v

TEST GENERATION FOR PHYSICAL FAULTS
IN MOS VLSI CIRCUITSt

Ibrahim Hajj and Farid Najm
Coordinated Science Laboratory
and the Department of Electrical and Computer Engineering
University of lllinois
Urbana, 1L 61801

ABSTRACT

This paper describes a new approach to automatic test
generation for detecting physical faults in MOS digital
circuits. The faults could be shorts between lines or nodes,
including drain-to-gate and source-to-gate shorts, or opens
in lines or in transistor channels. Faults which fail to be
tested by existing methods are successfully detected by our
approach. This is done by using switch-level models and
properly taking into account the possibilities of charge
sharing and charge loss. The approach detects the need
for setting up appropriate initial conditions when neces-
sary and derives robust test vector pairs that are free
from race conditions. The method has been implemented
in a computer program called Itest which accepts inputs
in the form of transistor interconnections and fault lists,
and automatically generates the test vectors.

L. INTRODUCTION

It is well established that some types of physical
faults in digital circuits, especially MOS circuits, cannot
be represented by classical fault models (stuck-at-0,
stuck-at-1) [1], [2], and thus cannot be detected using the
classical test generation techniques [3]. In CMOS circuits,
for example, stuck-at-open faults may require two test
patterns [4], that cannot be derived using classical tech-
niques. This problem could also occur in NMOS circuits.
For example, the simple NMOS circuit of Figure 1, which
includes a pass-transistor T3, requires a two-pattern test
sequence to test for "T3 stuck at ON" (a SHORT fault).
The first test is [X,Y]}<[1,1], which is applied to initialize
the output node to 0, followed by the test [X,Y]=[0,0].
Notice that if X switches before Y then the output may
erroneously go to 1 even if the fault is not there, thus a
GOOD (fault-free) circuit would be diagnosed as BAD
(faulty). The reason being that the preserved charge (0)
is in the GOOD circuit in this case. In the case of an
OPEN fault the charge is preserved in the BAD circuit;
and if the charge is destroyed, the BAD circuit will be
diagnosed as GOOD. In general, it turns out that a test
may require initialization of certain charges in either the
BAD circuit or the GOOD circuit or both.

The main problems associated with test generation
of physical faults are charge-sharing [3] and charge-loss
[5]. A test generation algorithm should solve these prob-
lems; it should guarantee that the derived tests, if they
exist, will not lead to charge sharing or to any ambiguity
in the expected output. The tests should also be robust
[4]; i.e. the output will not suffer from charge loss.

t This work was supported by the Semiconductor
Research Corporation under Contract SRC RSCH
84-06-049

CH2417-4/87/0000/0386$01.00 © 1987 IEEE

386

OUTPUT

— GND
Figure 1. An NMOS circuit that needs two test vectors.

To illustrate these problems consider the circuit in
Figure 2, where the fault to be tested for is T stuck at
open. This circuit is shown in [3] 10 demonstrate the ina-
bility of existing test generation schemcs 1o derive tests
that are free of charge sharing. Charge sharing may occur
in the faulty circuit because the application of the test
vector 1,, shown in Figure 2, joins nodes 5,6,7 and 8 and
causes them 1o be isolated from the supply nodes. For
this reason, the initializing vector t; should initialize all
of these four nodes to 1 in preparation for t,. In addition
it is important to note that if node 3 suffers a glitch dur-
ing the transition then these charges may be destroyed
and the test invalidated. Thus the circuit suffers from
charge loss problems as well.

10

E &5

TEST
1120314)
(1)
Yii1i1]o]o 6
Lit|l1]o]1 2))
(4
T (3)

=9
Figure 2. A circuit with charge sharing and
charge loss problems.

The rest of this paper is organized as follows. In the
next section the proposed test generation technique is
outlined. Sections I1I-V describe the implication, initiali-
zation, and propagation phases of the algorithm. Section
VI presents examples and implementation issues, and
section VII draws some conclusions.

11. PROPOSED SOLUTION

In this paper we describe an automatic approach to
deriving tests for faults resulting from either a short
between two nodes or lings, or an open in a transistor
channel or in a line. Drain-to-gate and source-lo-gate
shorts, which are not uncommon, and which are hard to
detect by existing methods, are included. Thus, local

!
s

B
;
.
i
14

feedback within a subcircuit or between two adjacent
subcircuits is allowed: otherwise the circuits allowed are
pasically combinational. Although some approaches have
been proposed Tor physical fault test gencration
(411311611 7], these approaches are not general enough to
detect all possible faults, especially when the fault
creates sequential behavior or causes charge sharing to
oceur, because they use logical models that cannot accu-
rately deseribe the behavior of MOS circuits.

