
Clock Skew Optimization Via Wiresizing For Timing
Sign-off Covering All Process Corners∗

Sari Onaissi, Khaled R. Heloue, Farid N. Najm
Department of ECE, University of Toronto, Toronto, Ontario, Canada

{sari, khaled, najm}@eecg.utoronto.ca

ABSTRACT
Manufacturing process variability impacts the performance of syn-
chronous logic circuits by means of its effect on both clock net-
work and functional block delays. Typically, variability in clock
networks is either handled early in the design flow by assign-
ing margins to clock network delays, or at a later stage through
post-processing steps that only focus on achieving minimal skew,
without regard to functional block variability. In this work, we
present a technique that alters clock network lines so that the
circuit meets its timing constraints at all process corners. This
is done near the end of the design flow while considering delay
variability in both the clock network and the functional blocks.
Our method operates at the physical level and provides designers
with the required changes in clock network line widths and/or
lengths. This can be formulated as a Linear Programming (LP)
problem, and thus can be solved efficiently. Empirical results for
a set of ISCAS-89 benchmark circuits show that our approach
can considerably reduce the effect of process variations on circuit
performance.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms
Algorithms, performance, verification, reliability

Keywords
Clock skew optimization, variability, sign-off, parameterized tim-
ing analysis, wiresizing

1. INTRODUCTION
The performance of a synchronous logic circuit depends on both

circuit delays and clock skews introduced by the clock distribu-
tion network. Clock skew is defined as the difference between the
arrival times of the clock signal at different clocked circuit ele-
ments. Typically, clock networks are designed to minimize skew
between the various clocked elements, where the objective in this
case is to achieve a zero-skew clock tree, as in [1] and [2]. On the
other hand, the more aggressive techniques of skew optimization
or clock scheduling (e.g. [3], [4], and [5]) actually assign skews to
different clocked elements in order to obtain better performance.
These usually formulate optimization problems to find clock net-
work path delays that improve circuit performance. However, in
practice, this requires interaction among different stages of the
design flow [6] and extends to beyond finding clock network delay
values.

With the scaling of VLSI technology, the effect of manufac-
turing process variations on circuit and clock network delays has
increased. Typically the effect of this on clock networks is seen in
the form of unintended skew, which degrades circuit performance.
In the case of zero-skew trees the focus has been on minimizing the
maximum skew resulting from process variations. This is typically

∗
This project was supported in part by Intel Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC2009, July 26–31, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-497-3 -6/08/0006 ...$5.00.

done by wire sizing and/or introduction of buffers (e.g. [7] and [8]).
Such approaches try to “cap” the maximum skew expected as a
result of process variability. However, these approaches deal with
variability in the clock network without regard to that in the func-
tional blocks, and are focused on achieving zero-skew rather than
timing closure. On the other hand, skew optimization techniques
usually deal with variability by incorporating margins [3], or per-
missible ranges [5], into their optimization formulation. However,
this is done at an early stage in the design flow when accurate
variability information of the clock network and functional blocks
is typically not available and is thus problematic.

In this work we present a linear programming (LP) formulation
in order to reduce the effect of process variability on circuit perfor-
mance. Our approach specifies required changes at the physical
level in clock network wire widths or lengths rather than required
clock network delay values. It is applied near the end of the design
flow as a post-processing step to account for process variability
when accurate variational clock network and functional path de-
lays are available. As stated earlier, modifying clock line widths
or lengths as a post-processing step has been proposed to mini-
mize the unintended skew of zero-skew clock trees. However, in
this work we formulate an LP that varies skews to try to meet
circuit timing constraints at all process corners rather than try
to eliminate skew.

2. PRELIMINARIES
In this section, we first present the process parameter model

assumed in our work. Then, we present some definitions and
preliminary concepts that are used throughout the paper.

2.1 Variability Model
In our approach, all logic cell and interconnect delays are mod-

eled as linear functions of normalized process parameters, whose
values vary between −1 and +1. Hence the delay of a logic cell
or of an interconnect RC-tree (also referred to as an interconnect
structure) can be written as an affine function of these process
parameters. Because the delays of individual paths, in both clock
networks and functional blocks, are sums of gate and intercon-
nect delays, they also become such affine functions of the process
parameters. Let the number of process parameters under consid-
eration be p. Thus, a timing quantity t, representing a timing
arc, interconnect, or path delay, can be written as follows:

t = t̄ +

p
X

l=1

δlXl (1)

where X = (X1, . . . , Xp) is the set of normalized process parame-
ters, t̄ is the nominal value of t, and δl is its sensitivity to process
parameter Xl. Such an affine function represents a hyperplane in
(p + 1)-dimensional space, and will often be referred to as, sim-
ply, a hyperplane. In this work, it is often required to find the
maximum or the minimum value of a hyperplane over the process
parameter space. It is trivial to see that the maximum value of t
over all process corners is:

tmax = t̄ +

p
X

l=1

|δl| (2)

which is equivalent to computing t at the process corner X̂ =

(X̂1, . . . , X̂p), such that X̂l = +1 if δl ≥ 0 and X̂l = −1 other-
wise. Minimizing t involves a very similar operation where the hy-
perplane is instead computed at x̂ = (x̂1, . . . , x̂p), where x̂l = −1
if δl ≥ 0 and x̂l = +1 otherwise.

