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Abstract

Modern sub-micronVLSI designsinclude hugepower grids
that arerequiredto distribute large amountsof current,at in-
creasinglylower voltages. The resultingvoltagedrop on the
grid reducesnoisemargin and increasesgatedelay, resulting
in a seriousperformanceimpact.Checkingtheintegrity of the
supplyvoltageusingtraditionalcircuit simulationis notpracti-
cal, for reasonsof timeandmemorycomplexity. We proposea
novel multigrid-like techniquefor theanalysisof power grids.
The grid is reducedto a coarserstructure,andthe solutionis
mappedbackto the original grid. Experimentalresultsshow
thattheproposedmethodis veryefficientaswell assuitablefor
bothDC andtransientanalysisof powergrids.

1 Introduction

In recentyears,therehasbeenan increaseddemandfor high
performanceandlow powerVLSI designs.High performance
is achievedby technologyscaling,increasedfunctionalityand
competitive designs.On theotherhand,a commontechnique
usedto obtainlow power designsis to scaledown the supply
voltage.

Increasedchip functionality results in the need for huge
power andgrounddistribution networks,herereferredto sim-
ply aspowergrids sincethey typically have a grid structure.
Lower supply voltages,on the other hand,make the voltage
variationacrossthepower gridsvery critical sinceit may lead
to chip failures.Voltagedropon thepowergrid canreducethe
supplyvoltageat logic gatesandtransistorcellsto lessthanex-
pected.This leadsto reducednoisemargins,higherlogic gate
delays,andoverallslowercircuits.Consequently, oncevoltage
dropexceedscertaindesigner-specifiedthresholds,thereis no
guaranteethatthecircuit will operateproperly[1, 2, 3, 4].

Thus,it is clearthatin modernVLSI circuits,powergridsare
becomingperformancelimiting factors.Consequently, efficient
analysisof thepower grids [3, 4] of modernsub-micronVLSI
designsis amust.

The first stepin power grid analysisinvolvesmodelingthe
powergrids[3, 5]. Forpurposesof ouranalysis,powergridsare
modeledas linear RC networks sinceon-chip inductance(in
thepower grid) in today’s technologyis too small to affect the
analysisresults.Powersourcesaremodeledassimpleconstant
voltagesourcesandpower drainsaremodeledasindependent

time-varyingcurrentsources[3, 4, 5].

The behavior of sucha systemcanbe expressedfollowing
themodifiednodalanalysis(MNA) [6] formulationasthefol-
lowing ordinarydifferentialequation:

Gx
�

Cẋ � u � t � (1)

wherex is a vectorof nodevoltages,andsourceandinductor
currents;G is the conductancematrix; C includesthe capaci-
tanceandinductanceterms,andu � t � includesthecontributions
from thesourcesandthedrains.

Applying BackwardEuler(BE) numericalintegrationto (1)
resultsin a setof linearequations:

� G �
C � h� x � t � h��� u � t � h� � x � t � C � h (2)

which canbe readily simplified to Ax� t � h��� b, whereA �
G
�

C � h andb � u � t � h� � x � t � C � h. It canbeshown that the
systemof linearequationscanbereformulatedin sucha man-
nerto producea systemmatrix,A, whichcanbeshown to bea
nonsingular� -matrix [7].

Due to the largesizeof typical power grids,generalcircuit
simulatorssuchasSPICEarenotadequatefor powergrid anal-
ysis becauseof CPU time andmemorylimitation. The inef-
ficiency of standardsimulatorscomesaboutbecause(a) they
requirea lumpedelementapproximationof the circuit which
requiresthe translationof a regulargeometricalstructureto a
large setof equivalentcircuit elements,and(b) they usegen-
eralpurposesolutionmethodsmeantto berobustin thefaceof
stiff systemsof equations.By contrast,powergridsarewell be-
havedspatially(nearlyregular)andtemporally(damped).This
motivatesa special-purposesimulatorfor power grids which
canmakeuseof theseproperties.

