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Abstract

This work proposes energy efficient memory hierarchy
lookup structures aimed primarily at relatively large,
higher-level on-chip caches. The mechanisms proposed
provide location information for a large fraction of cache
references and eliminate the corresponding accesses to a
larger, slower and less energy efficient tag array. A key
contribution of this work is the concept of dual-grain
tracking where a two-level, two-grain approach is used to
dynamically focus a set of few tracking resources on
high-payoff memory areas. A coarse-grain tracking
structure uses imprecise information to identify accesses
to new regions of memory and then directs the allocation
of a precise, fine-grain tracking structure. We propose
RegionTracker, a simple implementation of dual-grain
tracking which can be easily partitioned for optimizing its
power and latency, and which does not use cascaded
lookups or impose any restrictions on cache placement.
We demonstrate that RegionTracker can significantly
reduce lookup energy for various L2 caches. For
example, we show that a RegionTracker that uses just
6.9% of the storage used by a conventional tag array and
that can track just 128 8Kbyte regions, is able to reduce
L2 lookup energy by 35% on the average for a 4MB L2
cache. We also demonstrate that RegionTracker can
complement conventional, demand-driven tag set buffers
and that it provides better energy savings.

1  Introduction
This work proposes simple mechanisms to reduce

cache lookup energy in higher level (L2 and L3) on-chip
caches while targeting applications with relatively large
memory footprints. A number of application,
semiconductor technology and microarchitectural trends
suggest that the contribution of tag lookup power to
overall processor power will increase in the future. Tag
energy will increase as higher level caches become larger
and are accessed more frequently.

The size of higher level caches will increase as a result
of application and semiconductor technology trends.
Historically, application memory footprints and working
sets for “typical” applications have grown and evolved.
At the same time, the gap between processor and memory

speeds has also grown. Larger on-chip caches help reduce
the combined effects of these two trends.

Other semiconductor and microarchitecture trends will
result in an increased number of accesses to higher level
caches. Specifically, although semiconductor technology
improvements have lead to smaller and faster transistors,
corresponding increases in processing speeds have
limited the amount of SRAM storage that can be accessed
within a reasonable number of clock cycles. This
combines with the low latency requirement of first level
caches to limit the size of L1 caches. This limitation
suggests that higher level caches will be accessed more
often. Recent trends towards simultaneous and fine-grain
multithreaded cores, as well as towards chip-
multiprocessors have also resulted in larger high level,
on-chip caches with increased traffic. Hardware and
software prefetching further increase the demand for
cache bandwidth. Finally, this increased cache traffic is
becoming unbalanced as some requests, such as many
coherence and prefetching requests, only access the tag
arrays. 

This works proposes RegionTracker, a complexity
effective mechanism for increasing the energy efficiency
of cache lookups. RegionTracker supplements the tag
array, providing the same information for many lookups
and thus eliminate man tag array accesses. RegionTracker
uses two simple structures. The first structure tracks
which coarse grain regions currently have blocks cached.
It uses this information to detect the first access into
newly touched regions. A second structure maintains
fine-grain location information for individual blocks
within regions (i.e., where the blocks are cached), but
only for a small number of regions, as instructed by the
coarse-grain tracking structure. As we explain in more
detail in Section 2, typical application behavior is such
that these two structures can be used to locate the blocks
referenced by many cache accesses, exploiting the same
behavior that makes small translation look-aside buffers
effective. 

As Section 3 explains, the implementation of
RegionTracker is straightforward and imposes no
additional restrictions on what can be cached
simultaneously; it also requires no changes to existing
cache implementations and avoids associative lookups

Jason Zebchuk and Andreas Moshovos
Department of Electrical and Computer Engineering

University of Toronto
{zebchuk, moshovos}@eecg.toronto.edu
— 1 —



and updates. Imprecise information is used by the coarse-
grain tracking structure, allowing a simple
implementation at the price of capturing most relevant
requests but not all. Key to the energy efficiency of
RegionTracker is that each access precisely addresses a
very small portion of the RegionTracker structures.
Although RegionTracker can also potentially reduce
lookup latency and improve performance, this work
focuses on RegionTracker’s ability to increase lookup
energy efficiency.

RegionTracker is an example of mechanisms that rely
on the concept of dual-grain tracking, or DGT for short.
DGT mechanisms track block residency information at
two levels of granularity so that a relatively small
structure can efficiently satisfy many cache lookups. 