2.2 Circuit Model
We focus on synchronous sequential circuits with edge-triggered

registers, but the work can be extended to circuits with level-
sensitive latches. In such circuits, every combinational logic block
receives its inputs from its input registers and stores its outputs
in its output registers. We denote by S the set of combinational
blocks in a given circuit. For example, Fig. 1, shows a simple
sequential circuit, where in this case S = {s1, s2}. A clock signal
is connected to all the registers of a sequential circuit by means
of a clock network that consists of buffers and interconnect. Such
a clock network can be designed to minimize skew between the
clock signals at the various registers, or it can be designed such
that it intentionally introduces skew at carefully chosen registers
in order to help meet timing constraints. In our approach, we re-
fer to the clock signal received at a register as the register’s clock
phase, and we call the delay of the path from the clock source
to the register its clock phase arrival time. In general, for a se-
quential circuit with m registers, the clock phase arrival times
are referred to as rq , 1 ≤ q ≤ m. For a combinational logic block

s ∈ S, D
ij
s refers to the largest delay between the input register

controlled by clock phase i and the output register controlled by

clock phase j. The term d
ij
s is used to refer to the smallest such

delay. For example, in Fig. 1, D24
1 is the largest delay between

reg2 and reg4 through s1 whereas d24
1 is the smallest such delay.

The clock phase arrival times rq of a sequential circuit are path
delays and hence, in our formulation, are hyperplanes in the set of

process parameters X. Consider the set P
ij
s of all paths through

the combinational logic block s between the source register con-
trolled by clock phase i and the sink register controlled by clock
phase j. The delays of these paths are, each, a hyperplane in the

process parameters, for which D
ij
s is their “max” and d

ij
s is their

“min”. Being the maximum and minimum of a set of hyperplanes,

it follows that D
ij
s and d

ij
s are, in general, piecewise planar sur-

faces and not hyperplanes. The notion of piecewise planar delays
has been used in the context of parameterized static timing anal-
ysis (PSTA) and there are existing works (e.g., [9] and [10]) on
how these can be found and represented. Typically, such a surface
is represented by a set or a “list” of hyperplanes, each of which

corresponds to a particular path. Thus D
ij
s is the set of hyper-

plane delays of “potentially longest paths” and d
ij
s is the set of

hyperplane delays of“potentially shortest paths”. However, in our

method, it is also possible to approximate D
ij
s and d

ij
s by single

hyperplanes, obtained by finding hyperplane bounds for these two

sets, using the approach in [11]. That is, D
ij
s would be replaced

by a hyperplane approximation of the “max” of the delays of the

“potentially longest paths”, and similarly d
ij
s would be replaced

by a hyperplane approximation of the “min” of the “potentially
shortest paths” delays. These approximations are conservative,
i.e., they never underestimate the true maximum delay or over-
estimate the true minimum delay for any point in the process
space.

3. BACKGROUND
In our approach, we modify the delays of the clock network in

order for the circuit to meet its timing constraints in the pres-
ence of process variations. This would be applicable near the
end of the design flow, as part of physical design while trying
to achieve timing sign-off, by modifying the clock network line
widths and/or lengths. In this section, we first present a short
overview of standard clock tree synthesis and a brief description
of how clock skew optimization could be used to improve the per-
formance of a circuit in a typical design flow. We then discuss
the effect of process variability on circuit performance and how a
circuit’s timing constraints can be verified under variability. This
will provide some background understanding of the problem and
set the stage for the presentation of our proposed clock network
optimization method.

3.1 Clock Tree Synthesis
In order to synthesize a clock network, a user can specify cer-

tain parameters such as maximum skew, maximum and minimum

Combinational Block
s1

r3

r2

r1 r4

r5

r6

r7

r8

in1

in2

out1

out2

Combinational Block
s2

Figure 1: A Simple Sequential Circuit

clock phase arrival times, and a host of other parameters. These
are then used to generate a clock network consisting of buffers
and interconnect, where the objective would be to have a “bal-
anced” clock tree. That is, designers usually strive to minimize
skews between different leaves of the clock tree.

