Design Space Exploration of Instruction Schedulers
for Out-of-Order Soft Processors

Kaveh Aasaraai, Andreas Moshovos

Electrical and Computer Engineering Department, University of Toronto
Toronto, Ontario, Canada
{aasaraai, moshovos}@eecg.toronto.edu

Abstract—This work explores instruction scheduler designs
for single-issue, out-of-order soft processors targeting irregular
workloads. It shows the effect of scheduler size, scheduling
policy and back-to-back scheduling on performance, area, and
frequency. It is shown that for a modern, high-end FPGA (Altera
Stratix III) the best performance is achieved by a small, 4-entry
instruction scheduler with an age-based instruction selection
policy and back-to-back scheduling. A combined scheduler and
register renamer is shown to operate at 303MHz.

I. INTRODUCTION

Embedded systems are increasingly using FPGAs for the
low production cost, flexibility and adequate performance they
provide. Such systems often incorporate soft processors as the
resulting designs are easier to develop, debug, and modify
compared to custom-logic implementations. Depending on the
target workload and cost constraints, soft-processors may use
one of several architectures with Pipelining, Superscalar [1],
Very Long Instruction Word (VLIW) [1], Single Instruction
Multiple Data (SIMD), and Vector execution [1], [2] being the
commonly used architectures. VLIW, SIMD, and Vector exe-
cution exploit programmer- or compiler-extracted instruction-
level parallelism (ILP) and shine in the absence of irregular
control flow and data accesses. While many workloads exhibit
regular data and control patterns, as applications evolve it is
natural to expect that other less regular workloads will need
to be implemented on FPGAs. For such workloads, super-
scalar processors that can exploit unstructured and difficult to
extract parallelism in programs are more appropriate [1]. A
superscalar processor can execute independent instructions in
parallel as long as they are adjacent in program order. Out-of-
order (OoQ) architectures can extract ILP even among non-
adjacent instructions.

Recently, it has been shown that single-issue, out-of-order
execution has the potential of extracting the same level of
parallelism as a four-way superscalar processor [3]. However,
000 architectures require several specialized units that have
been developed for custom implementation. It remains an
open question whether current OoO architectures can be
implemented reasonably over an FPGA fabric. As a first step
toward such an implementation, a high-performance, FPGA-
friendly register renaming unit has been presented [3].

As an additional step toward an FPGA-friendly, single-
issue OoO design, this work studies instruction scheduler
implementations. The instruction scheduler, the core of OoO

implementations, is where instructions wait for all their source
operands and execution resources to become available. This
work starts with a conventional, content-addressable-memory-
based scheduler design [4] and studies its implementation
on a modern FPGA. Specifically, performance and area are
studied as a function of the number of scheduler entries, the
inclusion of back-to-back scheduling support, and the use of
age-based priority scheduling. Considering the scheduler in
isolation it is shown that the best performance is achieved
with a two-entry scheduler without back-to-back scheduling
and with the simpler location-based selection policy. However,
considering part of the rest of the pipeline it is shown that
best performance is achieved with a four-entry scheduler with
back-to-back scheduling and age-based selection. This four-
entry configuration is inexpensive and fast. It uses 164 ALUTSs
and operates at 303MHz.

II. INSTRUCTION SCHEDULING

An Oo0O processor can execute instructions in any order
that does not violate data dependencies. Instructions enter
the instruction scheduler, a pool where they wait until they
become ready, that is until all their source operands are
available. The instruction scheduler identifies ready to execute
instructions, then among those, selects W instructions to issue
to functional units, W being the processor’s width. This work
focuses on single-issue schedulers (W = 1) as past work has
shown that it is the number of datapaths that dominates area
and frequency on FPGA implementations [3].

An instruction scheduler comprises a wakeup unit and a
selection unit. Wakeup is responsible for identifying ready to
execute instructions among those residing in the scheduler
pool. It observes instructions as they produce their results,
notifying waiting instructions accordingly. A waiting instruc-
tion becomes ready when all its source operands have been
produced. All ready instructions request execution from the
selection unit, which grants execution to those selected for
execution.