This work makes the following contributions: (1) it
introduces the concept of DGT; (2) it proposes
RegionTracker, an energy efficient implementation of
DGT, and demonstrates that practically sized
RegionTrackers can reduce energy significantly (e.g.,
35% of lookup energy for a 4Mbyte cache with a
RegionTracker that requires just 6.9% of the resources
required by a conventional tag array); (3) finally, it shows
that RegionTracker provides better energy reduction than
tag set buffers.

The rest of this paper is organized as follows: In
Section 2 we introduce the DGT concept and briefly
discuss how lookup energy can be reduced. Section 3
presents the RegionTracker implementation. We review
related work in Section 4. In Section 5 we demonstrate
RegionTracker’s utility, and compare it to an existing
technique for tag lookup energy reduction. Finally, in
Section 6 we summarize this work.

For clarity, and without the loss of generality, we will
use the term tags for conventional memory hierarchy
lookup structures. The techniques we discuss, however,
are applicable to other recently proposed lookup
structures such as the centralized lookup arrays of the
NuRapid memory hierarchy [10]. We also restrict our
attention to level-two caches, however, the methods
proposed should be directly applicable to even higher
cache levels. Finally, all L2 caches used in this study are
8-way set-associative because through experimentation
we found that our techniques are not noticeably sensitive
to associativity. We also assume that the L2 uses 128-
byte blocks (a commonly used size today).

2  Dual-Grain Tracking 
RegionTracker (the implementation details are given in

Section 3) achieves high energy efficiency via a two-
level, dual-grain tracking (DGT) approach where the first
level uses coarse-grain tracking and the second level uses
fine-grain tracking for only a few, large memory regions.

A region is a large continuous, aligned memory area of
power of two size.

The coarse-grain level aims at detecting newly touched
regions that have no blocks currently cached. It does so
by detecting first misses. An access for block B within
region R sent to cache C is a first miss if and only if no
block within region R, including B, is currently cached
within C. Once a first miss is detected, the fine-grain
tracking level starts tracking the location of all blocks
within the region. This is done by recording whether or
not a block is cached, and if so, in which data way it is
cached. This requires only a few bits per block, as
opposed to a full tag. It is important to observe that when
a first miss is detected, complete location information is
also detected for the whole region since none of its blocks
are currently cached. Thus, a single access uncovers
information for many blocks, allowing the fine-grain
tracking level to track all blocks as they accessed. This
property eliminates the need for an initial search of the
L2, and makes DGT effective despite a lack of substantial
temporal locality in the L2 stream (temporal locality is
typically absorbed by the L1 cache).

RegionTracker was designed primarily to exploit a
behavior that is typical of many applications with large
memory footprints. Specifically, although these
applications access a very large set of regions over their
lifetime, they typically operate on a few memory regions
at any given time. The first time an application accesses a
region, it incurs a first miss, giving RegionTracker an
opportunity to track subsequent references within that
region. Assuming that only a few regions are accessed at
a time, RegionTracker should be able to track them all
successfully using few resources. Much later, after many
regions have been touched, a region may be accessed
again. Given that the application has a large memory
footprint, it is likely that all previously accessed blocks
within the region have since been evicted from the cache
as a result of capacity and, to a lesser extent, conflict
misses. Accordingly, another first miss will occur and
RegionTracker again has the opportunity to detect it and
start tracking the region. 

2.1  Reducing Lookup Energy with DGT
RegionTracker impacts energy and latency as

summarized in Table 1. Prior to accessing the tag array
for each cache lookup, RegionTracker is examined.
Ideally, RegionTracker provides sufficient information to
completely avoid the tag access. This assumes an in-
series tag and data array organization for the L2 where
the RegionTracker is accessed first and then the tags are
accessed only if needed, and finally a single data way is
accessed. This is the norm in commercial designs because
it reduces power, e.g., [6]. We define a hit in
RegionTracker as an access which indicates definitively
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that the requested block is either not in the cache, or is
located in a specific cache way. In the first case, only a
single way of the tag array needs to be accessed in
addition to replacement tracking information to determine
and update the tag that will be replaced. In the latter case,
there is no need to access the tag array at all. A lookup
miss occurs when RegionTracker provides no precise
information. In this case, more energy is used as the tag
array has to be accessed after the RegionTracker. 

3  RegionTracker Design and Application
The RegionTracker implementation of DGT studied in

this work consist of two structures: (1) the Cached
Region Hash or CRH, and (2) the Cached Block Vector,
or CBV. The CRH is used to detect the first miss into a
region and is identical to the CRH proposed in [24]. The
CBV tracks the location of all the blocks within the few
regions that are currently fine-grain tracked. The
organization of both structures is shown in Figure 1. Both
structures are indexed using parts of the incoming
address. Without loss of generality, in this section we
assume a 2Mbyte L2 cache, 42-bit physical addresses and
8Kbyte regions. The relevant parts of the incoming
address are a unique region number (bits 41 through 13),
and the block offset within the region (bits 12 through 7).
The lower seven bits are the byte offset within a block
and are not used by any RegionTracker structures. We
assume only physical addresses are used with
RegionTracker. 