In order to achieve circuits with higher frequencies, or higher
slacks, a user can use skew optimization techniques such as those
presented in [3] and [4] to find an “optimal” set of clock phase ar-
rival times. These techniques lead to a set of nominal clock phase
arrival times or a clock schedule, which are then translated into
a physical structure consisting of buffers and interconnect. The
method in [3] is an LP formulation that provides the clock phase
delays that maximize the clock frequency for circuits with edge-
triggered registers, as follows. Let r̄q , 1 ≤ q ≤ m, be the nominal

clock phase arrival times, and let D̄
ij
s and d̄

ij
s be, respectively,

the largest and smallest nominal delays through the combina-
tional logic block s between the source register with clock phase
i and sink register with clock phase j. The minimum acceptable
clock period T can be found using the following LP [3]:

minimize: T

Subject to: ∀s ∈ S, ∀i, j ∈ 1, . . . , m (3)

D̄ij
s + r̄i − r̄j + t

j
setup ≤ T

d̄ij
s + r̄i − r̄j − t

j
hold

≥ 0

To allow this general formulation, the convention is adopted
that, if logic block s does not contain a combinational path be-

tween registers controlled by clock phases i and j, then D̄
ij
s = −∞

and d̄
ij
s = +∞. For a required clock period of Tc, if T ≤ Tc then

the clock network which achieves the values of r̄q , 1 ≤ q ≤ m is
generated, placed, and routed. However, achieving a clock net-
work that can produce such arrival times is more complex than
achieving a minimal skew tree, and clock skew optimization re-
mains an active research area [6]. In any case our method can be
used irrespective of whether clock skew optimization is used to
generate the clock network or not.

3.2 Verification for Variability
Using the layout of the circuit resulting from either the stan-

dard or skew optimization nominal point analyses as a starting
point, along with characterized cell and interconnect process sen-
sitivities, variational path delays of the circuit can now be ex-
tracted. For a register with nominal clock phase arrival time r̄q ,
its actual rq under variability is a hyperplane, given by:

rq = r̄q +

p
X

l=1

λ
(q)
l

Xl (4)

The dependence of combinational path delays and clock phase
arrival times on process parameters may cause some timing con-
straints to fail for some process settings. In order for the circuit
to meet the timing constraints under variability, then, for every
logic block s, the following inequalities should be satisfied over
the whole process parameter space for all clock phases i and j:

Dij
s + ri − rj + t

j
setup ≤ Tc

dij
s + ri − rj − t

j
hold

≥ 0 (5)

which is equivalent to saying that:

max
X

(Dij
s + ri − rj) + t

j
setup ≤ Tc

min
X

(dij
s + ri − rj) − t

j
hold

≥ 0 (6)

Note that here we make the simplifying assumption that t
j
setup

and t
j
hold

are constant, rather than dependent on process pa-
rameters. Therefore, these are not included in the max and min
expressions. However this assumption is by no means necessary,
and doesn’t affect the applicability of our approach. Perform-
ing the verification in (6) can be done as follows. Let us first
consider the case where bounding hyperplane approximations are

used for D
ij
s and d

ij
s , as discussed above, so that D

ij
s and d

ij
s are

hyperplanes, given by:

Dij
s = D̄ +

p
X

l=1

ΦlXl, and dij
s = d̄ +

p
X

l=1

φlXl (7)

Writing ri and rj as in (4), we can now write (6) as:

max
X

D̄ + r̄i − r̄j +

p
X

l=1

(Φl + λ
(i)
l

− λ
(j)
l

)Xl

!

+ t
j
setup ≤ Tc

min
X

d̄ + r̄i − r̄j +

p
X

l=1

(φl + λ
(i)
l

− λ
(j)
l

)Xl

!

− t
j
hold

≥ 0

(8)

Note that the expressions inside the “max” and the “min” oper-
ations are hyperplanes. Finding the maximum or minimum value
of a hyperplane over the process space is a straight-forward op-
eration that is performed by computing the value of hyperplane
at a carefully chosen corner, as described earlier in (2). For the
constraints in (8), we use the term “worst-case” corner to refer
to the process corner used in the verification of the constraint.
Thus for a setup constraint the “worst-case” corner is the process
corner used to maximize its hyperplane, whereas for a hold-time
constraint this term refers to the process corner that minimizes
its hyperplane.

Now consider the case when D
ij
s and d

ij
s are written as piece-

wise planar functions. For example, suppose that D
ij
s is the piece-

wise planar surface formed by taking the “max” of the following
hyperplanes:

D(1) = D̄(1) +

p
X

l=1

Φ
(1)
l

Xl

D(2) = D̄(2) +

p
X

l=1

Φ
(2)
l

Xl

.

.

. (9)

D(u) = D̄(u) +

p
X

l=1

Φ
(u)
l

Xl

Then, in order to verify the setup constraint of D
ij
s we have to

verify the following constraints:

max
X

D̄(1) + r̄i − r̄j +

p
X

l=1

(Φ
(1)
l

+ λ
(i)
l

− λ
(j)
l

)Xl

!

+ t
j
setup ≤ Tc

max
X

D̄(2) + r̄i − r̄j +

p
X

l=1

(Φ
(2)
l

+ λ
(i)
l

− λ
(j)
l

)Xl

!

+ t
j
setup ≤ Tc

.

.

