
Power Estimation in Sequential Circuitsy

Farid N. Najm, Shashank Goel, and Ibrahim N. Hajj

ECE Dept. and Coordinated Science Lab.

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract { A new method for power estima-

tion in sequential circuits is presented that is based

on a statistical estimation technique. By applying

randomly generated input sequences to the circuit,

statistics on the latch outputs are collected, by sim-

ulation, that allow e�cient power estimation for

the whole design. An important advantage of this

approach is that the desired accuracy can be spec-

i�ed up-front by the user; the algorithm iterates

until the speci�ed accuracy is achieved. This has

been implemented and tested on a number of se-

quential circuits and found to be much faster than

existing techniques. We can complete the analysis

of a circuit with 1,452 
ip-
ops and 19,253 gates

in about 4.6 hours (the largest test case reported

previously has 223 
ip-
ops).

I. INTRODUCTION

The dramatic decrease in feature size and the cor-

responding increase in the number of devices on a chip,
combined with the growing demand for portable commu-

nication and computing systems, have made power con-

sumption one of the major concerns in VLSI circuits and
systems design [1]. Indeed, excessive power dissipation in

integrated circuits not only discourages the use of the de-

sign in a portable environment, but also causes overheating,
which can lead to soft errors or permanent damage. Hence

there is a need to accurately estimate the power dissipation

of an IC during the design phase.
The main conceptual di�culty in power estimation is

that the power depends on the input signals driving the cir-

cuit. Simply put, a more active circuit will consume more

power. Thus, one straightforward method of power esti-

mation is to simulate the design over all possible inputs,

compute the power dissipated under each input, and aver-
age the results. However, such an approach is prohibitively

expensive. Thus the main di�culty in power estimation, is

that the power is input pattern-dependent.

y This work was supported in part by Intel Corp., Digital

Equipment Corp., and USAF Rome Laboratory.

It is possible to overcome the pattern-dependence

problem by using probabilities to describe the set of all pos-
sible logic signals, and then studying the power resulting

from the collective in
uence of all these signals. This for-

mulation achieves a certain degree of pattern-independence
that allows one to e�ciently estimate the power dissipa-

tion. Most recently proposed power estimation tools [2]

are based on such a probabilistic approach, but are limited
to combinational circuits. Only a few techniques have been

proposed for sequential circuits, and they will be reviewed

in the next section.
It is usually assumed that the circuit has the popular

and well-structured design style of a synchronous sequen-

tial circuit, as shown in Fig. 1. In order to handle such
sequential circuits, we propose a technique in which we ap-

ply a number of randomly generated input sequences to the
circuit and collect statistics on the latch outputs using fast

zero-delay logic simulation, or using functional simulation

of a structural RTL description. Given these statistics, it
is then possible to use any of the existing combinational

circuit techniques to compute the total power.

II. BACKGROUND

Let u1; u2; : : : ; um be the primary input nodes of
a sequential logic circuit, as shown in Fig. 1, and let

x1; x2; : : : ; xn be the present state lines. For simplicity of

presentation, we have assumed that the circuit contains a
single clock that drives a bank of edge-triggered latches.

On the falling edge of the clock, the latches transfer the

values at their inputs to their outputs. The inputs ui and
the present state values determine the next state values and

the circuit outputs, so that the circuit implements a �nite

state machine (FSM).
Most existing power estimation techniques handle

only combinational circuits [2], and require information on

the circuit input statistics (transition probabilities, etc).
To allow extension to sequential circuits, it is therefore suf-

�cient to compute statistics of the latch outputs (and cor-

responding latch power). Other existing techniques would

then be applied to compute the power consumed in the

combinational block.

We will brie
y survey the few recently proposed tech-

niques for estimating the power in sequential circuits. To

simplify the discussion, we will assume that the sequen-

tial circuit implements a non-decomposable �nite state ma-
chine. All proposed techniques that handle sequential cir-

cuits [3{6] make the simplifying assumption that the FSM

is Markov [7], so that its future is independent of its past
once its present state is speci�ed.

ACM/IEEE Design Automation Conference, 1995.