3.1  Cached Region Hash
The CRH keeps track of those regions that have blocks

currently cached. We opt for a simple Bloom-like
filter [5] which provides an imprecise representation of
the set of regions that are currently cached. It consists of
a table of counts which are incremented on each block
allocation, and decremented on each eviction. The CRH
is indexed using the region number of the block being
allocated or evicted. In this work, the index is simply
computed as a sufficient number of bits starting from the
least significant bit in the region number (e.g., bits 13
through 22 for a 1K entry CRH); however, other indexing
functions could be used. This simple, imprecise
implementation allows us to use a very small, and hence
energy and latency efficient structure to capture most first
misses. Specifically, the CRH represents a superset of all
regions that currently have blocks cached. The CRH can

also easily be partitioned to further improve energy
efficiency.

When a CRH counter is read, there are two possible
outcomes. A counter value of zero indicates a first miss to
a region. A non-zero counter value indicates that some
portion of that region may be cached. The uncertainty
results from potential aliasing of different regions onto
the same CRH entry. When a first miss is detected,
RegionTracker allocates a CBV entry for the region and
starts fine-grain tracking of the location of all blocks in
that region.

3.2  Cached Block Vector
The CBV is a table where each entry comprises a

region tag and a set of information bits for each block
within the region. For example, with 8Kbyte regions and
128-byte cache blocks, each CBV entry contains 64 block
information fields. In the configurations considered in
this work, the information fields encode whether or not
the block is cached and where. For an 8-way set-
associative cache, four bits are sufficient per block to
encode the nine possible states: “not cached” or “cached
in way N” where N ranges from 0 to 7. Depending on the
cache organization, other information may also be stored
in the information fields. For example, the CBV might
store status or coherence information, or in a NuRapid
memory hierarchy [10], the exact sub-array index can be

Table 1. How RegionTracker (DGT column) impacts power and 
latency and which parts of the conventional L2 tag array have 

to be accessed.
DGT L2 Energy Latency L2 Tag Access
miss miss increased increased all ways
hit miss decreased decreased single way + replacement information

miss hit increased increased all ways
hit hit decreased decreased status bits for one way as needed

Figure 1: (a) CRH and CBV organization for 8Kbyte regions, 42-
bit physical addresses, 128-byte blocks and an 8-way set-associative 
cache.(b) An alternative fully-associative CBV implementation that 

results in lower power and latency.
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stored in the CBV. In the implementations considered in
this work, status information is not stored in the CBV.

To access the CBV, the region number is compared
with the region tags. If a matching entry is found, the
information contained in the corresponding block field
can be used to access the appropriate data array. The
CBV is updated when blocks being tracked are allocated
or evicted from the cache so that the CBV block
information remains coherent. CBV entries are evicted
when space is exhausted and a new entry has to be
allocated following the detection of a first miss. Various
replacement policies are possible, but this work uses an
LRU replacement algorithm. While Figure 1 shows a
fully-associative CBV, other organizations are possible as
the CBV can be partitioned both vertically and
horizontally to reduce energy and latency. Although we
do not present the results here, for the programs we
studied an 8-way set-associative CBV achieves coverage
very close to a fully-associative CBV (within 2%).
Further CBV optimizations are possible to reduce energy
and latency, but the details are beyond the scope of this
work. We note that only four bits need to be read out of
the CBV array in Figure 1. Accordingly, only four
bitlines are discharged during reads.

3.3  Energy and Storage Requirements
Since each RegionTracker access uses less energy than

a conventional tag array access, using RegionTracker can
reduce the total lookup energy. Section 5.3 describes the
models used to calculate energy used by tag arrays and
the RegionTracker structures. The various RegionTracker
configurations presented in this paper use between 12%
and 16% of the energy of the tag array for each access. 

The low energy consumption results from two factors:
(1) small size, and (2) small number of bits accessed. The
RegionTracker configurations used in this work require
between 0.8% and 18% of the storage of the L2 tag array.
Appendix A provides a detailed discussion of the storage
requirements. In addition to its small size, RegionTracker
also benefits from only accessing a few bits on each
access. For the configurations studied in this work, each
CRH entry is only 10 bits, and only 4 bits in the CBV
entry need to be read for each access. This compares to
184 tag bits that need to be read and compared for a 4MB,
8-way set-associative L2 cache with 128-byte blocks and
42-bit addresses.