. (10)

max
X

D̄(u) + r̄i − r̄j +

p
X

l=1

(Φ
(u)
l

+ λ
(i)
l

− λ
(j)
l

)Xl

!

+ t
j
setup ≤ Tc

These constraints are verified by writing each at its“worst-case”
corner as is done for the setup constraint of (8). However, note
that “worst-case” corners for these constraints can be different.
Let Tv be the smallest clock period for which all the setup con-
straints of a circuit are satisfied under process variability. This
value can be found by evaluating the left-hand side expressions
of all setup constraints, such as (10), and choosing the largest
value. We call Mv = Tv − Tc the required timing margin; this
is the margin that has to be added to Tc so that the circuit can
operate correctly in the presence of process variability. The same

approach is taken for d
ij
s , where its hold-time constraint is also

written for each of the hyperplanes that form its piecewise planar
surface as in (10) and may be verified in a similar manner.

4. OPTIMIZATION
If the verification process described above reveals that the cir-

cuit does not meet its timing constraints for a required Tc under
all process settings, then an optimization problem can be formu-
lated to modify the clock network so that the required timing mar-
gin is minimized, thus possibly allowing the timing constraints to
be satisfied at all process corners, as follows.

A set of physical parameters of the clock tree, such as wire
lengths and/or widths, are chosen as variables to be optimized.
By varying these optimization variables, the different clock phase
delays can be modified to minimize the required timing margin.
However, before we explain how this is done, we will first ex-
amine how varying the physical parameters of an interconnect
RC-structure of a clock tree affects its clock phase arrival times.

4.1 Physical Parameter to Clock Phase Delay
Consider Fig. 2, which shows a generic segment of the path be-

tween a clock source and a register, consisting of the interconnect
RC-structure conk, its “input buffer” bufk, and one of its “out-
put buffers” bufk+1. We are interested in the effect that varying
a physical parameter of conk would have on the clock phase ar-
rival time r seen in Fig. 2. We will use variation in wire width
as the physical parameter of interest in our discussion, however
all of the arguments that follow can be made for a variation in
wire length as well. Let wk be the wire width of conk, and ∆wk

be a change in wk. A variation in wk would have an immediate
effect on the delays of the three “local” circuit elements, conk,
bufk, and bufk+1. First, the introduction of ∆wk would vary the
delay of conk by ∆dconk

. Second, the effective load capacitance
seen by bufk would vary as a result of ∆wk, thus leading to a
variation ∆dbufk in its delay, dbufk . In addition to the variation
in the delay of bufk, the change in its effective load capacitance
also leads to a variation in its output signal slew. This in turn
varies the delay of bufk+1 by ∆dbufk+1

. One could argue that

this variation in output signal slew of bufk would also lead to a
similar effect in bufk+1, which would then lead to the same effect
in buffers further downstream. This would extend the effect of
∆wk to “non-local” circuit elements. However, the impact on the
delays of these elements is small in practice, and it can be safely
ignored. Thus, the delay variations in the three “local” circuit
elements seen in Fig. 2 would account for most of the variation
seen in r. This variation, ∆r, can now be written as:

∆r = ∆dbufk + ∆dconk
+ ∆dbufk+1

(11)

In our approach, a linear model is used to approximate the
dependence of delay variations of circuit elements on ∆wk. Thus,
a first order Taylor series approximation of dbufk , dconk

, and
dbufk+1

, around the original value of wk is used to write:

∆dbufk ≈
∂dbufk

∂wk
∆wk, ∆dconk

≈
∂dconk

∂wk
∆wk (12)

∆dbufk+1
≈

∂dbufk+1

∂wk
∆wk

and leads to a linear dependence of ∆r on ∆wk:

∆r ≈

„

∂dbufk

∂wk

+
∂dconk

∂wk

+
∂dbufk+1

∂wk

«

∆wk =
∂r

∂wk

∆wk (13)

bufk bufk+1

conk

r
reg

clk

Figure 2: Section of a clock tree path

However, r, dbufk , dconk
, and dbufk+1

are also hyperplanes in the

set of process parameters X. Let r be written as seen in (4), and
dbufk , dconk

, and dbufk+1
as follows:

dbufk = α0 +

p
X

l=1

αlXl, dconk
= β0 +

p
X

l=1

βlXl (14)

dbufk+1
= γ0 +

p
X

l=1

γlXl

Then, using (4), we write:

∂r

∂wk

=
∂r̄

∂wk

+

p
X

l=1

∂λl

∂wk

Xl (15)

and, using (14) and (13), we deduce that:

∂r̄

∂wk

=
∂α0

∂wk

+
∂β0

∂wk

+
∂γ0

∂wk

, and
∂λl

∂wk

=
∂αl

∂wk

+
∂βl

∂wk

+
∂γl

∂wk

(16)

where 1 ≤ l ≤ p.