At the core of the test generation algorithm is an
"implication” step [8); meaning that the basic question 1o
be answered repeatedly st what combination(s) of
inputs and internal node initial conditions would pro-
duce a certain desired output? This "desired” output
value is generated by requiring that there be an observ-
able discrepancy between the outputs of the fault-free
and the faulty circuits.

If we define
G, (G,) = the set of inputs and initial conditions
combinations that would give an output of 0
(1) in the GOOD circuit,
and
B, (B,) = the set of inputs and initial conditions
combinations that would give an output of O
(1) in the BAD circuit (for a certain fault),
then the set of test patterns for the considered fault is:

~ T=(G, N B) U (G, N B).

For a given fault, the implication step is carried out
only on the subcircuit where the fault occurs. The node
values are then propagated forward and backward using
a modificd D-algorithm [13] to reach the external nodes.
We consider the circuit to be partitioned into de-
connected subcircuits [9], where every subcircuit con-
lains a set of nodes that are connected by transistor
channels. A subcircuit may have more than one output
node. For a given fault in a given subcircuit, the test sets
are generated using the following steps:

1. Find G, G, Byand B, . (implication)

2.Form T, =(G, N B)) U (G, N B)

3. For every L, € T:’ if no initial conditions are
required, then 1, is a single test vector; oth-
erwise, find T ={ set of all 1, initializing
input patterns that will produce the initial
conditions required by t, }.

4. Extract the robust test pai}s from those pairs
derived in step 3; these tests are still at the
subcircuit level.)

5. Propagate the node values associated with a cer-
tain test or test pair forward and backward

1o the accessible external nodes of the cir-
cuit.

111 IMPLICATION

Implication, in general, is a difficult problem. In our
approach, a switch-level model is used [9], and the cir-
cuit is first partitioned into dc-connected subcircuits. The
imptlication step is then carried out on the subcircuit
where the fault occurs. By using the approach described
in [10], where, for a large class of digital circuits, the
Storage, as well as the input nodes, are assigned to a
hierarchy of strength groups determined by path
strengths, the implication step becomes easy. This is done

387

by considering the strength groups separately, starting
with the strongest, and identifying how the nodes
involved can aflect the output. For a given subcircuit,
the algorithm begins with a graph scarch starting from
the selected output node and discovering all the paths 1o
every other node of the subcircuit that is stronger than
the output node. The search algorithm [11] is a variation
ol the depth-first scarch [12]). The result of the search
gives levels of the hierarchy as well as the paths from
the output node to every other node.

IV. INITIALIZATION

Having found T,, the set T, is constructed for every
test vector t, in T, that needs initialization. This is done
by using implication where each node, whose initial con-
dition is required, is declared as an output node. In gen-
cral, some patterns in T, may require initialization
themselves, so that a test sequence for a given fault may
be composed of more than just two test patterns. For
clarity, the casc when more than two test veclors are
needed is not discussed here.

The selection of robust tests is then carried out by
constructing a set of input assignments, C, associated
with each t, € T,. This is done at the same time when
T, is being found. C is the set of all allowable states
that the inputs may take during the transition from a 1,
€ T, to 1, without destroying the charges that were set
up by t,.

The problem now is to select those test pairs t, and
t, which do not create a race condition that involves
states outside C. This is done by selecting maximal cubes
[13] in C that have non-empty intersection with 1, and
T,. The two sets resulting from this intersection become
the required robust test pair. A further requirement is
needed, however, and this is that, depending on the par-
ticular maximal cube, some inputs may nced 1o be free
of glitches during the transition. Such requirements arc
directly obtained by looking at the maximal cube and are
represented by setting a static hazard free (s.h.f.) flag for
these inputs. The result is a set of triplets <t,, hf, 1,>,

where hf is a flag indicating the s.h.f. requirements, if
any.

V. TEST PROPAGATION

After the test vectors are generated at the subcircuit
level, the node values associated with a certain test or
test pair are propagated forward and backward to the
accessible external nodes of the circuit. We have
developed a modification of the classical D-algorithm
[13] that can handle multi-input multi-output subcir-
cuits and which takes into account the robustness con-
straints by propagating two sets of test values simul-
taneously along with their s.h.f. requirements.