Some of the proposed techniques compute only the

probabilities (signal and transition) at the latch outputs,

while others also compute the power. The approach in [3]
solves directly for the transition probabilities on the present

state lines using the Chapman-Kolmogorov equations [7],

which is computationally too expensive. Another approach
that also attempts a direct solution of the Chapman-

Kolmogorov equations is given in [4]. While it is more

e�cient, it remains quite expensive, so that the largest
test case presented contains less than 30 latches.

Circuit
Combinational

Sequential Circuit

Latches

Clock

Present
State

Next
State

Inputs Outputs

u

2u
1u

nx

2x

1x

m

Figure 1. An FSM model of a sequential logic circuit.

Better solutions are o�ered by two recent papers [5, 6],
which are based on solving a non-linear system that gives

the present state line probabilities, as follows. Given prob-

abilities pu1 ; : : : ; pum at the input lines, let a vector of
present state probabilities Pp:s: = [px1 : : : pxn ] be applied

to the combinational logic block. Assuming the present

state lines are independent, one can compute a correspond-
ing next state probability vector as F (Pp:s:). The function

F (�) is a non-linear vector-valued function that is deter-

mined by the Boolean function implemented by the com-
binational logic.

In general, if the next state probabilities form a vector

Pn:s:, then Pn:s: 6= F (Pp:s:), because the latch outputs are
not necessarily independent. Both methods [5, 6] make the

independence assumption Pn:s: � F (Pp:s:). Finally, since

Pn:s: = Pp:s: due to the feedback, they obtain the state line
probability values by solving the system P = F (P ). This

system is solved using the Newton-Raphson method in [5],

and using the Picard-Peano iteration method in [6].

One problem with this approach is that it is not clear

that the system P = F (P ) has a unique solution. Being

non-linear, it may have multiple solutions, and in that case
it is not clear which is the correct one. Another problem is

the independence assumption which need not hold in prac-

tice, especially in view of the feedback. Both techniques
try to correct for this. In [5], this is done by accounting

for m-wise correlations between state bits when comput-

ing their probabilities. This requires 2m additional gates
and can get very expensive. Nevertheless, they show good

experimental results. The approach in [6] is to unroll the

combinational logic block k times. This is less expensive

than [5], and the authors observe that with k = 3 or so,
good results can be obtained. Finally, in order for the FSM

to be Markov, its input vectors must be independent and

identically distributed, which is another assumption that
also may not hold in practice.

We o�er a solution that makes no assumptions about

the FSM behavior (Markov or otherwise), makes no in-
dependence assumption about the state lines, and allows

the user to specify the desired accuracy and con�dence to

be achieved in the results. The only assumption we will
make has to do with the autocovariance of the logic sig-

nals, which is mild and generally true for all but periodic

logic signals, as explained below. We also assume that the
user has information on the statistics of the FSM input

signals.

III. PROBLEM FORMULATION

If every state of the machine is reachable from every
other state in a �nite number of cycles, then the FSM is

said to be non-decomposable. Otherwise, it can be decom-

posed into a number of smaller FSMs, each of which being
non-decomposable. Therefore, it is su�cient to study a

single non-decomposable FSM:

Assumption 1. The sequential circuit implements a non-

decomposable FSM.

Since the system is clocked, it is convenient to work

with discrete time, so that the FSM inputs at time k, ui(k),
and its present state at that time, xi(k), determine its next

state, xi(k + 1), and its output. In order to take into ac-

count the e�ect of large sets of inputs, one is typically inter-
ested in the average power dissipation over long periods of

time. Therefore, we will assume that the FSM operates for

all time (�1 < k < 1). An in�nite logic signal x(k) can
be characterized by two measures: signal probability P (x)

is the fraction of time that the signal is high, and transi-

tion densityD(x) is the average number of logic transitions
per clock cycle. These measures are formally presented in

the appendix, where it is also shown that D(x) = P (tx),

where tx(k) is another logic signal derived from x(k) so
that tx(k) = 1 only in those cycles where x(k) makes a

transition:

tx(k) =
n
1; if x(k) 6= x(k� 1);

0 otherwise.
(1)

In order to study the properties of a logic signal over
(�1;1), it is useful to consider a random model of logic

signals. We will use bold font to represent random quan-

tities. We denote the probability of an event A by PfAg
and, if x is a random variable, we denote its mean by E[x].