4.2 Modeling Multiple Variable Parameters
So far, we have presented an analysis of the effect of vary-

ing a single physical parameter on clock phase arrival time. We
now describe how one can capture the effect of varying multi-
ple physical parameters on clock phase arrival times. Without
loss of generality, we choose to vary only the widths of the var-
ious interconnect structures of the clock network. Let W repre-
sent the vector of interconnect widths of the clock tree, and let
∆W be the vector of variations in these widths. Let the num-
ber of interconnect segments in the clock tree be n, and we write
∆W = (∆w1, ∆w2, . . . , ∆wn), where each component represents
the variation in an interconnect segment in the clock tree. For
an arbitrary clock phase arrival time r, the introduction of ∆W
leads to a change ∆r:

∆r , r(W + ∆W) − r(W) (17)

Because ∆r is the aggregate result of n “local” delay variations in
the clock tree, the result of (13) is generalized to write:

∆r ≈
n
X

k=1

∂r

∂wk

∆wk (18)

Using (18) and (15) we can write:

∆r ≈
n
X

k=1

∂r̄

∂wk

∆wk +

p
X

l=1

n
X

k=1

∂λl

∂wk

∆wk

!

Xl (19)

4.3 Formulation of the Optimization Problem
The aim of the optimization step is to determine the required

changes in interconnect wire widths, ∆W = (∆w1, ∆w2, . . . , ∆wn),
given allowable bounds ∆Wmin ≤ ∆W ≤ ∆Wmax, so that the re-
quired timing margin, M , is minimized, given a required clock
period Tc. One possible way to achieve this is to extend the work
in [3] by finding an optimal assignment ∆W ⋆ such that it min-
imizes M = T − Tc, where T is the clock period for which the

timing constraints are met under all process corners. This can be
expressed as follows:

minimize: T − Tc (20)

Subject to: ∆Wmin ≤ ∆W ≤ ∆Wmax

∀s ∈ S, ∀i, j ∈ 1, . . . , m

max
X

(Dij
s + ri + ∆ri − rj − ∆rj) + t

j
setup ≤ T

min
X

(dij
s + ri + ∆ri − rj − ∆rj) − t

j
hold

≥ 0

Note that ri, rj , D
ij
s , and d

ij
s are extracted affine functions that

depend solely on the process parameters Xl, 1 ≤ l ≤ p, whereas
the variations in clock phase arrival times, ∆ri and ∆rj , depend
on both ∆wk and Xl, as shown in (19), and can be written as:

∆ri =
n
X

k=1

∂r̄i

∂wk

∆wk +

p
X

l=1

n
X

k=1

∂λ
(i)
l

∂wk

∆wk

!

Xl

,

n
X

k=1

g
(0)
k

∆wk +

p
X

l=1

n
X

k=1

g
(l)
k

∆wk

!

Xl (21)

∆rj =

n
X

k=1

∂r̄j

∂wk

∆wk +

p
X

l=1

n
X

k=1

∂λ
(j)
l

∂wk

∆wk

!

Xl

,

n
X

k=1

h
(0)
k

∆wk +

p
X

l=1

n
X

k=1

h
(l)
k

∆wk

!

Xl (22)

If the minimum value, M⋆, of T − Tc is such that M⋆ ≤ 0,
then the the timing constraints of the circuit can be met in the
presence of process variability. Otherwise, the constraints sim-
ply cannot be satisfied given both the required clock Tc and the
allowable ranges on ∆W . In that case, achieving sign-off will
require different changes in the design, not only tweaking the in-
terconnect wire widths, as we propose here. In any case, M⋆

corresponds to the smallest required timing margin achieved for
∆W ⋆ ∈ [∆Wmin, ∆Wmax], in order to meet timing constraints
at all process corners.

In the interest of efficiency, we transform the problem (20)
into a linear program (LP), by writing each of its constraints
at a specific process corner, as follows. Consider the following
constraint from (20):

max
X

(Dij
s + ri − rj + ∆ri − ∆rj) + t

j
setup ≤ T (23)

Let us start with the case where D
ij
s is approximated by a single

bounding hyperplane. In this case we can write:

Dij
s + ri − rj , t = t0 +

p
X

l=1

tlXl (24)

Let X̂
ij
s = (X̂1, . . . , X̂p) be the process corner that maximizes the

expression in (24). Note that this is the pre-optimization “worst-
case” corner of (23), i.e., when ∆ri = 0 and ∆rj = 0. This corner
is used to write (23) as:

(Dij
s + ri − rj + ∆ri − ∆rj)

˛

˛

˛

˛

X̂
ij
s

+ t
j
setup ≤ T (25)

where writing D
ij
s + ri − rj at this corner gives a constant value

K:

(Dij
s + ri − rj)

˛

˛

˛

˛

X̂
ij
s

= t0 +

p
X

l=1

tlX̂l , K (26)

and using (21), writing ∆ri at X̂
ij
s gives:

∆ri

˛

˛

˛

˛

X̂
ij
s

=
n
X

k=1

“

g
(0)
k

+ g
(1)
k

X̂1 + . . . + g
(p)
k

X̂p

”

∆wk

,

n
X

k=1

Gk∆wk (27)

and similarly, ∆rj can be written as:

∆rj

˛

˛

˛

˛

X̂
ij
s

=

n
X

k=1

“

h
(0)
k

+ h
(1)
k

X̂1 + . . . + h
(p)
k

X̂p

”

∆wk

,

n
X

k=1

Hk∆wk (28)

Thus writing (23) at X̂
ij
s gives the following constraint:

K +

n
X

k=1

(Gk − Hk) ∆wk + t
j
setup ≤ T (29)

Note that this constraint is now linear in the optimization vari-
ables ∆wk, 1 ≤ k ≤ n, and no longer has a “max” expression over
the process parameters. The same transformation can be done
for the rest of the “max” and “min” operations in all of the setup
and hold time constraints, respectively, to give the following op-
timization problem:

minimize: T − Tc (30)

Subject to: ∆Wmin ≤ ∆W ≤ ∆Wmax

∀s ∈ S, ∀i, j ∈ 1, . . . , m

(Dij
s + ri + ∆ri − rj − ∆rj)

˛

˛

˛

˛

X̂
ij
s

+ t
j
setup ≤ T

(dij
s + ri + ∆ri − rj − ∆rj)

˛

˛

˛

˛

x̂
ij
s

− t
j
hold

≥ 0

All the constraints in (30) are now linear in the optimization
variables, so that (30) is an LP which can be solved efficiently
using commercial LP solvers.

Next, consider the case when D
ij
s and d

ij
s are expressed as

piecewise planar functions. Let D
ij
s be the “max” of the set of

hyperplanes in (9), then a constraint similar to (29) is written for

each of D(1), . . . , D(u). This would result in an LP that is very
similar to (30), but which has a larger number of constraints.
However, since actual path delays are now used in the optimiza-
tion rather than conservative estimates, this would result in a
less pessimistic and more accurate minimum value of the required
margin T − Tc.

In its present form, (30) performs an optimization where each
constraint is written at its own pre-optimization “worst-case” cor-
ner, which was found during the verification step. For a particular
constraint, say (23), transforming it to (25) and using the latter
in (30) is meant to ensure that the post-optimization circuit would
satisfy (23) for those process settings Xv such that:

(Dij
s +ri +∆ri −rj −∆rj)

˛

˛

˛

˛

Xv

≤ (Dij
s +ri +∆ri −rj −∆rj)

˛

˛

˛

˛

X̂
ij
s

(31)

However, there is no guarantee that X̂
ij
s would be the“worst-case”

corner for the post-optimization expression (Dij
s +ri +∆ri−rj −

∆rj). The reason for this is that the introduction of ∆ri and ∆rj

alters the process parameter sensitivities of the expression inside
the “max” operation in (23), as can be seen from (21) and (22).
Thus, in order for (30) to ensure that the timing margin found
allows the circuit to pass timing at all process corners, we must
make sure that possible changes in “worst-case” corners are ac-
counted for in (30). In the next section, we propose a method
that deals with this possibility, in a conservative fashion, while
preserving the linearity of the optimization problem.

5. COVERING ALL CORNERS
In this section, we present a method that can be used to de-

termine whether the post-optimization “worst-case” corner of a
timing constraint in (20) could possibly be different from its pre-
optimization “worst-case” corner. After that, we present our pro-
posed steps to modify (30) if a constraint is found to be as such.
The aim of this modification is to ensure that the solution of (30)
guarantees that the circuit would pass its timing constraints for
all process corners.

5.1 Possible Changes in Worst-Case Corners
Recall from Section 3.2 that the process corner that maximizes

or minimizes an affine expression in the space of process param-
eters can be found by looking at the signs of its sensitivities to
each of the these parameters. Therefore, in order to determine
whether the “worst-case” corner of an expression might change
post-optimization, we need to find which are the sensitivities
whose signs might change as a result of the optimization per-
formed. One way of doing this is as follows. Consider the setup

constraint in (23) and let t = D
ij
s + ri − rj as in (24) and let t′

be as follows:

t′ = Dij
s + ri + ∆ri − rj − ∆rj (32)

For the given bounds on ∆W , ∆Wmin and ∆Wmax, we want to
determine whether the sign of the sensitivity to a process parame-
ter Xl, 1 ≤ l ≤ p in t′ could have a sign opposite to its sensitivity
in t. Using (21) and (22) we can write the sensitivity to Xl in t′,
denoted by t′

l
, as follows:

t′l = tl +
n
X

k=1

(g
(l)
k

− h
(l)
k

)∆wk (33)

where tl is the sensitivity of t to parameter Xl, which is known
from (26). In addition to determining whether tl and t′

l
are guar-

anteed to have the same sign or not, we also want to determine
the largest absolute value that t′

l
can assume, if it is possible for it

to have a sign different than that of tl. This is not necessarily the
largest magnitude that t′

l
can have when it has a sign opposite

to that of tl, but rather the largest absolute value it can have,
irrespective of sign. Assume, without loss of generality, that tl is
negative. Determining whether t′

l
can be positive is done as fol-

lows. For 1 ≤ k ≤ n, if (g
(l)
k

−h
(l)
k

) < 0, then we set ∆wk = wmin
k

.