VL. IMPLEMENTATION AND EXAMPLES

We have implemented the test generation algorithms
in a computer program, called Itest, which accepts the
input in the form of MOS transistor interconnections and
fault lists (the program could be made to accept
hierarchical circuit descriptions). It then automatically
partitions the circuit, sets up an event scheduler and

derives the test sets. The program is written in the
language C and is composed of = 5000 lines of code.
Test vectors for many circuits with faults for which
existing test generation methods failed have been
correctly derived by Itest. In the following we present
examples on how test generation at the subcircuit level is
implemented.

We will represent an input pattern as composed of

three fields within brackets:
(/s]

The first field contains the values to be assigned to the
subcircuit inputs (transistor gate labels and/or primary
inputs). The second field shows the required internal
node initial conditions (including the output node) to be
set up in the GOOD circuit. The third shows these initial
conditions required in the BAD circuit. The value "X"
will be used to represent a don’t care situation.

— GND

(a ()
Figure 3? CMOS circuit and its boolean input space.

Consider the circuit of Figure 3a . It has three inputs
1,,1,, and I;. The three internal (storage) nodes K, Y, and
Z (which is the output node) are assumed to have the
same node capacitances. The first (strongest) level of the
node hierarchy consists of : { GND, VDD }, while the
second (and last) level contains : { K, Y, Z }. The fault to
be tested for is "transistor T stuck at open.” The values

inside the fields of an input pattern correspond to the
circuit nodes as shown :

(LL,L/KYZ/KYZ)

By applying implication the following four sets are
obtained :

Gy = { [X11/XXX/XXX], [1X1/XXX/XXX],
[XX0/XX0/XXX] }
G, = {[001/XXX/XXX], [XX0/XX1/XXX] }

B, = { [1X1/XXX/XXX], [011/XXX/X00],
[XX0/XXX/XX0])

B, = {[001/XXX/XXX], [011/XXX/X11],
[XX0/XXX/XX1]}

T, is then constructed by forming the required intersec-
tions and unions:

G, N B, ={ [011/XXX/X11], [XX0/XX0/XX1] }
G, N B, = { [XX0/XX1/XX0] }

T, = { [011/XXX/X11], [XX0/XX0/XX1],
[XX0/XX1/XX0] } .
Notice that the second and third patterns in T, require

388

that the output node Z be initialized to two different
values in the GOOD and BAD circuits. These two pat-
terns are really useless because they require an initializ-
ing vector which is the same vector we are trying 1o
derive. So they are automatically deleted from T, to
give: .
T, = { [011/XXX/X11]}

The next step is to derive the initializing input pat-
tern to set up nodes Y and Z to "1" in the BAD circuit as
required in the last field of t,. By treating Y and Z as
outputs and applying implication we get the initializing
set :

T, = { [001/XXX/XXX] }
At.the same time the allowable set of input states, C,
during the transition from 1, to t, is easily derived as a
by-product :
C = {[0oxx]}

The threc dimensional boolean space is shown in
Figure 3b, which shows the vertices corresponding 1o
and t,, and the set of states corresponding to C. An
acceptable maximal cube turns out in this case to be
[0XX] and includes all of C. This means that 1, can have
a glitch during the transition irrespective of the time at
which I, makes the change; on the other hand, I, must
not get a glitch and should be static hazard free (it is in
the dimension in which the maximal cube does not
extend). It is easy to see from the circuit that this is
indeed required in order to preserve the charges at nodes
Y and Z. Therefore the test triplet is (y = yes, n = no):

—

1 1

1

N

3

S ml O

1
1
n

0
0
y

For another example reconsider the circuit in Figure

2. As shown previously, this circuit, when tested for the.

fault "T stuck at open,” suffers from charge sharing and
charge loss problems and cannot be tested by existing
techniques. We will present the required ltest input files
to describe that circuit and fault and will show the out-
put of the program giving the valid test shown above in
Figure 2. Furthermore, Itest reports that this is the only
robust test and gives the required hazard free require-
ment at node 3.