3.4  RegionTracker Complexity
RegionTracker successfully reduces cache lookup

energy with a minimal increase in hardware complexity.
Since RegionTracker places no restrictions on how the
cache operates, it does not introduce any new complexity
in the implementation of the cache itself.   Meanwhile,
the RegionTracker structures are small and simple, and
should lend themselves to a low complexity

implementation. Finally, relatively little information
needs to be communicated between the cache and
RegionTracker; thus, adding RegionTracker to the cache
access path should not significantly increase the overall
complexity.

4  Related Work
Given the proportion of chip area devoted to caches,

many contributions have been made to reducing cache
power. However, most existing proposals target level one
caches. The filter cache [16], consisting of a small cache
placed in front of the L1 cache, can service a large
fraction of L1 accesses, but misses to the filter cache
incur an increased latency. A similar mechanism has been
proposed for increasing L1 bandwidth [35], and [13]
explored the idea of using these line-buffers in front of
the L2 tag and data arrays to reduce power. Park et al.,
[26] proposed a simple modification to this scheme which
increased its effectiveness. These techniques exploit
temporal and fine-grain spatial locality. As shown in
Section 5.4, RegionTracker complements these
techniques by filtering many L2 accesses that would only
be caught by a larger TSB. Specifically, we show that a
tiny (two entry) TSB combined with a RegionTracker
outperforms a TSB with as many as 128 entries, and we
also demonstrate that RegionTracker is more energy
efficient.

A number of techniques have also been proposed for
reducing the area and power of tag arrays. Decoupled
sectored caches [32] and Caching Address Tags [34] are
two techniques which reduce the tag array area by sharing
tags amongst multiple cache blocks. The resulting
structure has fewer tags than cache blocks. This exploits
the same spatial locality as RegionTracker.   However,
since these techniques rely on a reduced number of tags, a
single cache miss could require the invalidation of
multiple cache blocks because their corresponding tag has
been evicted. This incurs not only an initial latency
penalty on such a miss, but also a possibly higher overall
miss rate which can indirectly impact overall power and
performance. RegionTracker does not affect L2 miss rate
and, as we report in Section 5.5, with straightforward
tuning it never hurts overall performance and hence
power. Finally, implementing these techniques requires
changing the L2 cache controller, something avoided by
the simple RegionTracker implementation.

Other techniques which address tag array power
include way prediction [12,14,28] and memoization [20],
as well as techniques which attempt to optimize tag
search energy using multi-stage tag lookup [8,9]. The
former techniques, as well as [4] and [25] apply mostly to
the L1 instruction cache, while the latter techniques were
demonstrated for the L1 data cache. It is not clear if these
techniques will scale well to larger L2 caches with higher
— 4 —



associativities. Additional work has incorporated
compiler support for reducing cache power [1,2], and
much work has been done which relies on cache
partitioning, layout and circuit level techniques to realize
energy reduction in caches, including [11, 17, 18, 19, 33].

Bloom filters similar to the CRH have been previously
proposed for avoiding snoop-induced tag lookups [23] or
snoop broadcasts [24], for L1 hit/miss prediction [27],
load/store queue complexity reduction [30] and for miss
prediction [22]. Whereas the Bloom filters previously
proposed cannot track the locations of individual cache
blocks, RegionTracker overcomes this short-coming by
combining a bloom-like filter with a fine-grain tracking
structure which can track and service most L2 requests.
5  Evaluation

This section is organized as follows: In Section 5.1 we
describe our experimental methodology. In Section 5.2
we demonstrate the effectiveness of RegionTracker at
servicing lookup requests. In Section 5.3 we report
energy savings compared to a standalone, conventional
tag array. In Section 5.4, we compare RegionTracker with
tag set buffers. Finally, in Section 5.5 we summarize our
findings about overall power and performance.

5.1  Methodology
We used Simplescalar v3.0 [7] to simulate the

processor detailed in Table 2. Amongst several
modifications, we modified the macros for the NOP
instruction to not generate memory references (the NOP
is a load to register zero and the hardware is supposed to
ignore this load) and added support for modelling
contention in the memory system. We compiled the SPEC
CPU 2000 benchmarks for the Alpha 21264 architecture
using HP’s compilers and for the Digital Unix V4.0F
using the SPEC suggested default flags for peak
optimization. All benchmarks were run using a reference
input data set. It was not possible to simulate a few
benchmarks due to insufficient memory resources.
Table 3 presents a list of the benchmarks as well as their
memory footprints. Most of these footprints greatly
exceed the L2 capacity, thus a reasonable RegionTracker
cannot trivially track all blocks for an application.  