On the other hand, if (g
(l)
k

−h
(l)
k

) ≥ 0, then we set ∆wk = wmax
k

.

The value of t′
l

is then computed using these assigned values. If
the computed t′

l
is positive then it is “at risk” of a sign change,

and this value is the largest positive value it can assume. In this
case, the smallest negative value of t′

l
is also computed in a sim-

ilar way and is compared to its largest positive value to find its
maximum absolute value which we call tmax

l
.

5.2 Accounting For Changing Corners
For a timing constraint in (20), once all the sensitivities that

are “at risk” of having different post- and pre-optimization signs
have been determined, we can proceed to modify (30), as follows.
Let the constraint under consideration be the setup constraint
shown in (23), and let t and t′ be as shown in (24) and (33),
respectively. Assume, without loss of generality, that for pro-
cess parameters X1, . . . , Xc, their sensitivities in t′ were found to
always have the same signs as their sensitivities in t, while the
signs of the sensitivities of process parameters Xc+1, . . . , Xp were
found to be possibly different in t′ than in t. The largest absolute
values tmax

c+1 , . . . , tmax
p found for the sensitivities t′c+1, . . . , t′p are

now summed to find a bound Bs:

Bs =

p
X

k=c+1

tmax
k (34)

Let the pre-optimization “worst-case” corner of (23) be X̂
ij
s =

(X̂1, . . . , X̂p). The process setting X̂∗ = (X̂1, . . . , X̂c, 0, . . . , 0),
and Bs are used to write the following constraint in (30):

(Dij
s + ri + ∆ri − rj − ∆rj)

˛

˛

˛

˛

X̂∗

+ t
j
setup ≤ T − Bs (35)

Note that writing the constraint in (35) is more conservative than

the constraint written at X̂
ij
s and hence the latter can be removed

from (30). For a hold-time constraint, a bound Bh is also com-
puted with the difference that the bound is added to the right-
hand side of the inequality and not subtracted from it to write:

(dij
s + ri + ∆ri − rj − ∆rj)

˛

˛

˛

˛

x̂∗

− t
j
hold

≥ Bh (36)

Table 1: Exact vs Conservative Approach

ISCAS-89 Num Variables Pre-optim Post-optim Percent Post-optim Percent
Circuit m Mv M⋆

exact Improvement M⋆
cons Improvement

s400 23 9.43% 4.37% 54% 4.69% 50%
s1432 86 11.13% 5.83% 48% 7.60% 31%
s5378 327 13.31% 2.29% 83% 2.89% 78%
s9234 281 10.37% 1.39% 87% 2.58% 75%
s13207 571 8.10% 1.46% 82% 2.28% 72%
s15850 959 10.69% 2.44% 77% 3.12% 71%
s38584 2732 5.12% −1.88% 136% −1.00% 120%

Such constraints would ensure that all “potentially worst-case”
corners are covered by using the bounds Bs and Bh to tighten
the timing constraints of (30). Of course, this comes at the price
of introducing some pessimism in the LP.

6. RESULTS
In order to test our approach, we have selected a set of circuits

from the ISCAS-89 benchmark suite. These circuits were synthe-
sized and mapped to a 90nm CMOS library, and then placed and
routed using available commercial tools. The HSPICE netlists
for the logic blocks and clock trees of these circuits were then
extracted. Nominal delays and slews were characterized for all
cells in the library, and a set of 10 parameters X1, . . . , X10 was
selected to model process variations. The ranges of those param-
eters were chosen such that their combined effect on the delay or
slew of a cell or an interconnect resistance or capacitance value is
15%. The sensitivities of gate delays and interconnect RC-trees
to these process parameters were randomly generated, in order
to provide difficult test-cases. With the above variational mod-
els, the HSPICE netlists of the different test circuits were fed
into our STA timing engine, which was implemented in C++ and
extended to handle parameterized static timing analysis (PSTA).

Two PSTA flows were implemented, and consequently two sets
of experiments were compared. The first PSTA flow, based on [9],
provides an exact analysis as it propagates delays in the circuit
using piecewise planar delay models, where all“potentially critical

path” delays are preserved at every node. Hence, D
ij
s and d

ij
s are

“lists” of hyperplanes each corresponding to a path delay. The
second flow, based on [11], propagates conservative hyperplane

bounds to D
ij
s and d

ij
s . A nominal STA run, without consid-

eration to process variability, is also performed on each of the
circuits and the nominal clock period found is considered to be
the required clock period Tc for the test circuits.

