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Abstract
In this paper we present a Monte-Carlo based sta-

tistical techniques for estimating power in sequential
circuits. Mutually independent samples of power are
generated by simulating multiple copies of the circuit.
Since the approach is simulation-based, spatiotempo-
ral correlations are automatically accounted for. The
algorithm iterates until the user-speci�ed accuracy is
achieved. Experimental results on ISCAS89 circuits
show that reliable results can be obtained in consider-
ably less time than that required by exhaustive simula-
tion.

1. Introduction
The dramatic decrease in feature size and the cor-

responding increase in the number of devices on a chip,
combined with the growing demand for portable com-
munication and computing systems, have made power
consumption one of the major concerns in VLSI cir-
cuits and systems design [1]. Excessive power dissi-
pation in integrated circuits not only discourages the
use of the design in a portable environment, but also
causes overheating, which can lead to soft errors or
permanent damage. Hence there is a need to minimize
power dissipation which requires accurate estimation
of the dissipated power during the design phase.

The main conceptual di�culty in power estima-
tion is that the power depends on the operating en-
vironment of the circuit; namely, the input vectors
being fed in. It is possible to overcome the pattern-
dependency problem by using probabilities to describe
the set of all possible logic signals, and then consid-
ering the power resulting from the collective inuence
of all these signals [2, 6]. This formulation achieves a
certain degree of pattern-independence that allows one
to e�ciently estimate the power dissipation. However,
in order to achieve good accuracy, one must model
the correlations among the signals, which can be very
expensive. As a result, these techniques usually trade-
o� accuracy for speed. Other techniques, based on
Monte Carlo Simulation [3, 4], can model the corre-
lation between the circuit primary inputs by selecting
appropriate input vectors and automatically take care
of correlations between internal signals.

The above techniques were designed primarily to
analyze combinational circuits. Only a few techniques
have been proposed for sequential circuits. A majority
of these techniques decouple the combinational por-
tion of the sequential circuit from the ip-ops and
analyze the two separately. The �rst step is to cal-
culate the switching activity statistics at the ip-op
outputs, which can then be used in the second step to
study power consumption in the combinational por-
tion.
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These techniques can be Monte-Carlo simulation
based techniques [5] or techniques based on the so-
lution of non-linear equations [7-10] which model the
FSM behavior. When the latch statistics are consid-
ered as inputs to the combinational circuit, informa-
tion on correlation between the state signals is ignored
leading to inaccuracies.

In this paper, we propose a solution to this prob-
lem that maintains complete information on the state
line correlations. This is done by not decoupling the
latches from the combinational block, and simulating
the entire circuit in a Monte Carlo loop until the total
power (for the latches and the combinational part) has
converged.

In general, all Monte Carlo techniques require a
mechanism to generate mutually independent samples
of the circuit-power, which are then analyzed to de-
termine when the desired accuracy (based on user-
speci�ed error-tolerance and degree of con�dence) is
achieved. The algorithm iterates till the desired accu-
racy is obtained. Mutually independent samples can
be generated by simulating a single copy of a com-
binational circuit over period of time, and collecting
statistics over various non-overlapping time intervals.
In case of sequential circuits, because of feedback, such
a straightforward technique would not result in inde-
pendent samples, and a more sophisticated approach
is required.

In this paper, we present a mechanism for gen-
erating mutually independent samples using multiple
copies of the circuit which are simulated in parallel, us-
ing mutually independent input vector streams. Each
copy of the machine results in an independent sample
of power, and the samples are then collectively ana-
lyzed to determine when to stop the simulation pro-
cess. Since the circuit is studied as a single entity,
the correlations between ip-op outputs are automat-
ically taken care of.

In most simulation based mechanisms, the num-
bers of vectors fed into the circuit is �xed a-priori. The
power measured using this set of vectors is assumed to
be the average power dissipated, without regard to the
variation in power that may be expected when a di�er-
ent set of input vectors is used. There is no guarantee
that the vector set used was long enough to be repre-
sentative of the typical operating environment of the
circuit. Our approach o�ers a solution to this prob-
lem by continuing the simulation until the measured
standard deviation in power over all the machines is
within certain bounds. This gives us the con�dence
in the power estimate which without having to do ex-
haustive simulation.

In the following sections, formulate the Monte-
Carlo simulation based technique in more detail (sec-
tion 2), present our approach (section 3), give exper-
imental results (section 4), and conclude with some
discussion (section 5).