To obtain reasonable simulation times, samples were
taken for one billion committed instructions after
skipping the first 100 billion committed instructions. For
art and parser we only skipped 20 billion instructions
prior to collecting measurements. We experimented with
several other one billion instruction samples and with
longer samples of up to 40 billion instructions and
observed that results did not vary significantly for the
different samples. A continuous instruction sample is
important for our measurements as RegionTracker
structures have to be kept coherent throughout execution.
Unless otherwise noted we used timing simulation to

measure the overall performance and power impact of
RegionTracker. As shown in Table 2, the memory system
comprises split level one data and instruction caches, a
unified second level cache and a main memory. We
studied L2 caches in the range of 2Mbytes to 16Mbytes.
In the interest of space and clarity we use an A/B naming
scheme for RegionTracker configurations where A is the
number of CRH entries and B is the number of CBV
entries. In all experiments we use an 8Kbyte region size.
Section 5.3 describes the details of our power modeling
methodology.

5.2  Coverage with Practical RegionTrackers

We first report coverage results with RegionTracker.
Coverage is the percentage of cache accesses for which
RegionTracker provides precise location information,
indicating either that the block is not cached, or cached in
a specific cache way. We used functional simulation in
order to evaluate a wide range of RegionTracker
configurations. Figure 2 presents the results of timing
simulations for the most promising RegionTracker
configurations, showing the average coverage each
configuration. Each curve represents a separate
configuration, while the x-axis indicates the size of the
L2 cache. As expected, coverage increases with larger
RegionTrackers and for a fixed RegionTracker

Table 2. Base processor configuration
 Branch Predictor Fetch Unit

16k GShare +16K bi-modal 
16K selector

2 branches per cycle

Up to 6 instr. per cycle 
64-entry Fetch Buffer
Non-blocking I-Cache

Issue/Decode/Commit Scheduler
any 6 instr./cycle 128-entry/64-entry LSQ

FU Latencies Main Memory
same as MIPS R10000 Infinite, 300 cycles

L1D/L1I Geometry UL2 Geometry
32KBytes, 2-way set-associative 

with 64-byte blocks
2Mbytes to 16Mbytes, 8-way 
set-associative with 128-byte 

blocks
L1D/L1I/L2 Latencies Cache Replacement

3/3/16 cycles LRU

Table 3. Total simulated memory bytes allocated per 
application during our simulation interval.

Benchmark Memory Footprint Benchmark Memory Footprint
ammp 27M gcc 133M
applu 186M gzip 185M
apsi 196M lucas 189M
art 89M mcf 186M

bzip2 188M mesa 10M
crafty 2M mgrid 57M
eon 2M parser 62M

equake 50M swim 196M
facerec 17M twolf 3M
fma3d 107M vortex 70M
galgel 45M vpr 51M
gap 193 wupwise 181M
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configuration coverage decreases with L2 size. This
result implies that on the average RegionTracker is well
behaved and can be easily tuned to each cache
configuration. Overall coverage varies from as high as
61% to as low as 15%. The results also demonstrate that
if the size of the RegionTracker relative to the L2 cache is
kept constant, then coverage remains roughly constant as
the cache size increases. Consider, for example, a 2K/64
RegionTracker with a 4MB L2 cache, which achieves
45% coverage. Doubling the size of the cache and
RegionTracker results in 46% coverage for the 4K/128
RegionTracker with the 8MB cache.

We next demonstrate that although RegionTracker
coverage varies significantly across programs, it is high
for most. Figure 3 presents the coverage for a 4K/128
RegionTracker for each benchmark with a 4MByte L2
cache. On average, this configuration achieves 55%
coverage, with a minimum of 9.5% coverage for vortex
and a maximum of 97.6% coverage for gzip.   Those
programs with low coverage generally access a large
number of regions and require larger CBVs to obtain
better coverage. 

5.3  Energy Savings Compared to Conventional Tags
This section demonstrates that significant energy

savings are possible with practical RegionTrackers for

various L2 caches. We used CACTI 3.2 [29] to model the
energy used by the L2 tag arrays and the RegionTracker
structures. All structures were modeled in a 65nm
technology. We modeled L2 caches from 2MB to 16MB
in size. We selected a sub-bank size of 512KB1, and each
cache was divided into the appropriate number of sub-
banks. The tag energy was computed as the sum of the tag
decode, wordline, bitline, sense amp, and compare energy
as reported by CACTI. For the RegionTracker
configurations, the CRH was modeled as a direct mapped
cache, but the contribution of the tag array energy was
ignored as the CRH is an un-tagged structure. The CBV
was modeled as a combination of a direct mapped cache
and a fully associative CAM structure.