An in�nite logic signal x(k) can be viewed as a sample of

a stochastic process x(k), consisting of an in�nite set of
shifted copies of the logic signal. This process, which we

call a companion process, embodies all the details of the

logic signal, including its probability and density. Details
and basic results related to the companion process are given

-2/6-



in the appendix as an extension of previous continuous-

time work [8]. Speci�cally, the companion process is sta-

tionary, and for any time instant k, the probability that
x(k) is high is equal to the signal probability of the logic

signal:

Pfx(k) = 1g = P (x) (2)

This result holds for any logic signal. If we (conceptu-
ally) construct the companion processes corresponding to

the FSM signals, then we can view the FSM as a system op-

erating on stochastic inputs, consisting of the companion
processes u1(k);u2(k); : : : ;um(k), and having a stochas-

tic state consisting of the processes x1(k);x2(k); : : : ;xn(k).

Given statistics of the input vectorU(k) = [u1(k) u2(k) : : :
um(k)], one would like to compute some statistics of the

state vector X(k) = [x1(k) x2(k) : : : xn(k)].

Before going on, we will need to make one mild as-

sumption related to covariance of the process X(k):

Assumption 2. The state of the machine at time k be-

comes independent of its initial state at time 0 as k !1.

This assumption is mild because it is generally true

in practice that, for all non-periodic logic signals, two val-

ues of the signal that are separated by a large number of
clock cycles become increasingly unrelated. One necessary

condition of this assumption is that the FSM be aperiodic,

i.e., that it does not cycle through a repetitive pattern of
states. Aperiodicity is implicitly assumed by most previ-

ous work on sequential circuits. Speci�cally, whenever an

FSM is assumed Markov (in which case aperiodicity be-
comes equivalent to the above assumption), the FSM is

usually also assumed to be aperiodic [5, 6].

Before leaving this section, we consider the question

of exactly what statistics of X(k) are required in order

to estimate the power. These statistics must be su�cient
to compute the combinational circuit power. Most tech-

niques for combinational circuit power estimation [2] re-

quire the signal probability and transition density at ev-
ery input (for discrete-time signals, knowing the transition

density is equivalent to knowing the transition probabil-

ity). Since the power consumed in the latches can also be
derived fromD(xi), then the state line P (xi) and D(xi) are

enough to compute the power for the whole circuit. How-

ever, since D(x) = P (tx), where tx is de�ned in (1), it will
be su�cient to describe an algorithm by which P (xi) can

be computed. The same algorithm can be used to compute

P (txi) = D(xi). Such an algorithm is presented in the next

section.

IV. COMPUTING STATE LINE PROBABILITIES

We propose to obtain the state line probabilities by
performing Monte Carlo logic simulation of the design us-

ing high-level functional description, say at the register

transfer level (RTL), and computing the probabilities from
the large number of samples produced. High-level simula-

tion can be done very fast, so that one can a�ord to simu-

late a large number of cycles. However, one has to decide
how long to simulate in order to get meaningful statistics.

It is also important to choose the random inputs in ac-

cordance with user-speci�ed statistics of the FSM input

vector. Both of these issues are discussed below.

A. Convergence

Suppose the FSM is known to be in some state X0 at

time 0. Using (2), and given assumption 2, we have for any
state signal xi:

lim
k!1

Pfxi(k) = 1 j X(0) = X0g = lim
k!1

Pfxi(k) = 1g

= P (xi)
(3)

For brevity, we denote the conditional probability by:

Pk(xi j X0) = Pfxi(k) = 1 j X(0) = X0g

Our method consists of estimating Pk(xi j X0) for in-
creasing values of k until convergence (according to (3))

is achieved. To achieve this, we perform repeated simula-

tion runs of the circuit, starting from some state X0, and
drive the simulation with randomly generated input vec-

tors [u1 u2 � � � um] (consistent with the statistics ofU(k)).