Using the propagated delays from the exact PSTA, we start
by computing the pre-optimization required timing margin, Mv ,
which guarantees that all constraints are met at their “worst-
case” corners. Mv can be easily computed using our verification
method in Section 3.2 by maximizing the left-hand side of every
setup constraint written as in (10), and recording the largest value
achieved over all constraints to find the smallest clock period Tv

that will allow correct operation. The required clock period Tc

is then subtracted from Tv to find Mv. We then ran our LP
formulation of (30) to find the minimum achievable margin M⋆.
In our LP, the optimization variables are chosen to be variations
in interconnect wire widths of the clock tree ∆wk, 1 ≤ k ≤ n
where n is the number of interconnect structures in the clock
tree. The bounds on variations in wire widths were set such that
0 ≤ ∆wk ≤ wk, where wk is the pre-optimization wire width.
In other words, wire widths are allowed, at most, to double, as a
result of the optimization.

The minimum post-optimization timing margins, M⋆
exact and

M⋆
cons, achieved based on exact and conservative PSTA flows, re-

spectively, are shown in Table 1, in addition to the pre-optimization
margin Mv . Given the above bounds on the allowable wire changes
∆wk, we observed improvements ranging from 50%−136%. This
shows a considerable reduction in the required margin which al-
lows the timing constraints of the circuit to be satisfied for all
process corners. Our results also show that although using piece-
wise planar values guarantees a better post-optimization mar-
gin, for most circuits, the difference between the improvements
achieved in the two approaches is small. We also recorded and
compared the runtimes of the optimization for both the exact and

Table 2: Run-time Comparison

ISCAS-89 Exact Conservative Speed-up
Circuit Approach Approach (×)
s400 0.06 s 0.05 s 1.16
s1432 2.45 s 0.98 s 2.5
s5378 0.93 s 0.72 s 1.29
s9234 1.31 s 1.25 s 1.05
s13207 3.56 s 2.3 s 1.55
s15850 13.27 s 9.83 s 1.35
s38584 20.78 s 13.71 s 1.52

conservative delay approaches. The results in Table 2 show that
although the hyperplane approach is more conservative in terms
of post-optimization margin, it typically produces a speed-up be-
tween 1.16× and 2.5×. Thus, we see that one is faced with a
runtime-accuracy tradeoff, where a good speed-up is achieved at
the expense of some pessimism that is introduced to the analysis.

7. CONCLUSION
In this work, we presented a technique that modifies clock net-

work wire widths and/or lengths so that a circuit meets its timing
constraints at all process corners. Our method considers delay
variability in both the clock network and the functional blocks,
and is applicable near the end of the design flow. We showed
that the problem of finding the required changes in line widths
and/or lengths can be formulated as a Linear Program, which
can be solved efficiently. Using our clock skew tuning approach,
designers can considerably reduce the effect of process variations
on circuit performance, as shown in our results.

8. REFERENCES
[1] R. S. Tsay. Exact zero skew. In Int. Conf. on Computer Aided

Design (ICCAD), pages 336–339, 1991.

[2] T. H. Chao, Y. C. Hsu, and J. M. Ho. Zero skew clock net
routing. In DAC, pages 518–523, June 1992.

[3] J. Fishburn. Clock skew optimization. IEEE Trans. on
Computer-Aided Design, 39(7):945–951, July 1990.

[4] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. Analysis
and design of latch-controlled synchronous digital circuits.
IEEE TCAD, 11(3):322–333, March 1992.

[5] J. L. Neves and E. G Friedman. Buffered clock tree synthesis
with non-zero clock skew scheduling for increased tolerance to
process parameter variations. Journal of VLSI Signal
Processing, 16:149–161, 1996.

[6] I.M. Liu, T.L. Chou, A. Aziz, and DF Wong. Zero-skew clock
tree construction by simultaneous routing, wire sizing and
buffer insertion. In Proceedings of the 2000 international
symposium on Physical design, pages 33–38. ACM New York,
NY, USA, 2000.

[7] S. Pullela, N. Menezes, and L. T. Pillage. Reliable non-zero
skew clock trees using wire width optimization. In Design
Automation Conference, pages 165–170, June 1993.

[8] S. Pullela, N. Menezes, and L. T. Pileggi. Post-processing of
clock trees via wiresizing and buffering for robust design. IEEE
TCAD, 15(6):691–701, 1996.

[9] K. R. Heloue, S. Onaissi, and F. N. Najm. Efficient block-based
parameterized timing analysis covering all potentially critical
paths. In ICCAD, pages 173–180, November 2008.

[10] S. V. Kumar, C. V. Kashyap, and S. S. Sapatnekar. A
framework for block-based timing sensitivity analysis. In
Design Automation Conference, pages 688–693, 2008.

[11] S. Onaissi and F.N. Najm. A linear-time approach for static
timing analysis covering all process corners. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(7):1291–1304, 2008.