In modelling the various structures, we observed that
the sense amps were contributing a significant portion of
the energy, especially for the cache tag arrays. Previous
work suggests that a power optimized sense amplifier
would use about one third of the power used by the sense
amplifier modeled by CACTI [21]. We thus scaled sense
amp power accordingly. Note that this adjustment reduces
the benefits of RegionTracker.

The energy savings were calculated based on the
following assumptions:
• It is possible to access a single way in the tag array.
• On an L2 miss, only a single tag way is accessed to

write the updated tag information.
• An L2 hit requires a full tag array lookup, and an L2

miss requires (1+1/A) tag array lookups, where A is
the L2 associativity (i.e., initial access + single way
access to update info).

• Each L2 hit caught by RegionTracker avoids a tag
lookup.

• Each L2 miss caught by RegionTracker avoids the
initial full tag set access and replaces it with a single
tag way access (i.e., 2/A accesses are now required
instead of (1+1/A))

• Each L2 access reads both the CRH and CBV.
• Each L2 miss causes a write to the CRH.
• Each L2 miss caught by RegionTracker also writes to

the CBV.
These assumptions were used in combination with

statistics from the simulations to calculate the lookup
energy saved, as a percentage of the lookup energy
consumed by a conventional L2 tag array.

Figure 4 reports average energy savings for different
RegionTracker configurations (with a CRH with between
512 and 4k entries, and either 64 or 128 CBV entries),
represented by different curves, and for L2 cache sizes
from 2MB to 16MB, varied along the x-axis. The highest

Figure 2: Average coverage achieved by various RegionTracker 
configurations (different curves) for various L2 cache sizes (x-axis).

Figure 3: Per benchmark coverage for a 4K/128 RegionTracker 
with a 4MB L2 cache.
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512KB sub-banks minimized the energy-delay product.
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savings of 44% is observed for the 4K/128 RegionTracker
and the 2Mbyte L2 cache. This RegionTracker produces
savings of 38%, 29% and 16% for the 4Mbyte, 8Mbyte
and 16Mbyte caches respectively. 

Since cache sub-bank size remains constant for all
cache sizes, the tag energy remains almost constant; thus,
the energy savings are reduced for larger caches
according to the reduction in coverage shown in Figure 2.
However, as the L2 cache size increases we can also
increase the RegionTracker size to maintain the coverage
and energy savings. It should be emphasized that as cache
capacity increases, larger RegionTrackers become
practical as their storage requirements become a smaller
fraction of the L2 tag arrays.  

Figure 5 indicates that while RegionTracker is robust
and provides significant energy reductions for most
programs, there are a few programs which exhibit an
increase in energy consumption. This figure reports per

program energy changes for a 4K/128 RegionTracker
with a 4MB L2 cache. For a few programs,
RegionTracker increases the lookup energy slightly, with
the largest increase of 5% being observed for vortex and
vpr. This compares with an average reduction of 38% and
a maximum savings of 82% for gzip.

5.4  Comparing with Conventional Tag Set Caching
As we discussed in Section 4, a number of existing

proposals for reducing L2 tag power rely either on
efficient encoding or on keeping a small cache of recently
accessed tags. In this section, we compare RegionTracker
with tag set buffers (TSBs), or line buffers as they are
often referred to, which have sizes less than or
approximately equal to the size of the RegionTracker
structure. We compare the two approaches using two
metrics, coverage and energy savings. As we explain,
TSB coverage rivals that of RegionTracker, however,
energy savings does not.

A TSB is a small cache of recently accessed tag sets.
For example, for an 8-way set-associative cache, each tag
set entry will hold eight tags. Entries are allocated on
demand as accesses probe the conventional tag array.
Each access first probes the TSB, and if the set it maps to
is found in the TSB, then there is no need to access the
tags. If the set is not found in the TSB, then it is brought
into the TSB after being read from the tag array. 

Figure 6 reports average coverage for various fully-
associative TSBs (range of two to 128 entries),
standalone 1K/64 and 1K/128 8-way set-associative
RegionTrackers and combinations of the aforementioned
TSBs and RegionTrackers. All results in Figure 6 are for
a 4MB L2 cache. The grey bars report coverage for TSBs
of the corresponding size (listed along the x-axis). The
white bars report coverage for hybrid RegionTracker and

Figure 4: Average energy savings expressed as fraction over the 
energy of a conventional L2 tag array. Shown are RegionTrackers 

with various CRH entry counts and a 64 or 128-entry CBVs. Results 
are shown for L2 caches of 2Mbytes to up to 16Mbytes (x-axis). 
Each curve corresponds to a different RegionTracker, labeled 

CRH/CBV. All RegionTrackers are 8-way set-associative.