2. Problem Formulation
In order to capture the average power over long

time periods, in this section we will formulate the FSM
power estimation problem using probability. It is help-
ful before we get into this to summarize the �nal results
of this analysis. The two main results are equations (7)
and (8). Equation (7) says that if we start the FSM in
some initial state X0, and somehow monitor the mean
of the cumulative power over time, then that should
converge to the desired power value. It is important to
note that this is independent of the initial state. The
way to predict the \mean of the cumulative power over
time" is to make use of equation (8) which says that
we should wait until the variance is small enough, at
which time we know that any observed value of PK is
probably close enough to the desired mean.

We start with a comment on the reachability of
the state space. In general, the set of useful states of
an FSM may not cover the entire state space. If the
state space is disconnected, we assume that only one
connected subset of the space represents the useful re-
gion of operation and contains some reset state, to be
denoted X0, which we assume is given. This assump-
tion is quite mild and is generally satis�ed in practice.

Since the system is clocked, it is convenient to
work with discrete time. In order to take into account
the e�ect of large sets of inputs, one is typically inter-
ested in the average power dissipation over long peri-
ods of time. Therefore, we will assume that the FSM
operates for all time (�1 < k <1).

We consider that the power dissipated by a cell
(logic gate or memory element) is due mainly to logic
transitions at its output(s). Therefore , the energy
drawn for every two consecutive transitions at the cell
output i is given by V 2

ddCi. In the simplest cases, the
coe�cient Ci can be the lumped total capacitance at
the cell output (in general, part of Ci can be to Vdd
and part to ground). However, given a good charac-
terization or extraction methodology, the Ci term can
be tuned to represent additional e�ects such as the
short circuit power, interconnect capacitance, internal
capacitance charging/discharging, etc.

In any case, if node i makes nk(i) logic transitions
in clock cycle k, then the total energy dissipated in that
cycle is given by:

e(k) =
1

2

MX
i=1

V 2
ddCink(i) (1)

where M is the total number of gate/latch output
nodes in the circuit. The average power dissipation
over K clock cycles is, therefore:

PK =
1

KTc

KX
k=1

e(k) (2)

In order to study the average power over all time
(�1;1), it is useful to consider a random model of
logic signals. We will use bold font to represent ran-
dom quantities. We denote the probability of an event
A by PfAg and, if x is a random variable, we denote
its mean by E[x]. An in�nite logic signal x(k) can be
viewed as a sample of a stochastic process x(k), con-

sisting of an in�nite set of shifted copies of the logic
signal. This process, called a companion process [5],
embodies all the details of the logic signal, including
its switching activity. Furthermore, it is stationary,
i.e., its statistics such as, say, its probability and vari-
ance at a given time, do not change with time.

If we (conceptually) construct the companion pro-
cesses corresponding to all the FSM signals (input,
state, output, and internal signals), then we can
view the FSM as a system operating on stochas-
tic inputs, consisting of the companion processes
u1(k);u2(k); : : : ;um(k), and having a stochastic state
consisting of the processes x1(k);x2(k); : : : ;xn(k). A
key fact, due to stationarity of the companion pro-
cesses, is that the FSM, viewed as a stochastic system
as described, is also stationary. Thus any statistics
related to the FSM do not change with time.

The energy dissipated per cycle e(k) also leads to
a corresponding companion process e(k) (representing
the random energy dissipated in an arbitrarily chosen
cycle). This process is also stationary, so that its mean
E[e(k)] is the same for any k, and we denote it by E[e].
We can now write the average power over K cycles as
the random variable:

PK =
1

KTc

KX
k=1

e(k) (3)

Since limK!1(1=K)
PK

k=1 e(k) = E[e], then the aver-
age power over all time becomes a �xed (non-random)
value P , given by:

lim
K!1

PK = P =
E[e]

Tc
(4)

This result, that the power is equal to the mean en-
ergy per cycle divided by cycle length, is of course
self evident and well known. The purpose of the above
companion process development is to formalize the de-
pendence of this mean on the underlying statistics of
the FSM inputs. Notice also that, using (3) and (4),
we can write:

P = E[PK] (5)

for any value of K � 1. If K is viewed as a variable,
then PK becomes a stochastic process which, again,
is stationary, so that E[PK] does not depend on K.
With this, the FSM power estimation problem may be
stated as follows: given statistics of the input vector
U(k) = [u1(k) u2(k) : : : um(k)], compute the average
power over all time, P .

