,anaverageof 4%, is slight andreinforcesour belief that
our mechanismis very efficient andaccurate.The lack of a more
substantialincreasemeansthat mostprefetchesare indeeduseful
and simply take the place of subsequentreads resulting from
would-befirst level misses. The4% increaseandthe2% increase
in memorybus traffic is dueto our mechanism’s inability to pre-
ciselymimic thetraversalof non-lineardatastructures,suchasthe
onesin bh andvoronoi, andthe resultingearly prefetches.These
figuresshow thateven in thecaseof serializedlatencies,memory
bandwidth can be readily traded off for latency.

6   Related Work

Much work hasbeendonein theareaof dataprefetching,both in
softwareandhardware. Compileroptimizationsthat improve data
locality [13] like blockingandloop interchangecangreatlyreduce
the needfor prefetching. However, thesefundamentallyrely on
compile-timeknowledgeof the dataset layout andits interaction
with the cache. Linked structuresare not often laid out by the
compiler, andareincompatiblewith theseoptimizations.Software
pipelining [10] tolerateshigh latency loadsin loopsby increasing
the distancebetweenthe load and instructionsthat useits value.
While not requiringspecificlayout information,softwarepipelin-
ing relieson theability to quickly generateaddressesfor arbitrary
structureelements. LDS accessunderminesthis critical require-
ment. Generalpurposesoftware prefetching[17][11] tolerates
load latency by schedulinga matchingspeculative non-faulting
load[21] far in advance. Pointerchasingrequiresthat theaddress
for a speculative LDS load be generatedusinga chainof depen-
dentloads. Thecritical pathof thischainandits relationshipto the
original load greatly limits the schedulingscopeof the prefetch,
and consequently, the amount of latency that can be hidden.

Luk and Mowry [12] proposedand evaluateda greedycompiler
algorithmfor schedulingsoftwareprefetchesfor linkeddatastruc-
tures. They showed this schemeto be effective for certainpro-
grams,citing instructionoverheadand the generationof useless
prefetchesas performancedegradationfactorsfor others. Their
algorithm uses type information to identify recurrent pointer
accesses,includingthoseaccessedvia arrays,andmayhaveadvan-
tagesin tailoring a prefetchscheduleto a particulartraversal. Our
hardware scheme,on the other hand,doesnot incur instruction
overhead,andcanprefetchnon-pointerdatathat residesin linked
structures.In addition,it providesdynamicdetectionandsuppres-
sion of unnecessaryprefetches.We expectthat this samemecha-
nism canbe integratedwith a compiler-basedprefetch-generation
scheme to improve resource consumption.

Luk andMowry [12] presenteda casefor history-pointerprefetch-
ing, which augmentslinked structure nodes with prefetching
pointerfields, anddata-linearization,in which LDS areprogram-
matically laid out at runtimeto allow sequentialprefetchmachin-
ery to capturetheir traversal. While theseschemeshave potential
for speedup,they alsoincur seriousoverheadsin theform of runt-
ime storageandadditionalcodeneededto maintainhistorypoint-
ers and linear data layout, respectively. Both are difficult to
automate.

Figure 10. Memory performance improvement metrics. (a)
Percentage of would-beload missesservicedby the prefetch
buffer. Fully hidden misses(bottom of each bar), partially
hiddenmisses(top),pointerloads(left bar) andall loads(right
bar). (b) Normalizedaverage latencyfor pointer loads (left,
gray) and all loads (right, black).

Figure 11. Memory bandwidth overhead. Memorybandwidth
usage increases:first level data cache (lt gray), secondlevel
cache (dk gray) and main memory (black).
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Anotherclassof softwaresolutionsto this problemutilizescache-
consciousdataplacement[5], theruntimeallocationor reorganiza-
tion of LDS nodes. Clustering techniquespack adjacentLDS
nodesinto a single (if possible)or consecutive cachelines and
improve the spatial locality and arithmetic regularity of LDS
access.Coloringtechniqueseliminateconflictsthatoccurin com-
mon traversals. Data-placementtechniquescan dramatically
improve performance,evenwhenlittle or no work is availablefor
latency overlapping. However, they incur a potentially high re-
organizationoverhead,makingthemmostlysuitablefor relatively
static structures. In addition, they are not predictive and do not
hide latency resultingfrom capacitymisses. Finally, they require
knowledgeof the cacheparameters.Dependence-basedprefetch-
ing will maskcapacitymisseswhenotherwork is available,and
incurs no explicit overhead.

A similar volumeof researchhasbeendonein hardwareprefetch-
ing [3], anddynamictechniquesfor addressprediction[7]. Most
of these,such as streambuffers [9], referenceprediction table
(RPT)[4] and the subsequentTango [19] analyze address
sequencesfor single instructionsarithmetically, andaredesigned
to dealprimarily with stridedaccesspatterns. JosephandGrun-
wald [8] describeMarkov predictorswhich representcachemiss
sequencesin the form of a probabilistictransitiontable. Markov
predictorsarecapableof capturingcomplex patterns,but arenone-
thelessaddressbased,andrequirestorageproportionalto thenum-
ber of distinct entries in the miss stream.