In this paper, weproposeanefficientanalysistechniquethat
follows the lines of thoughtof multigrid methodswhich are
commonlyusedfor the solutionof smoothpartial differential
equations(PDEs). Specifically, our methodis inspiredby the
algebraicmultigrid method(AMG) which is onevariantof the
multigrid approach.Thus,section2 describesthemultigrid ap-
proachwith aspecificemphasisonthealgebraicmultigrid vari-
ation.After discussingthemultigrid technique,wepresentour
proposedmultigrid-like approachin section3. The efficiency
of our proposedtechniqueis verified by the experimentalre-
sultsgiven in section4. Finally, conclusionsareprovided in
section5.
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2 Multigrid Method

Well-designedpower grids are characterizedby voltagedis-
tributions which are spatially smooth[3]. Furthermore,the
analysisof power grids resultsin a systemof linearequations
structurallyidenticalto thatof afinite elementdiscretizationof
a two-dimensionalpartial differentialequation(PDE).Conse-
quently, efficientmethodsfor solving smoothPDEsareworth
consideringaspotentialcompetitivesolversfor thepower grid
problem.

Themultigrid method,MG, is anefficient techniquewidely
usedfor solving smoothPDEs[8, 9, 10]. Initial interestin
multigrid resultedfrom a detailedanalysisof classicalitera-
tive methodsandthe reasonsfor their slow convergence.Let
e � x � x̂ betheerrordefinedasthedifferencebetweentheex-
actsolutionx andtheapproximatesolution,x̂. It canbeshown
that theerrorcanbeexpressedasa linearcombinationof low
frequencyandhigh frequencyFouriermodes[8]. Furthermore,
theanalysisof classicaliterative methodsleadsto the follow-
ing observation[8, 11]: Classicaliterativemethodsefficiently
reducethehigh frequencyerror componentsbut are inefficient
in reducingthelow frequencyerror components.

In orderto avoid thelimitationsof classicalmethods,multi-
grid methodsconsistof two complementarycomponents[8,
10]:

1. Relaxation(smoothing)whichreducesthehighfrequency
errorcomponents.

2. Coarsegrid correctionwhich reducesthe low frequency
errorcomponents.

Relaxationinvolves running a few iterationsof a classical
iterative solver. Coarsegrid correctioninvolvesmappingthe
problemto a coarsergrid, solving the mappedproblem,and
mappingthe solutionbackto the fine grid. The mappingbe-
tweenthe two grids (fine and coarse)requiresthe useof in-
tergrid transferoperators which arealsoreferredto asthere-
striction andprolongationoperators.The restrictionoperator,	 2h

h , is usedto maptheproblemfrom theoriginalfinegrid,Ωh,
to the coarsegrid, Ω2h, b2h � 	 2h

h bh. On the otherhand,the
prolongation(alsoreferredto asinterpolation)operator, 
 h

2h, is
usedto mapthesolutionbackfrom thecoarsegrid Ω2h to the
originalfinegrid, Ωh, xh ��
 h

2hx2h. Oneintuitivemotivationfor
coarsegrid correctionis thatthesolutionat a coarsegrid typi-
cally providesa goodinitial guessfor theiterativesolverat the
fine grid andthusresultsin rapidconvergence.Anothermoti-
vationfor thisapproachis thatthelow frequency errorcompo-
nentsat thefinegrid Ωh appearashigh frequency at thecoarse
grid Ω2h [8]. Then,relaxationat thecoarsergrid reducesthose
components.

It is clear by now how the multigrid techniqueworks [8].
Startingwith a fine grid, a few relaxationsteps(iterations)are
appliedto reducethehigh frequency modesof theerror. Then
thelow frequency (smooth)modesof theerrorarereducedby
coarsegrid correction.

2.1 Algebraic Multigrid

Two commonvariationsof themultigrid methodare:standard
multigrid, SMG, andalgebraicmultigrid, AMG. Both involve
relaxationandcoarsegrid correction.Theefficiency of either
methodrelies mostly on the choiceof the multigrid compo-
nents: the relaxationoperatorand the inter-grid transferop-
erators. In SMG methods,uniform coarseningand linear in-
terpolationdefinethe coarsegrid andthe grid transferopera-
tors. Thus, the efficiency of SMG methodsis determinedby
thechoiceof therelaxationoperator, which is chosento reduce
thoseerror componentsnot well approximatedby coarsegrid
correction[12]. AMG methods,ontheotherhand,work theop-
positeway. Thatis, thechoiceof therelaxationoperatoris first
fixedandthen,thecoarseningprocedureandinterpolationtech-
niquearechosento reducethoseerrorcomponentsnotwell re-
ducedby smoothing.AMG methodis completelydefinedonce
the interpolationoperator, 
 h

2h, is defined. Given 
 h
2h, AMG

definesthe restrictionoperator,
	 2h

h , and the reducedsystem
matrix,A2h, asfollows:	 2h

h ���
 h
2h � T and A2h ���
 h

2h � TAh 
 h
2h (3)

Then, the overall AMG processto solve the linear system
Ahxh � bh canbesummarizedasfollows:

1. Reducetheoriginalgrid Ωh to obtainasmallergrid Ω2h.
2. Defineaninterpolationoperator, 
 h

2h, to satisfytheAMG
requirementspointedoutabove.Once
 h

2h is defined,
	 2h

h
andA2h arealsodefined.