Each run results in a logic waveform x
(j)

i (k), k = 0; 1; 2 : : :,

where j designates the run number. If we average the re-

sults at every time k we obtain an estimate of the proba-
bility at that time as follows:

p
(N)

i (k) =
1

N

NX
j=1

x
(j)

i (k)

From the law of large numbers, it follows that:

lim
N!1

p
(N)

i (k) = Pk(xi j X0)

We do not actually have to perform an in�nite number of

runs. Using established techniques for the estimation of

proportions [9], we can predict how many runs to perform
in order to achieve some user-speci�ed error-tolerance (�)

and con�dence (�) levels. Speci�cally, it can be shown [10]

that if we want (1� �)� 100% con�dence that:

���� p(N)i (k)� Pk(xi j X0)

���� < � (4)

then we must perform at least N � max(N2
1 ;N

2
2 ;N

2
3 ) runs,

where:

N1 =
z�=2

2�
; N2 =

z�=2
p
2�+ 0:1 +

q
(�+ 0:1)z2

�=2
+ 3�

2�
;

and N3 =

p
63 + z�=2

2
p
�

and where z�=2 is such that the probability that a standard

normal random variable is greater than z�=2 is equal to

�=2. The value of z�=2 can be obtained from the erf(�)
function available on most computer systems. For instance,

-3/6-



z�=2 = 1:96 for 95% con�dence (i.e., � = 0:05), and z�=2 =

2:575 for 99% con�dence. From the above equations, it can

be seen that 500 runs are enough to obtain a result with
accuracy � = 0:05 and 95% con�dence.

From user-speci�ed � and �, the required value of N
can be found up-front. Given this, we initiate N parallel

simulations of the FSM and estimate Pk(xi jX0) � p
(N)

i (k)

for increasing k values. The remaining question is how to
determine when k is large enough so that this estimate can

be said to have converged to P (x). We use two measures

to check on this convergence, as follows. We perform two
sets of simulation runs of the machine, starting from dif-

ferent arbitrary initial states X0 and X1, so as to estimate

Pk(xi j X0) and Pk(xi j X1) for increasing k values. Since
both should converge to P (x), we monitor both their dif-

ference and their average. When both of these measures

have remained within a window of �� for three consecutive
time instants, we declare that that node has converged.

The choice of three time instants is somewhat arbitrary

and can be changed by the user. To speed up conver-
gence, we actually �lter the two waveforms Pk(xi j X0)

and Pk(xi j X1) before checking their di�erence and aver-

age, using a 100 point FIR �lter procedure with a cuto�
frequency of 0.02 Hz. When all nodes have converged, the

simulation is terminated and the average of the last avail-

able Pk(xi j X0) and Pk(xi j X1) values is reported as the
signal probability P (xi), for each xi.

B. Input Generation

In view of assumption 2, one requirement on the ap-
plied input sequence U(k) is that it not be periodic. An-

other condition, required for the estimation (4) to hold, is

that the di�erent U (j)(k) sequences used in di�erent simu-
lation runs j = 1; : : : ;N be generated independently. Oth-

erwise, no limitations are placed on the input sequence.

The exact way in which the inputs are generated de-

pends on the design and on what information is available
about the inputs. For instance if the FSM is meant to

execute micro-code from a �xed set of instructions, then

every sequence U (j)(k) may be a piece of some micro-code
program. This method of input generation faithfully repro-

duces the bit correlations in U(k) as well as the temporal

correlation between U(k); U(k + 1); : : :. Alternatively, if
the user has information on the relative frequency with

which instructions occur in practice, but no speci�c pro-

gram from which to select instruction sequences, then a

random number generator can be used to select instruc-

tions at random to be applied to the machine. This would

preserve the bit correlations, but not the temporal correla-

tions between successive instructions. Conceivably, if such

correlation data is available, one can bias the random gen-

eration process to reproduce these correlations.

In more general situations, where the machine inputs

can be arbitrary, simpler random generation processes can
be used. For instance, it may not be important in some ap-

plications to reproduce the correlations between bits and

between successive vectors. The user may only have infor-
mation on the statistics of the individual input bits, such

as the probability P (ui) and density D(ui) for every input.