It is clear from (5) that one possible way of esti-
mating the power is to obtain enough samples of PK
in order to estimate its mean using Monte Carlo tech-
niques. The problem with this approach is that the
samples must be from the stationary PK process. This
requires one to know the statistics PK up-front, which
are of course unknown - indeed, the mean of PK is the
average power P which we are looking for. In the next
section, we will propose a solution that overcomes this
problem, which requires the followingmild assumption
related to the operation of the FSM:

Assumption 1. The energy dissipated by the FSM in



cycle k, e(k), becomes independent of its initial state

at time 0 as k!1.

This assumption is mild because it is generally
true in practice that, for all non-periodic logic signals,
two values of the signal that are separated by a large
number of clock cycles become increasingly unrelated.
One necessary condition of this assumption is that the
FSM be aperiodic. Aperiodicity is implicitly assumed
by most previous work on sequential circuits (Markov
assumption).

As a result of this assumption, and assuming we
start in a certain state X0 at time 0, we can write:

lim
k!1

E[e(k) j X0] = E[e] (6)

so that the process e(k), which is initially not at its
stationary state because we have arbitrarily placed the
machine in a speci�c state X0, eventually becomes sta-
tionary, after a long enough time period. From this,
and using (3), it follows that:

lim
K!1

E[PK j X0] = E[PK] = P (7)

from which, and since P is a deterministic value, it is
also clear that:

lim
K!1

Var[PK j X0] = 0 (8)

where Var denotes the variance.
These two equations (7) and (8) are the key to

our proposed technique, for which the implementation
using statistical sampling is given in the next section.

4. Statistical Sampling
Suppose we perform N separate simulation runs

of the FSM, all starting from the same initial state X0,
and we drive the di�erent runs by input vector streams
that are independently chosen. For each simulation run
j = 1; 2; : : : ; N and for each clock cycle k = 1; 2; : : :,
we can compute the energy consumed per cycle e(j)(k),
and the cumulative power up to time K:

P
(j)

K =
1

KTc

KX
k=1

e(j)(k) (9)

For a given K, the data set
�
P
(1)

K ; P
(2)

K ; : : :P
(N)

K

�

constitutes a random sample [12] from the random
variable (RV) PK, conditional on the initial state X0.
For this claim to be true, it is critical that the FSMs
are driven with independent input streams, as we have

proposed, so that the values P (j)

K are samples of inde-
pendent RVs. If we de�ne:

�N (K) =
P
(1)

K + P
(2)

K + � � �+ P
(N)

K

N
(10)

then it should be clear that, for large N , we have:

�N (K) � E[PK j X0] (11)

In our case, we have �xed N because that would
be too ine�cient to increase the number of simula-
tion runs on the y. It would seem, therefore, that
we do not have a good way of improving the accu-
racy of (11). This is where (8) comes in. Since the

variance of PK decreases with K, then the accuracy
of (11) improves with K. Thus, if we keep simulating
and wait long enough, �N (K) becomes a good estima-
tor of E[PK j X0], due to (8), and then if we simulate
further and wait longer, �N (K) becomes a good esti-
mator of the desired average power P , due to (7).

The above description gives the essence of our
technique. In practice, we use two initial states X0 and
X1 (see section 4.2), and perform two sets of N simu-
lations each. This is done so that it is easier to check
when the two resulting �N (K) waveforms have con-
verged by checking if their di�erence is close to zero.
In the remainder of this section, we give the mechanics
of how exactly we determine when the user speci�ed
accuracy has been converged (the stopping criterion)
and discuss the nature of the input vectors.

4.1 Stopping criterion

Recall the de�nition of �N (K), given in (10), and
let �N (K) denote the standard deviation of the data

set
�
P
(1)

K ; P
(2)

K ; : : :P
(N)

K

�
. According to the Central

Limit Theorem [12], �N (K) is a sample of a ran-
dom variable, called the sample mean, whose mean
is �(K) = E[PK j X0] and whose distribution ap-
proaches the normal distribution for largeN . The min-
imum number of samples, N , to satisfy near-normality
is typically 30. It is also known that for values of N
larger than this one may use �N (K)=

p
N as an esti-

mate of the true variance �(K) of the sample mean.

In our implementation, we use N = 50, so that
the distribution of the sample mean is near-normal,
and we can make inferences about the quality of an
individual sample. We would like to stress that we are
not assuming that the power in an individual circuit
is distributed near-normally. This work is based on
the fact that the distribution of the sample-mean is
near-normal.