III. CAM-BASED SCHEDULER

CAM, the common scheduler design, is based on content
addressable memories [4]. Figure 1 depicts CAM’s structure.
The wakeup part is an array with one row per instruction.
Each row contains one column per source operand. Each
column contains the source operand tag along with a ready

Destination tag

O

5
@
By
a
<
B

- ===}]
Q)€
z
3

| tagL

a8
g

i

é?_‘;'r

For -4~

w

o

I rdy-L I tag-L tag-R I rdy-R I y [0)
4 TGO, 2

| 1 an:

O; - g
—

o

Q

o

A
i
1

A
i
]

--1>

[oyt | tagL | T R

Fig. 1. CAM Scheduler with back-to-back scheduling and compaction.
OR gates provide back-to-back scheduling. The dashed gray lines show the
shifting interconnect which preserves the relative instruction order inside
the scheduler for age-based policy. The selection logic prioritizes instruction
selection based on location, i.e., it is a priority encoder.

bit indicating the operand’s availability. For the Nios II
ISA targeted in this work, every instruction can have up
to two source operands. Each row is accompanied by two
comparators. When an earlier instruction finishes execution,
its destination register tag is broadcast over all entries and
compared to source operands. All matching entries mark their
corresponding source operands as available. All instructions
that have both their source operands marked ready request
execution. The selection logic selects one among those ready
instructions for execution. Figure 1 shows the ready signals as
inputs to the selection logic.

A. CAM on FPGAs

Despite CAM’s simple structure, it is expensive to build on
FPGAs. As Section IV shows, area and frequency degrade as
the number of entries increases. By increasing the number
of entries, the network connecting comparators and source
operand tags becomes more complex leading to longer critical
paths, hence lower frequencies. Area-wise, as all entries are
used for comparison in every clock cycle, block rams cannot
be used for storing the tags due to read/write port limitations.
Additionally, there is a comparator for each source operand of
every instruction resulting in a high resource usage.

B. CAM Performance

It is well documented that the ILP that can be extracted
increases with the number of scheduler entries, e.g., [4]. The
resulting IPC benefits tend to level off after a certain number
of entries. The actual saturation point varies depending on
the processor architecture and system properties, €.g., memory
latency. Actual performance depends not only on IPC but also
on the operating frequency. It has been shown that scheduler
frequency deteriorates with the number of entries [4]. As a
result there is a trade-off between scheduler size and per-
formance in conventional CAM implementations. This work
studies this trade-off for FPGA-based implementations.

C. Back-to-Back Scheduling

To exploit more ILP it is desirable to execute dependent
instructions in consecutive cycles, or back-to-back, avoiding
bubbles in the pipeline. In this regard, CAM needs to generate
ready signals in the same clock cycle as the destination
tag is broadcast by earlier instructions. Figure 1 depicts a
CAM with back-to-back scheduling. The OR gates ensure
that ready signals are produced by either the ready register
bit or by the result of the comparisons performed in the
current clock cycle. In this design the wakeup and select units
must operate in the same clock cycle. Although supporting
back-to-back scheduling increases processor IPC, it adversely
affects operating frequency. Section IV shows that back-to-
back scheduling increases latency. The low clock frequency
can overshadow any IPC advantage back-to-back scheduling
has to offer. Adding the OR gates has a negligible area
overhead as shown in Section IV.

D. Scheduling Policy

In the event that more instructions are ready than the avail-
able execution units, the Selection unit, based on a selection
policy, determines which instructions to execute. This policy
can be based on various parameters such as instruction age or
location inside the scheduler. Previous work has shown that
a selection policy based on instruction age tends to perform
better than other, simple to implement heuristics.

One way to consider instruction age in the selection policy
is to organize the scheduler as a FIFO queue. FIFOs pre-
serve instruction ordering and provide relative age information
based on the location in the queue. Using FIFOs inserting
instructions is a trivial queue push operation. In order to
remove instructions from arbitrary positions inside the sched-
uler once they execute, compaction has been implemented
in commercial designs to maintain FIFO ordering [5]. In
Figure 1, the interconnect among rows provides compaction
capability. Upon scheduling an instruction, all entries starting
from its position to the bottom (younger) are shifted towards
the top (older). This ensures that at any point in time older
instructions are placed at the top. This design guarantees that
an instruction’s relative position also reflects its relative age.
The selection logic uses a priority encoder which prioritizes
based on instruction location, giving entries closer to the top
higher priority. Compaction impacts area and latency.

The simplest to implement alternative to the age-based
policy is location-based scheduling where priority is given
to instructions according to where they are stored in the
scheduler. In this design the selection logic becomes a priority
enforcer with statically assigned priorities, i.e., entries closer to
the top have higher priority. Upon scheduling an instruction,
its position is marked as free and can be filled with future
instructions. Over time, instruction location provides almost
no information about its relative age.