Figure 5: Per program relative energy savings with a 4K/128 
RegionTracker and a 4MB L2 cache, expressed as a fraction over 

the conventional L2 tag array power. 
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Figure 6: Comparing Tag Set Buffers of various sizes to 
RegionTracker in terms of coverage for a 4MB cache. The four grey 
bars correspond to fully-associative tag buffers of two through 128 

sets. The next four white bars are for a 1K/64 RegionTracker 
combined with Tag Set Buffers with the number of entries reported 

along the x-axis (two through 128). The coverage of the 
RegionTracker alone is shown by the next dark bar (RT64). Finally, 

we double the number of RegionTracker entries to 128.
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TSB organizations. The TSB entry count is listed along
the x-axis. The first four are for the 1K/64 RegionTracker
and the next four white bars are for the 1K/128
RegionTracker. Finally, the two black bars report
coverage with just the 1K/64 (left) and the 1K/128 (right)
RegionTrackers. Table 4 reports the storage requirements
in bits of the TSBs and the two RegionTrackers as a
fraction of the L2 tags. While it appears that a tag buffer
can achieve coverage comparable to, or better than, a
similarly sized RegionTracker, Section 5.4.1 shows that
RegionTracker obtains better energy reduction.  

5.4.1  Tag Set Buffer vs. RegionTracker trade-offs
A number of factors suggest that RegionTracker might

offer a number of advantages over TSB.  The designs of
RegionTracker and TSBs are drasctically different. We
used CACTI to model various TSBs, and while TSB may
be conceptually simpler, each TSB access utilizes more
energy than each RegionTracker access.  Thus, a TSB
with a given coverage will likely use more energy than a
RegionTracker configuration that acheives similar
coverage.

Figure 7 shows the average energy reduction for tag set
buffers with 16, 32, 64 and 128 sets (different curves) for
L2 caches of various sizes (x-axis). Only two
configurations actually reduce energy on average, and the
maximum reduction is only 3% for a 128 set TSB with a
16MB cache. Contrary to RegionTracker, TSB energy
savings generally increase with cache size as the number
of tag bits decreases for larger caches, and TSB coverage
remains roughly constant as the cache size increases.

RegionTracker has an additional set of potential
advantages over tag set buffers. These include the
increased flexibility of RegionTracker implementations.
Most accesses to RegionTracker involve a very small
number of bits compared to the 180 or so tag bits
involved in a TSB access. This leads to a flexibility in
how the RegionTracker structures can be implemented,
and where they are located. Also, RegionTracker would
be relatively easy to port to novel or unconventional
cache architectures such as NuRapid [10] or skewed

associative caches [31]. An investigation of these issues
is beyond the scope of this paper. The few results
presented indicate that while both TSBs and
RegionTracker can achieve comparable coverage,
RegionTracker provides a much larger energy reduction
than TSBs.
5.5  Performance and Overall Power

As mentioned above, RegionTracker affects L2 latency,
and thus impacts both overall performance and power.
We have measured the overall performance impact of
RegionTracker configurations with 64 or 128 CBV
entries and 512, 1K, 2K, and 4K CRH entries, assuming
that it decreases L2 access latency by two cycles on a
RegionTracker hit while it increases it by one cycle for a
RegionTracker miss. These assumption were validated
using an analytical latency model based on CACTI [29].
We studied caches of 2Mbytes and 4Mbytes. On average,
overall performance increased less than 1% with
RegionTracker. In the best case of twolf, performance
increased by 2% with a 128/4k RegionTracker and a 2MB
cache. Only a few benchmarks suffered from decreased
performance, with the worst case being fma3d which had
a slowdown of 0.02% with a 128/512 RegionTracker and
a 4MB L2 cache. Correspondingly, overall processor
power decreased slightly on average with the
RegionTracker configurations we studied, although a few
benchmarks saw increases of less than 0.1% for some
configurations.
6  Summary

We proposed RegionTracker as an area, power and
latency efficient implementation of memory hierarchy
lookup structures aimed primarily at higher-level,
relatively large, on-chip caches.