The circuit specification file is as follows :

10 2 5 PMOS
10 1 5 PMOS
10 4 8 PMOS
8 3 5 PMOS
5 1 6 NMOS
6 2 7 NMOS
7 4 9 NVOS 1
7 3 9 NMOS
V+ 10

V- 9

INPUT 1 2 3 4
OUTPUT 5

The fault description file in this case is just the line :

OPEN 1

The output from lest is:

IEEE RS R EREREEREE SRR R EEEEE R E SRR N RN E NN NS RN

TESTS FOR FAULT:

OPEN at element 1

(2332222333222 2232223233333 3233333333332 33%4
Test: <--in, out
B e e #
Nodes: 4 3 2 1 5
B e oo #
T1 (4]] 1 1
e #
T2: 1 0 1 1 D_bar
B m e e eaoooo #
HF: hY Y N N

HERARERHARBUERERARRYRRBSBHRRBHHRBBRARRRBRBHR
EEEX KRR KRR X KR KRR R AKX KX KX KRR KR AR K KA A K A K R X KK X &

Where "D__bar" (or D) means : 0 in the fault-free circuit
and 1 in the faulty circuit as in the D-algorithm.

VIil. CONCLUSION

A program, ltest, has been presented which uses
switch level techniques 1o derive accurate tests for faults
in MOS circuits. The faults tested for include the classi-
cal stuck-at faults as well as the (non-classical) transis-
tor stuck-at on or off, drain-to-gate and source-to-gate
shorts, and a variety of bridging faults. The tests are
guaranteed to be frec from charge sharing and charge
loss.

Itest is currently run on a VAX 11/780, a GOULD-
9050, and a SUN 3/75M work-station. A run time of
less than one second is typical for circuits like those
given in this paper. For a CMOS 4-bit adder circuit with
200 transistors some faults take less than a second while
others may take a minute, depending on thc amount of
work done in the propagation phase of the program. This
computation time could be reduced by using techniques
such as PODEM [14].

REFERENCES
(1} R. L. Wadsack, "Fault modeling and logic simulation
of CMOS and MOS integrated circuits,” Bell System
Technical Journal, vol. 57, no. S, pp. 1449-1474,
May-June 1978.

J. Galiay, Y. Crouzet, and M. Vergniault, "Physical
versus logical fault models in MOS LSI circuits,
impact on their testability," JEEE 9" Fault Tolerant
Computing Symposium, pp. 195-202, June 20-22,
1979.

J. Abraham and H. Shih, "Testing of MOS VLSI cir-
cuits,” Proceedings of the 1985 International Sympo-
sium on Circuits and Systems, Kyoto, Japan, June 5-
7, 1985.

S. Reddy, M. Reddy, and V. Agrawal, "Robust tests
for stuck-open faults in CMOS combinational logic
circuits,” / EEE 14'* Fault Tolerant Computing Sympo-
sium, pp.44-49, June 20-22, 1984.

S. Jain and V. Agrawal,"Test gencration for MOS
circuits using D-algorithm,” / EEE 20" Design Auto-
mation conference, pp. 64-70, June 27-29, 1983.

(2]

(3]

[4]

(5]

389

[6] S. Robinson and J. Shen, "Towards a switch-level
test pattern generation program,” / EEE International
Conference on Computer-Aided Design, pp. 39-41,

November 18-21, 1985.

H-C. Shih and J. A. Abraham, "Transistor level test
generation for physical failures in CMOS circuits,”
IEEE 23™ Design Automation Conference, Las Vegas,
NV, pp. 243-249, June-July 1986.

M. Lightner and G. Hachtel, "Implication algorithms
for MOS switch level functional macromodeling,
implication and testing," /EEE 19" Design Automa-
tion Conference, pp. 691-698, June 1982.

R. Bryant,"A switch-level model and simulator for
MOS digital systems," / EEE Transactions on Comput-
ers, vol. C-33, no. 2, pp. 160-177, February 1984,

. N. Hajj and D. Saab, "Fault modecling and logic
simulation of MOS VLSI circuits based on logic
expression extraction,” [EEE [nternational Confer-
ence on CAD, pp. 99-100, September 1983.

Bernard Carré, Graphs and Networks.
Clarendon Press, 1979, p. 65.

R. Tarjan, "Depth-first search and linear graph algo-
rithms," SIAM Journal on Computing, vol. 1, no. 2,
pp. 146-160, June 1972.

J. P. Roth, W. G. Bouricius, and P. R. Schneider,
"Programmed algorithms to compute tests to detect
and distinguish between failures in logic circuits,”
IEEE Transactions on FHectronic Computers, vol.
EC-16, no. S, pp. 71-84, October 1967.

P. Goel, "An implicit enumeration algorithm to gen-
erate tests for combinational logic circuits,” /EEE
Transactions on Computers, vol. C-30, no. 3, pp.
215-222, March 1981.

(7]

(8]

(9]

[10]

[11] Oxford :

(12]

(13]

(14]

	File.PDF
	File0001.PDF
	File0002.PDF
	File0003.PDF