In this case, one can design a random generation process to

produce signals that have the required P and D statistics,
as follows.

Using equations (A.3) in the appendix, one can com-

pute from P and D the mean high time and mean low

time of the signal. By assuming a certain distribution

type for the high and low pulse widths, one can then

easily generate a logic signal with the required statistics.
The choice of distribution is not very important because,

as observed in [11], the power is relatively insensitive to

the particular distribution, rather it depends mainly on
the input densities. For instance, if one uses a geomet-

ric distribution (which is equivalent to the signals xi be-

ing individually Markov), then one obtains a �xed value
for the probabilities Pfxi(k) = 1 j xi(k � 1) = 0g and

Pfxi(k) = 0 j xi(k� 1) = 1g, as shown in [12], and gener-

ates the logic signals accordingly. Incidentally, in this case,
even though the inputs are Markov, the FSM itself is not

necessarily Markov.

Finally, if only the probabilities P (xi) are available
for the input nodes, and if it is not important to reproduce

any input correlation information, one can generate the

inputs by a sequence of coin 
ips using a random number
generator. In this case, the inputs are said to be i.i.d.

(independent and identically distributed) and the FSM can

be shown to be Markov, but the individual state bits xi
may not be Markov.

Our implementation results for this approach, re-

ported in the next section, are based on this last case of
i.i.d. inputs. However, the technique is applicable to any

other mechanism of input generation, as we have explained.

V. EXPERIMENTAL RESULTS

This technique was implemented in a prototype C pro-
gram that accepts a netlist description of a synchronous

sequential machine. The program performs a zero delay

logic simulation and monitors the node probabilities until
they converge. To improve the speed, we simulate 31 copies

of the machine in parallel, using bit-wise operations. We

have tested the program on a number of circuits from the
ISCAS-89 sequential benchmark set [13].

All the results to be presented will be based on an
error-tolerance of 0:05, i.e., � = 0:05, and 95% con�dence,

i.e., � = 0:05. For initial states, we used X0 = [0 0 : : : 0]

and X1 = [1 1 : : : 1]. Under these conditions, a typi-
cal convergence characteristic is shown in Fig. 2. The two

waveforms shown correspond to p
(N)

i (k) starting from X0

and p
(N)

i (k) starting from X1, for node X.3 of circuit s838.1

(this circuit has 34 inputs, 32 
ip-
ops, and 446 gates).

This decaying sinusoidal convergence is typical, although
in some cases the convergence is simply a decaying expo-

nential and is much faster.

In order to assess the accuracy of the technique, we
compared the (0.05, 95%) results to those of a much more

accurate run of the same program (using 0.005 error toler-

ance and 99% con�dence). Since one is interested only in
steady state node values during the simulation, there is no

-4/6-



need to use a more accurate timing simulator or a circuit

simulator to make these comparisons. These highly accu-

rate runs take a long time and, therefore, they were only
performed on the circuits s1196, s1238, s713, and s1423.

We then computed the di�erence between the probabilities

P (xi) from the (0.05, 95%) run and those from the (0.005,
99%) run. Figure 3 shows the resulting error histogram for

all the latch outputs from these circuits. Notice that all

the nodes have errors well within the speci�ed 0.05 error
bounds.

0 20 40 60
Clock Cycles

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Figure 2. Convergence of probability for s838.1, node X.3.

-0.10 -0.05 0.00 0.05 0.10
Absolute Error in Probability

0

10

20

30

40

N
um

be
r 

of
 N

od
es

Figure 3. Latch probability error histogram.

We also monitored the speed of this technique and re-
port some results in Table I. These circuits are much larger

(especially in terms of 
ip-
op count) than the largest cir-

cuits tested in previous methods [4{6]. Furthermore, for
those circuits in the table that were also tested in [4{6], this

technique works much faster. Finally, since our method

does not use BDDs to compute probabilities, there are no
memory problems with running large circuits.