3. Map theproblemto thecoarsergrid usingthe restriction
operator, b2h � 	 2h

h bh.
4. Solve thereducedlinearsystemA2hx2h � b2h for thevec-

tor, x2h.
5. Map the solutionbackto the original fine grid usingthe

prolongationoperator, xh ��
 h
2hx2h.

Thus,it is clearthat the efficiency of AMG methodsis deter-
minedby thechoiceof thecoarseningprocedureandtheinter-
polationmethod[12].

An erroris definedto bealgebraiclysmoothif it is character-
izedby thefact thattheresidual,r � Ae, is smallcomparedto
theerror, r � e[12]. Furthermore,it isexpectedthatonaverage�
r i
� � aii

�
ei
�
[12]. This observationprovesusefulin providing

a goodapproximationof the error in termsof its neighboring
errorvalues:

0 � aii ei � r i
� ∑

j � Ni

ai jej � aii ei
� ∑

j � Ni

ai jej (4)

whereNi ��� j �� i : ai j �� 0 � denotestheneighborhoodof i. Ge-
ometrically, Ni denotesthegrid nodeswhich aredirectly con-
nectedto nodei.

Furthermore,sincethe A matrix is an � -matrix, it canbe
shown thattheerrorsatisfiesthefollowing inequality[12]:

∑
j �� i

�
ai j
�

aii

� ei � ej � 2
e2

i

� 2 (5)

It canbeseenfrom (5) thatthesmootherrorvariesslowly in

thedirectionof strongconnections.Thatis, if � ai j �aii
is relatively

2



large,then � ei � ej � hasto besmallandthus,variationin theer-
ror valuesbetweennodesi and j is small. In AMG, (4) and(5)
provideamechanismfor definingagoodinterpolationoperator
aswell asguidemostgrid reductionalgorithms[12].

3 Proposed Multigrid-like Analysis

Our techniqueis inspiredby the algebraicmultigrid method,
AMG. Indeed,we follow the exact AMG stepsto provide an
efficientsolutionfor thelinearsystemAhxh � bh corresponding
to the original fine grid, Ωh. That is, the grid is first reduced
andan interpolationoperatoris defined.Then,theproblemis
mappedto thecoarsergrid, solvedat thecoarsergrid, andthen,
thesolutionis mappedbackto theoriginal fine grid. However,
regularAMG, drivenby theneedfor a goodinterpolationop-
erator[12], imposesa grid reductionmechanismwhich may
be inefficient for our needs,becauseit yields a grid which is
not sufficiently coarseto yield theadvantagesrequiredfor fast
powergrid analysis.

Instead,we can do betterthan that by using a grid reduc-
tion algorithm which is similar to the SMG reductionmeth-
ods (seesection3.1 below). Then,oncethe grid is reduced,
our methoddefinesaninterpolationoperatorsoasto maintain
theerrorrequirementsof AMG (seesection3.2below). Thus,
theproposedtechniquecombinestheadvantagesof bothSMG
andAMG, while avoiding someof their limitations. Finally,
ourmethodcompletelyignorestherelaxationstepof multigrid
which is appliedto smooththeerror. This is motivatedby the
factthatwell-designedpowergridsarecharacterizedbysmooth
voltagevariationover thegrid [3]. Consequently, theproposed
approachpromisessignificantspeed-upsfor transientanalysis
(seesection3.3 below). As a result the general structure of
our techniqueconsistsof repeatedlycoarseningthe grid until
theproblemis smallenoughto solveexactlyusinga directap-
proach,andthenmappingthesolutionback to theoriginal fine
grid. We noteherethat if theoriginal grid is characterizedby
non-smoothvoltagevariation, then the relaxationstepof the
mutligrid mustbeincludedin orderto maintaintheaccuracy of
thesolution.