With (1��) con�dence, it then follows that [13]:

�z�=2�(K) � E[PK j X0]��N(K) � z�=2�(K) (12)

where z�=2 is de�ned so that the area to its right un-
der the standard normal distribution curve is equal to
�=2. Equation (12) may be rearranged to better ac-
commodate mean estimation, by using:

�(K) � �N (K)p
N

(13)

The above equation is justi�ed for values of N which
normalize the samplemean distribution, typicallyN �
30, as we have taken. Thus using equations (12) and
(13), with con�dence (1� �), we have

jE[PK j X0]� �N (K)j
�N (K)

� z�=2�N (K)

�N (K)
p
N

(14)

If �1 is a small positive number, and if K is large
enough to achieve:

�N (K) � �1�N (K)
p
N

z�=2
(15)



then �1 places an upper bound on the percentage error
of the sample with (1� �) con�dence:

jE[PK j X0]� �N (K)j
�N (K)

� z�=2�N (K)

�N (K)
p
N

� �1 (16)

This may also be expressed as the percent deviation
from the population mean E[PK j X0]:

jE[PK j X0]� �N (K)j
�N (K)

� �1

which translates to:

j�n � E[PK j X0]j
E[PK j X0]

� �1

1� �1
= � (17)

Here, � is de�ned as the user-speci�ed error tolerance,
and � (or 1��) is the user-speci�ed con�dence. Thus
equation (15) provides a stopping criterion to yield the
accuracy speci�ed in (16) with con�dence (1� �).

When K is large enough so that (15) is satis-
�ed, then �N (K) is close enough to the E[PK j X0]
curve, and we can start to check if it has converged
to its steady state value which is the desired average
power, P . As mentioned previously, we perform two
sets of N simulation runs each, with one set of ma-
chines, S0, starting from an initial state X0 and the
other set S1, starting from another initial state X1.

This leads to two waveforms �
(0)

N (K) and �
(1)

N (K),
both of which should eventually converge to P . To
better monitor their convergence, we measure the dif-

ference �(K) = j�(0)N (K) � �
(1)
N (K)j and the average

�(K) = 0:5(�
(0)

N (K) + �
(1)

N (K)). We declare conver-
gence when the relative di�erence is less than 2�:

�(K)=�(K) � 2� (18)

The value of the average �(K) is reported as the power
value.

4.2 Input vectors and Initial States

In view of our basic assumption, one require-
ment on the applied input sequence U (k) is that it
not be periodic. Another condition, required for the
Monte Carlo estimation to hold, is that the di�er-
ent U (j)(k) sequences used in di�erent simulation runs
j = 1; : : : ; N be generated or chosen independently.
Otherwise, no limitations are placed on the input se-
quence. The exact way in which the inputs are gener-
ated depends on the design and on what information is
available about the inputs. The vectors for the results
presented in this paper were generated randomly under
the assumption that all input patterns are equiproba-
ble.

To carry out the simulations described above, we
require two initial states X0 and X1 for the FSM. This
information may be supplied by the designer, the only
limitation being that the two states be in the same
connected sub-space. In case no information is avail-
able, warm-up simulations may be used to generate a
second state which is reachable from the reset state
(default X0 = [0 0 : : : 0]).

Table 1.
Results for ISCAS89 circuits. � = 0:05 & � = 0:05.
Circuit Step1 Total Power cpu %

Cycles Cycles mW/MHz (sec) Error

s208 30 40 0.00698 4.92 0.87
s298 30 30 0.00912 3.87 1.33
s344 30 30 0.01846 7.73 0.16
s349 30 30 0.01856 7.80 0.11
s382 30 30 0.01048 4.66 2.14
s386 30 30 0.01620 5.27 0.81
s400 30 30 0.01065 3.59 1.24
s420 30 30 0.00903 4.05 4.27
s444 30 30 0.01172 3.79 2.27
s641 30 30 0.03629 18.16 0.61
s713 30 30 0.03743 17.19 1.21
s820 30 30 0.02831 13.81 3.47
s838.1 30 30 0.01292 9.39 1.65
s953 30 40 0.02458 16.46 2.42
s1238 30 30 0.06347 26.29 -
s1423 30 30 0.07181 29.79 -
s1488 30 80 0.05648 23.93 -
s1494 30 30 0.06018 24.02 -
s5378 30 30 0.23357 72.16 -
s9234.1 30 30 0.28004 134.14 -
s13207.1 30 30 0.35404 179.92 -
s15850.1 30 30 0.51991 243.66 -
s38417 30 30 1.14518 536.70 -
s38584.1 30 40 1.87987 1199.70 -