VI. SUMMARY AND CONCLUSIONS

Most existing power estimation techniques are lim-
ited to combinational circuits, while all practical circuit

designs are sequential. We have presented a new technique

for power estimation in sequential circuits that is based on
a statistical estimation technique. By applying randomly

generated input sequences to the circuit, statistics on the

latch outputs are collected, by simulation, that allow e�-

cient power estimation for the whole design. An important
advantage of this approach is that the desired accuracy of

the results can be speci�ed up-front by the user. We have

implemented this technique and tested it on a number of
benchmark sequential circuits, with excellent results.

Table I.

EXECUTION TIME ON A SUN SPARC10.

Circuit #inputs #latches #gates cpu time

s1238 14 18 508 24.34 sec

s1196 14 18 529 24.96 sec

s713 35 19 393 22.80 sec

s838.1 34 32 446 28.12 sec

s1423 17 74 657 55.11 sec

s5378 35 179 2,779 3.81 min

s9234.1 36 211 5,597 1.05 hrs

s15850.1 38 534 9,796 3.34 hrs

s13207.1 62 638 7,951 3.23 hrs

s38584 12 1,452 19,253 4.59 hrs

APPENDIX A. DISCRETE-TIME LOGIC SIGNALS

Let Z = f: : : ;�2;�1; 0; 1; 2; : : :g be the set of all in-

tegers, and let x(k); k 2 Z; be a function of discrete time
that takes the values 0 or 1, i.e., x(k) is a discrete-time logic

signal. The de�nitions and results below are extensions of

similar concepts developed in [8]. The results are therefore
given without proof.

A.1 Probability and Density

Notice that the set fb�K=2c + 1; : : : ; b+K=2cg con-
tains exactly K elements, whereK > 0 is a positive integer.

De�nition 1. The signal probability of x(k), to be denoted

P (x), is de�ned as:

P (x) = lim
K!1

1

K

b+K=2cX
k=b�K=2c+1

x(k) (A:1)

It can be shown that the limit in (A.1) always exists.

If x(k) 6= x(k � 1), we say that the signal undergoes
a transition at time k. Corresponding to every logic signal

x(k), one can construct another logic signal tx(k) so that

tx(k) = 1 if x(k) undergoes a transition at k, otherwise
tx(k) = 0. Let nx(K) be the number of transitions of x(k)

over fb�K=2c+ 1; : : : ; b+K=2cg. Therefore, nx(K) � K.

De�nition 2. The transition density of a logic signal x(k),

denoted by D(x), is de�ned as:

D(x) = lim
K!1

nx(K)

K
(A:2)

-5/6-



Notice that nx(K) =
P
b+K=2c

k=b�K=2c+1
tx(k), so that D(x) =

P (tx), and the limit in (A.2) exists.

The time between two consecutive transitions of x(k)

will be referred to as an inter-transition time: if x(k) has
a transition at i and the next transition is at i + n, then

there is an intertransition time of length n between the two

transitions. Let �1 (�0) be the average of the high (low),
i.e., corresponding to x(k) = 1 (0), inter-transition times of

x(k). In general, there is no guarantee of the existence of

�0, and �1. If the number of transitions in positive time is
�nite, then we say that there is an in�nite inter-transition

time following the last transition, and �0 or �1 will not

exist. A similar convention is made for negative time.

Proposition 1. If �0 and �1 exist, then:

P (x) =
�1

�0 + �1
and D(x) =

2

�0 + �1
(A:3a; b)

A.2 The Companion Process

Let x(k), k 2 Z, be a discrete-time stochastic pro-

cess [7] that takes the values 0 or 1, transitioning between
them at random discrete transition times. Such a process

is called a 0-1 process. A logic signal x(k) can be thought

of as a sample of a 0-1 stochastic process x(k), i.e., x(k)
is one of an in�nity of possible signals that comprise the

family x(k).
A stochastic process is said to be stationary if its sta-

tistical properties are invariant to a shift of the time ori-

gin [7]. Among other things, the mean E[x(k)] of such
a process is a constant, independent of time, and will be

denoted by E[x]. Let nx(K) denote the number of transi-

tions of x(k) over fb�K=2c+1; : : : ; b+K=2cg. For a given
K, nx(K) is a random variable. If x(k) is stationary, then

E[nx(K)] depends only on K, and is independent of the

location of the time origin. Furthermore, one can show
that if x(k) is stationary, then the mean E[nx(K)=K] is

constant, irrespective of K.