An interestingquestionis how to handlethevoltagesources
andthecurrentsourceswhich areplacedat nodesthatmaybe
removed to reducethe grid. Our techniquehandlesvoltage
sourcesby always keepingthe nodeswherevoltagesources
are locatedat the reducedgrid. This is guaranteedby pass-
ing to the reductionalgorithm a list of nodesthat shouldbe
kept(seesection3.1).Notethatthisdoesn’t severelyaffect the
efficiency of the reductionbecausetypical power grids have
a small numberof voltagesources(thousandsin power grids
consistingof millions of nodes).As for thecurrentsources,a
currentsourceplacedat a removednode,i, getssplit into cur-
rent sourcesat thosenodesfrom which i will be interpolated.
Thisis takencareof automaticallybyourtechniquebecausethe
problemis mappedto acoarsergrid usingtherestrictionopera-
tor, b2h � 	 2h

h bh wheretherestrictionoperatoris thetranspose

Table1: Meaningof statusflags.
StatusFlag Indication
N No flag(default)
K Kept
H VisitedHorizontally
V VisitedVertically
R Removed

of theinterpolationoperator,
	 2h

h ���
 h
2h � T .

3.1 Grid Reduction

A naturalmethodfor efficientgrid reduction,inspiredby SMG,
is to skip every otherwire, resultingin a situationasin Fig. 1.
Sucha reductiontechniquepromisessignificantreductionof
thegrid becauseit reduceseachdimensionof thegrid by half
(roughly), thusreducingthe whole grid by almosta factorof
four. While it is straightforwardto applysuchareductiontech-
niqueto regular grids, it is not clearhow it canbe appliedto
general grids;specifically, irregular grids.Sincetypicalpower
gridsmaybeirregular, weneedto defineareductionalgorithm
which systematicallyreducesa general grid. Furthermore,the
algorithmshouldmaintainthestructureof theoriginalgrid (so
that it includesonly horizontalor verticaledges)so that it can
berecursively applieduntil a coarseenoughgrid is obtained.

Themajorobjective of thereductionalgorithmis to remove
asmany nodesaspossiblewhile maintainingtheability to esti-
matevoltagesat theremovednodesby interpolation.Thealgo-
rithm takesasinputafinegrid Ωh anda list of nodesto bekept
andproducesasoutputa reducedgrid Ω2h with asmallernum-
berof nodes.The list of keptnodesshouldconsistof specific
nodesof interestto the user, but our techniqueautomatically
generatesa default list containingthecornernodesandnodes
wherevoltagesourcesarelocated. To summarize,our reduc-
tion algorithmfollowsthemethodsof grid reductionemployed
by SMG(skippingeveryotherwire). However, it alsosupports
generalirregular grids as well as handlesany user-specified
requirementof keepingcertainnodesat the coarsergrid. We
assumethat thegrid linesareeitherhorizontalor vertical. By
neighbors of a nodewe meanits immediateneighbors,those
connectedto it by a verticalor horizontaledge;therecanbeat
mostfour of these.By diagonalneighborsof a node,wemean
thosenodesthat canbe reachedfrom it by makingtwo steps,
first horizontallyandthenverticallyor first verticallyandthen
horizontally;a nodecanhave morethanfour diagonalneigh-
bors(asis thecasefor noder in Fig. 4, for example).

The algorithmmakesuseof certainstatusflags,which are
shown in Table 1, to decidewhethera nodeis to be kept or
removed. Furthermore,theseflagsindicatehow to interpolate
the voltageat a removed nodefrom its kept neighbors. The
grid reductionalgorithmmakesrepeateduseof aso-callednode
updateoperation,which is definedas follows: Starting from
that node, go along a horizontal (vertical) directionand flag
all visitednodeswith H (V). Flag extremitiesaskept. A node
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Figure1: Multiple resolutionpowergrids.

which is visitedboth horizontallyand vertically (flaggedwith
both H and V), is flagged as kept. The algorithmconsistsof
four passesdescribedasfollows:

1. First Pass:Updateevery kept node. Note that if the up-
dateoperationon a kept nodei causesanothernode j to
be flaggedasK (kept), thenthe updateoperationis also
performedonnode j.