IV. EVALUATION

This section compares the aforementioned scheduler designs
based on their area, operating frequency, IPC, and overall

Area

1000

»n 800
l—

2 600
|

< 400

200

2 4 8 16 32
Entries

Fig. 2. Number of ALUTSs used by scheduler designs.

performance, measured in instructions per second (IPS).

A. Methodology

All schedulers were implemented in Verilog and synthesized
with Quartus II v9.0 SP1 on the Altera Stratix III FPGA. We
have developed a cycle-accurate Nios II full system simulator,
booting and running the uCLinux operating system [6] to
estimate execution performance. The simulated OoO processor
consists of seven pipeline stages, uses 32KB direct mapped
caches, and a 512-entry bimodal branch predictor. We simulate
2- to 32-entry instruction schedulers. The DDR2 memory
latency is estimated at 20 cycles.

We use benchmarks from the SPEC CPU 2006 suite. This
suite is typically used to evaluate the performance of desktop
systems [7]. We use these benchmarks as representative of
applications that have unstructured ILP assuming they are
a reasonable approximation of applications may be ran on
future embedded or FPGA-based systems. Measurements are
taken for a sample of one billion instructions, after skipping
initialization (several billion instructions).

We use the following notation: CAM-B and CAM refer to
schedulers with and without back-to-back scheduling, regard-
less of their entry count. CAM-[B]JA and CAM-[B]L refer to
schedulers with age- and location-based selection respectively.

B. Area

Figure 2 shows how the area of the various designs scales
as a function of entry count. Area requirements grow at least
linearly with the number of entries. Back-to-back scheduling
and selection policy have negligible impact on area. For
example, a 4-entry CAM-BA uses 164 ALUTs while CAM-
A uses 161 ALUTs. The area scaling is very different than
conventional, custom logic implementations that are wire-
dominated. Our conclusion is that beyond eight entries the
area cost is too high compared to the overall area budget a
fast soft processor typically has, i.e., about 1500 ALUTs [9].
Additionally, we conclude that area is primarily determined
by the number of scheduler entries.

C. Frequency

Figure 3 reports the maximum frequency achieved by each
design. Schedulers without back-to-back scheduling consis-
tently reach higher frequencies. For example, the 8-entry
CAM-A and CAM-L operate at 344MHz and 404MHz respec-
tively, while the same size CAM-BA and CAM-BL operate

Frequency
600
500
E 400
=300
200
100 + ; . . .
2 4 8 16 32
Entries

Fig. 3. Maximum clock frequency of the scheduler designs.

IPC

Entries

Fig. 4. Instructions per cycle achieved using four scheduler designs.

at 244MHz and 264MHz, a difference of 29% and 35%
respectively. We also observe frequency losses by moving from
location- to the age-based policy. This drop is highest at 20%
between the 16-entry CAM-A and CAM-L which operate at
330MHz and 265MHz respectively.

D. IPC

A lower frequency design is not necessarily a worse per-
forming design. Performance depends also on the number of
instructions retired per cycle (IPC). Figure 4 reports IPC for
the various schedulers. CAM-BA consistently outperforms the
rest of the schedulers. The highest difference observed is 7.5%
between the two-entry CAM-BA and CAM-BL schedulers.
Back-to-back scheduling improves IPC as expected. CAM-
BA and CAM-BL are superior to CAM-A and CAM-L re-
spectively. Similarly, the age-based selection outperforms the
location-based selection. Most of the IPC benefits come from
back-to-back scheduling rather than from age-based selection.
CAM-BL consistently outperforms CAM-A beyond the sched-
uler entry count of two. We conclude that to improve IPC we
need to have a scheduler with age-based selection and back-to-
back scheduling. However, should any of these features need
to be sacrificed (e.g., due to frequency constraints), we find it
best to substitute age-based policy with location-based policy
rather than removing back-to-back scheduling support. The
IPC advantage that back-to-back scheduling provides is greater
than that of the age-based selection policy.

E. Performance

This section compares the overall performance of various
scheduler designs in terms of instructions per second (IPS).
IPS considers both clock frequency and IPC. Figure 5 com-
pares the IPS of 2- to 32-entry schedulers. We observe that

IPS

Entries

Fig. 5. Overall performance as million instructions per second of four
scheduler designs.

IPS - 303MHz Limit

CAM-BA —
70 CAM-A ==

Entries

Fig. 6. Overall performance of scheduler designs when the operating
frequency is limited to 303Mhz.

schedulers without back-to-back scheduling are consistently
better performing for all entry counts. Although these designs
were shown to reach lower IPCs, their superior clock fre-
quency provides higher overall performance. Similarly, drop-
ping age-based selection in favor of the simpler location-based
selection results in higher performance. Increasing the number
of scheduler entries reduces performance. Assuming that the
entire processor can operate at the scheduler speed, one would
conclude that a very small scheduler with two entries would
be best.