Let z 2 Z be a random variable with the cumulative
distribution function Fz(k) = 1=2 for any �nite k, and

with Fz(�1) = 0 & Fz(+1) = 1. One might say that z

is uniformly distributed over the whole integer set Z. We
use z to construct from x(k) a stochastic 0-1 process x(k),

called its companion process, de�ned as follows.

De�nition 3. Given a logic signal x(k) and a random vari-

able z, uniformly distributed over Z, de�ne a 0-1 stochastic

process x(k), called the companion process of x(k), given
by:

x(k) = x(k + z) (A:4)

For any given k = k1, x(k1) is the random variable

x(k1+z) - a function of the random variable z. Intuitively,
x(k) is a family of shifted copies of x(k), each shifted by

a value of the random variable z. Thus, not only is x(k)

a sample of x(k), but one can also relate statistics of the
process x(k) to properties of the logic signal x(k), as fol-

lows.

Proposition 2. The companion process x(k) of a logic

signal x(k) is stationary, with:

E[x] = Pfx(k) = 1g = P (x); and E

�
nx(K)

K

�
= D(x)

(A:5a; b)

REFERENCES

[1] R. W. Brodersen, A. Chandrakasan, S. Sheng, \Technolo-
gies for personal communications," 1991 Symp. on VLSI
circuits, Tokyo, Japan, pp. 5-9, 1991.

[2] F. Najm, \A survey of power estimation techniques in
VLSI circuits," IEEE Transactions on VLSI Systems,
pp. 446{455, Dec. 1994.

[3] A. A. Ismaeel and M. A. Breuer, \The probability of error
detection in sequential circuits using random test vectors,"
Journal of Electronic Testing, vol. 1, pp. 245{256, January
1991.

[4] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi,
\Probabilistic analysis of large �nite state machines," 31st
ACM/IEEE Design Automation Conference, San Diego,
CA, pp. 270{275, June 6{10, 1994.

[5] J. Monteiro and S. Devadas, \A methodology for e�cient
estimation of switching activity in sequential logic cir-
cuits," ACM/IEEE 31st Design Automation Conference,
San Diego, CA, pp. 12{17, June 6{10, 1994.

[6] C-Y Tsui, M. Pedram, and A. M. Despain, \Exact and
approximate methods for calculating signal and transition
probabilities in FSMs," ACM/IEEE 31st Design Automa-
tion Conference, San Diego, CA, pp. 18{23, June 6{10,
1994.

[7] A. Papoulis, Probability, Random Variables, and Stochas-
tic Processes, 2nd Edition. New York, NY: McGraw-Hill
Book Co., 1984.

[8] F. Najm, \Transition density: a new measure of activity in
digital circuits," IEEE Transactions on Computer-Aided
Design, vol. 12, no. 2, pp. 310-323, February 1993.

[9] I. R. Miller, J. E. Freund, and R. Johnson, Probability and
Statistics for Engineers, 4th Edition. EnglewoodCli�s, NJ:
Prentice-Hall Inc., 1990.

[10] F. Najm, \Statistical estimation of the signal probabil-
ity in VLSI circuits," University of Illinois at Urbana-
Champaign, Coordinated Science Lab. Report #UILU-
ENG-93-2211, DAC-37, April 1993.

[11] R. Burch, F. Najm, P. Yang, and T. Trick, \A Monte Carlo
approach for power estimation," IEEE Transactions on
VLSI Systems, vol. 1, no. 1, pp. 63{71, March 1993.

[12] M. Xakellis and F. Najm, \Statistical estimation of the
switching activity in digital circuits,"31st ACM/IEEE De-
sign Automation Conference, San Diego, CA, pp. 728{733,
1994.

[13] F. Brglez, D. Bryan, and K. Ko�zmi�nski, \Combinational
pro�les of sequential benchmark circuits," IEEE Interna-
tional Symposium on Circuits and Systems, pp. 1929{1934,
1989.

-6/6-