RegionTracker implements the concept of dual-grain
tracking, using a simple Bloom-like filter (CRH) to track
coarse-grain regions, combined with a small table of fine-
grained region tracking entries (CBV). A key result was
the demonstration that using a dual-grain tracking

Table 4. Comparing the storage requirements of tag buffers and 
RegionTrackers. Storage requirements are measured in bits 

and reported as a fraction over that of a conventional tag array 
for a 2Mbyte cache.

Tag Set Buffer Storage Requirements (bits)
2 < 1%
4 < 1%
8 < 1%

16 < 1%
32 1.6%
64 3.3%

128 6.5%
CBV 64 + 1K CRH 6.6%

CBV 128 + 1K CRH 10.9%

Figure 7: L2 lookup power reduction (increase) with tag buffers of 
various sizes. 
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approach provides significantly more potential than
simple, demand-based allocation of fine-grained tracking
resources. We demonstrated the utility of RegionTracker
for reducing power and latency for L2 tag lookups. A
2k/128 RegionTracker saves 35% of the tag lookup power
for a 4Mbyte L2 cache, while requiring less than 7% of
the resources required for the conventional tag array.
RegionTracker can be complemented by adding a tiny tag
set buffer to achieve better coverage than either
RegionTracker or tag set buffers can provide on their
own. Other potential applications of RegionTracker
include increased tag lookup bandwidth for aggressive
prefetching, or increasing L1 tag port bandwidth and
lookup latency, although the latter application would
involve complex scheduling and latency issues.
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Appendix A  RegionTracker Relative Storage 
Requirements

Since RegionTracker acts to supplement a conventional
tag array to reduce energy, it should require minimal
overhead in terms of on-chip area. Tables 5 and 6 report
the storage requirements (total bit count) of various CRH
and CBV structures respectively, demonstrating that
reasonably sized RegionTracker structures are much
smaller than conventional tag arrays. The storage
requirement of each structure is expressed as a fraction of
the storage requirement of the tag array of a 2Mbyte L2
cache. This provides a first-order approximation of the
area cost. The overall bit requirement is meaningful as an
area estimate as it remains constant regardless of
implementation details, such as partitioning into separate
banks or sub-arrays.

Table 5 shows CRH requirements for entry counts of
512 through 4K. The size of each CRH entry depends on
the cache configuration and region size. In general, each
block in the cache could map to the same CRH entry as a
result of aliasing. However, with the simple indexing
function used in this work, only a fixed number of cache
sets will can map to any CRH entry. Thus the number of

bits required for each entry is only N x lg(L2 Associativity
x (Region size / block size)), where N is the number of
CRH entries.   

The CBV storage requirements are primarily
proportional to the number of CBV entries, the number of
blocks within the region and the number of L2 ways.
Larger regions or smaller blocks results in more block
information fields in each CBV, and the L2 associativity
determines the size of each field. The size of the region
tags has only a small effect on the total CBV size. As
shown in Table 6, a 128-entry CBV with 8Kbyte regions
requires less than 9% of the bits needed by the
conventional tag array. The percentages shown in Table 6
can also be used to estimate the relative cost of
RegionTracker for larger caches since CBV requirements
are not directly affected by cache size. For example, as
the cache size doubles, the tag array approximately
doubles in size as well, thus halving the relative storage
requirements of the CBV. This work considers caches in
the range of 2MB to 16MB, so while a 512 entry CBV
requires 125% of the storage of a 2MB L2 tag array, it
requires only 4.76% of the bits required by a conventional
tag array for a 16MB cache.

Table 5. CRH storage requirements as a fraction of the bits 
required by the tag array of a 2Mbyte 8-way set-associative L2 

cache with 128-byte blocks
CRH entries Storage

512 1.2%
1K 2.4%
2K 4.8%
4K 9.6%

Table 6. Eight-way set-associative CBV storage requirements as 
a fraction of the bits required by the tag array of a 2Mbyte, 8-
way set-associative L2 cache with 128-byte blocks. Ratios are 
shown for different CBV entry counts and region sizes. We 
assume 42-bit physical addresses and two status bits per tag 

entry (fractions will improve if additional status bits were used). 
CBV Entries Region Size in Bytes

512 1K 2K 4K 8K 16K 32K
16 <1% <1% <1% <1% 1.1% 2.0% 3.9%
32 <1% <1% <1% 1.2% 2.1% 4.0% 7.9%
64 <1% 1.0% 1.4% 2.3% 4.3% 8.1% 15.8%

128 1.4% 1.8% 2.7% 4.6% 8.4% 16.1% 31.5%
256 2.6% 3.5% 5.4% 9.2% 16.8% 32.2% 62.8%
512 5.2% 7.0% 10.7% 18.3% 33.5% 64.2% 125.6%
— 10 —
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