Mehrotra and Harrison [14] proposedsimple extensionsto the
RPT aimed at capturing recurrentaccesspatterns. They aug-
mentedthe RPT with a RecurrenceRecognitionUnit (RRU), a
finite statemachineableto recognizesinglelevel recurrences,such
astheonesusedin list traversal. TheRRU is anefficiently imple-
mentedmechanismthat leveragesstructuresusedfor arithmetic
prefetching,andcaptureslist access,the mostcommonLDS tra-
versal. Like theRPT, theRRU analyzesaddressstreamson a per-
instructionbasis,anddoesnot capturedependencebetweenmulti-
ple instructionsthat arise in tree and graph traversals. Depen-
dence-basedprefetchingcancaptureandprefetchall pointerloads.
However, it has a potentially higher implementation cost.

Theuseof datadependencebetweeninstructionsasaninformation
primitive and unit of prediction was introducedby Moshovos,
Breach,Vijaykumar and Sohi [15], and later refinedby Chrysos
andEmer[6]. In theinitial work, dependencepredictionwasused
to synchronizeloads,avoiding misspeculationdue to unresolved
dependences.TysonandAustin [23] andMoshovosandSohi[16]
broadenedthescopeof useof dependenceinformation. They pro-
poseto dynamicallyandtransparentlyconvertaddress-basedactiv-
ity to dependence-basedactivity, to reduce memory
communicationlatency. We arenot awareof any work that uses
instruction dependence speculation to prefetch.

Other relatedworks include the static access/executedecoupling
proposedby Smith [22] and subsequentdynamic dependence-
baseddecoupling[18]. Dependence-basedprefetchingspecula-
tively decouplesthe LDS traversalportion from the remainderof
the program, but does so selectively based on address dependence.

7   Summary and Future Directions

We introducea dependencebasedmechanismthat dynamically
capturesandrepresentspointeraccessbehavior, andusesthe rep-
resentationfor prefetchinglinked datastructures(LDS). Depen-
dence-basedanalysisdoesnot rely on regularitiesin the address
stream,capturing addressgenerationactivity explicitly. As a
result, it successfullypredictsLDS accesssequencesthat exhibit
little or no arithmeticpatterns.We show thata dependencebased
mechanismcan captureand correctly predict nearly all of the
accessesperformedby anactualLDS traversal. A prefetchscheme
usingthis mechanismcanboostperformanceof pointer intensive
programs by 1% to 25%.  We make the following contributions:

(i) We characterizepointerloadsandshow that,in a suiteof
pointer-basedprograms,theseare responsiblefor a sig-
nificant and often disproportionatefraction of the data
cachemisses.We categorizepointerloadsinto data,tra-
versal,andrecurrentloadsanddescribehow the latency
associatedwith membersof eachcategory may be toler-
ated.

(ii) We presenta new dependence-basedmechanismthatcan
correctly predict future LDS accessesby capturingand
mimicking the LDS traversalbehavior of the executing
program. Our schemeis basedon the identificationof
dependencerelationshipsbetween loads that produce
LDS elementaddresses,and loads that consumethem.
We show that thesedependencerelationshipsare stable
andhaveasmallworkingset,leadingto highaddresspre-
diction accuracies.

(iii) We show thata dependence-basedrepresentationenables
aggressive, greedy prefetching of linked structures.
While not strictly overcomingpointerchasing,this mode
of executioncanoverlapa large fraction of the available
work with serialized latencies.

Theimplementationwe proposeis a singlepoint in anunexplored
designspace. Many otherdesignsarepossible,for exampleones
thatprefetchdirectly into thecache.Thereis potentialwork in the
interpretation of the dependencegraphs and prioritization of
prefetchoperations.TheCT maybeusedto actively classifyload
instructionsaccordingto thenumberandtypeof outgoingdepen-
dences. This classificationschemecan drive prefetchingdeci-
sions,aswell asschedulingpolicies. In section4.4,we described
theproblemsassociatedwith treetraversal,andoutlinedapotential
solution involving the dynamicdisablingof one dependence.A
dynamicimplementationof suchamechanism,or anextendedver-
sion that can prune arbitrary prefetch requestsand improve
resourcecontentionand PB pollution, is a possibility as is the
designof an efficient schemeto allow the prefetchengineto run
further ahead.

Futurework we find mostexciting, however, dealswith theexplo-
ration of novel microarchitecturaltechniquesenabledby dynami-
cally collecteddependenceinformation. Capturing linked data
structureaccessandusing it for prefetchingis a first stepin this
direction. Pointerdependencesareeasyto find sincetheaddresses
flow from producerto eventualconsumer, unchangedthroughreg-



istersandspills to andfrom memory. Thereareotherdatastruc-
tures,sparsematricesandindex treesfor instance,whosetraversal
doesnot yield addresssequenceswith arithmeticproperties. The
natureandorganizationof mechanismsthat cancaptureandeffi-
ciently representand exploit theseaccessbehaviors is an open
question. Finally, other usesof dependenceinformation may be
possible,in areasunrelatedto prefetchingin particularor memory
system management in general.
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