From previous work we find that an FPGA-friendly re-
naming unit, a crucial OoO component, operates at 303MHz
when implemented on our platform [3]. Thus, in Figure 6 we
study the effect of limiting the processor clock frequency to
303MHz. In this case using a slightly larger scheduler proves
to be better. The four-entry CAM-BA, eight-entry CAM-A
and 16-entry CAM-L are the top three designs. Comparing
these three designs we observe that the performance loss due
to decreasing scheduler entry count is effectively compensated
by the age-based selection policy and back-to-back scheduling
support. Additionally, as lower entry counts are desirable
considering area usage, we conclude that the 4-entry CAM-
BA is the best configuration to choose both in terms of area
and performance.

V. RELATED WORK

To avoid low frequency and high area usage of content
addressable memories, Mesa-Martinez et. al. [10] propose
SEED, Scalable Efficient Enforcement of Dependences. SEED
uses indexed tables to track instruction dependencies. It uses
multi-banked structures and is shown to scale well on ASICs.

However, SEED’s scalability is shown to be poor on FPGAs
as routing overhead among multiple components becomes
critical. Fytraki and Pnevmatikatos [11] and Derek et. al. [12]
implemented parts of an OoO processor on an FPGA for the
purpose of accelerating processor simulations. To the best of
our knowledge this is the first work that studies how the area,
frequency and most importantly performance of CAM-based
instruction schedulers scale with the number of scheduler
entries on an FPGA.

VI. CONCLUSION

In this work we explored part of the design space of
instruction schedulers for out-of-order soft processors. We
examined the effect of scheduler size, instruction selection
policy, and back-to-back scheduling on performance, area and
frequency. We showed that in isolation (no restrictions on the
clock frequency), a two-entry scheduler with a location-based
selection policy and no back-to-back scheduling achieves
maximum performance. However, by limiting the processor
frequency to 303MHz (the frequency that an FPGA-friendly
register renamer operates at) we showed that a four-entry
scheduler with age-based selection policy and back-to-back
scheduling reaches the maximum performance. The results
of this work can be used to estimate the best scheduler
design under various operating frequency assumptions. This
work is predicated on the assumption that the workloads for
future embedded and FPGA-systems will evolve to include
workloads with irregular data and control patterns.

REFERENCES

[1] J. E. Smith and G. Sohi, “The Microarchitecture of Superscalar Proces-
sors,” Proceedings of the IEEE, 1995.

[2] P. Yiannacouras, J. G. Steffan, and J. Rose, “VESPA: portable, scalable,
and flexible FPGA-based vector processors,” in Proceedings of the 2008
International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, 2008, pp. 61-70.

[3] K. Aasaraai and A. Moshovos, “Towards a viable out-of-order soft
core: Copy-free, checkpointed register renaming,” in /9th International
Conference on Field Programmable Logic and Applications (FPL),
Prague, Czech Republic, September 2009.

[4] S. Palacharla and J. E. Smith, “Complexity-effective superscalar proces-
sors,” in In Proceedings of the 24th Annual International Symposium on
Computer Architecture, 1997, pp. 206-218.

[5] J. Keller, “The alpha 21264 microprocessor architecture,” in In Proceed-
ings of 9th Annual Microprocessor Forum, 1996.

[6] “Arcturus Networks Inc., uClinux,” http://www.uclinux.org/.

[7] Standard Performance Evaluation Corporation, “SPEC CPU 2006,”
http://www.spec.org/cpu2006/.

[8] Altera DE3 Development System with Stratix III FPGA, “TERASIC

Inc.” http://university.altera.com/materials/boards/de3/.

Altera Corp., “Nios II Processor Reference Handbook v9.0,” 2009.

[10] F. J. Mesa-Martinez, M. C. Huang, and J. Renau, “Seed: scalable,
efficient enforcement of dependences,” in PACT ’06: Proceedings of the
15th international conference on Parallel architectures and compilation
techniques. New York, NY, USA: ACM, 2006, pp. 254-264.

[11] S. Fytraki and D. Pnevmatikatos, “RESIM: A trace-driven, reconfig-
urable ILP processor simulator,” in Design and Automation Europe,
2008.

[12] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat, “Fpga-accelerated simulation technologies
(fast): Fast, full-system, cycle-accurate simulators,” in MICRO 40:
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2007, pp. 249-261.

_
X