5. Experimental Results and Analysis
The technique proposed above has been imple-

mented and tested on a number of benchmark circuits.
We use an event-driven, gate-level simulator with a
scalable delay timing model (based on output capaci-
tance and fanout). During the initial part of the sim-
ulation process, we introduce a warm-up period of 30
cycles during which the convergence criterion (equa-
tion 15) is not applied. This is to protect from the
possibility of observing arti�cially small variance in
the initial few cycles of the simulation. Figure 1 shows
a typical plot of the observed variance over the two
sets of machines. The variance curve has a steep rise
with a gradual fall. Similar plots have been observed
for all the circuits considered with all circuits reaching
the peak variance in less than 15 cycles. Thus 30 cy-
cles are more than enough to ensure that variance has
reached its peak and has started to fall.

We present results for two di�erent set of sim-
ulations on the ISCAS89 sequential benchmarks cir-
cuits. The �rst set (Table 1) was run with � = 0:05
and � = 0:05, the second set (Table 2) was run
with� = 0:01 and � = 0:01. We also carried out a
long simulation using more than 2:5 million vectors on
some of the smaller ISCAS89 benchmarks, to act as
a benchmark to compare the accuracy of our results..
The simulation setup was the same as the experiment,
except that a warm-up period of 25,000 vectors per
machine was used.

In these tables, the column Step 1 cycles gives the
number of cycles required for equation (15) to be sat-
is�ed by both the sets of machines S0 and S1. The
column Total Cycles gives the number of cycles re-



quired for equation (18) to be satis�ed. As expected
the second run with stricter convergence bound takes
longer number of cycles to converge. The number of
cycles required for the variance of individual samples
to converge does not increase much, though the num-
ber of cycles required for the two means to converge
(equation (18)) is increased. The run-time are on a
SUN Sparc5 with 32 MB of memory. The simulation
with looser bounds takes much less time, specially for
the larger circuits.
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Figure 1. Variance in Power vs Time.

For most of the circuits, the simulation with the
tighter convergence bounds, had less error. The ab-
solute percentage error is very low and except for two
circuits is less than 3%.

6. Conclusion
We have proposed a simulation-based Monte

Carlo method for estimating the power dissipation of
sequential circuits which considers correlations in time
and space between the inputs, the internal nodes, state
nodes, etc. For this reason, this work constitutes a def-
inite improvement over existing methods which have
limited ability to handle correlations. The simulation
can be driven by user-supplied inputs. Our contri-
bution consists of specifying exactly how the simula-
tion results should be analyzed, to tell when the power
measured from the simulation has converged to within
user-speci�ed accuracy and con�dence. As a result
reliable results can be obtained without doing long ex-
haustive simulations, and hence saving time.
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Table 2.
Results for ISCAS89 circuits. � = 0:01 & � = 0:01.
Circuit Step1 Total Power cpu %

Cycles Cycles mW/MHz (sec) Error

s208 30 360 0.00690 67.60 0.29
s298 30 460 0.00901 95.62 0.11
s344 30 300 0.01845 107.49 0.11
s349 30 300 0.01856 108.88 0.11
s382 30 450 0.01030 115.57 0.39
s386 30 150 0.01624 37.11 1.06
s400 30 50 0.01061 10.25 0.86
s420 30 60 0.00890 14.41 2.77
s444 30 460 0.01150 97.82 0.35
s641 30 30 0.03562 25.97 1.25
s713 30 50 0.03785 41.25 0.11
s820 30 90 0.02798 57.91 2.27
s838.1 30 60 0.01294 37.18 1.81
s953 30 480 0.02402 316.10 0.08
s1238 30 30 0.06347 35.80 -
s1423 30 90 0.07111 124.45 -
s1488 50 1410 0.05477 1559.64 -
s1494 50 1410 0.05444 1546.28 -
s5378 30 130 0.21475 459.47 -
s9234.1 30 130 0.27458 1060.97 -
s13207.1 30 290 0.35427 3292.10 -
s15850.1 30 220 0.53000 3210.88 -
s38417 30 1070 1.14482 33290.34 -
s38584.1 30 690 1.95901 29236.49 -