2. SecondPass:Gothroughthegrid nodesin thegivenorder.
In our implementation,grid nodesareorderedfrom top to
bottom,left to right. However, this is not a limitation of
thealgorithm.If anodei is flaggedasH (V) afterthefirst
pass,flag that node i as R (removed), flag its neighbors
alongthesamerow (column)asK (kept) andupdatethose
neighbors.Ontheotherhand,if anodei is notflagged(N)
afterthefirst pass,flag thatnodei asR (removed), flag its
diagonalneighborsasK (kept), andupdatethosenodes.

3. Third Pass (definesreducedgrid): A node i which is
flaggedas kept is a node of the reducedgrid; that is,
i � Ω2h. A node i which is flaggedas H (V) after the
first passand then flaggedas R after the secondpassis
removedandits horizontal(vertical) neighbors,j andk,
areconnectedby anedge.Theresistanceof thenew edge
betweenj andk is thesumof theresistancesof theedge
betweeni and j and the edgebetweeni and k. As for
a node i which is flaggedas N after the first passand
flaggedasR afterthesecondpass,thatnodei is removed
togetherwith its (horizontalandvertical)neighborswith-
out affecting the reducedgrid, Ω2h. Note that defining
the reducedgrid this way maintainsthe structureof the
original grid (so that it includesonly horizontalor verti-
cal edges)which allows for recursive applicationsof the
reductionalgorithmto producecoarserandcoarsergrids.

4. FourthPass(definesinterpolation):Voltageof akeptnode
is thesameasthatcomputedat thecoarsergrid. Voltage
of a nodei which is flaggedasH (V) after the first pass
andflaggedasR afterthesecondpassis interpolatedfrom
its row (column)neighbors’voltages.Voltageof a node
i which is flaggedasN after thefirst passandflaggedas
R after the secondpassis interpolatedfrom its diagonal
neighborswhicharekept.

We next describehow the algorithm works and how the
flagsassociatedwith thedifferentgrid nodeschangeaswe go
throughthedifferentpassesof thealgorithm. Initially, all grid
nodesareflaggedasN exceptfor thosenodesrequiredby the
userto bekept. Nodesrequiredto bekeptareflaggedasK. Af-
ter thefirst passof thealgorithm,anodei will beflaggedasK,

H, V, or N. Nodei is flaggedasK if nodei shouldbekeptatthe
coarsergrid. Thismayoccurif oneof thefollowing conditions
holdsfor nodei:

1. Nodei is anodepassedby theuserto bekept. In thiscase,
the initial flag of nodei is K andafter the first pass,the
flag of nodei is still K (kept).

2. Nodei is theextremityof arow or columnthatconsistsof
someothernode j which is flaggedasK (kept).

3. Nodei is theintersectionof a row anda columnthathave
beenbothvisited. A row r (columnc) is saidto bevisited
if r (c) consistsof at leastonenode j which is updated.

On the otherhand,a nodei is flaggedasH (V) after the first
passif nodei belongsto a row (column)that is visitedduring
the first pass.That is, i belongsto a row r (columnc) which
consistsof someothernode j that is updatedduring the first
pass.Finally, a nodei is flaggedasN afterthefirst passif it is
theintersectionof a row anda columnthatarebothnotvisited
duringthefirst pass.Notethat if a nodei is flaggedasN after
thefirst pass,thenno othernode j which belongsto thesame
row or samecolumnas i canbe flaggedasK (kept) after the
first pass.

The secondpassinvolves going through the nodesin the
givenorderandcheckingtheir flags(obtainedafterfirst pass).
If a nodei is flaggedasK (kept), nothingis doneandthe al-
gorithm moveson to the next node. If, on the otherhand,a
nodei is flaggedasH (V), thenthe algorithmflagsthat node
asR (removed), flagsits horizontal(vertical)neighborsaskept,
andupdatesthoseneighbors.Hence,becausethereis a call to
an updateoperationat this stage,a nodei with a certainflag
after the first passmaybe flaggedwith a differentflag at this
stage. However, this new flag may still be changedbeforea
final flag is associatedwith i afterthesecondpass.Finally, if a
nodei is flaggedasN, thenthealgorithmflagsthatnodeasR
(removed), flagsits diagonalneighborsasK (kept), andupdates
thosediagonalneighbors.Thus,it is guaranteedthatafter the
secondpass,everynodeof thegrid is flaggedaseitherK (kept)
or R (removed). A nodei flaggedasK is kept at the coarser
grid, Ω2h, i � Ω2h. On theotherhand,a nodei flaggedasR is
removed; thatis, i �� Ω2h.

Thethird passsimply involvesgoingthroughthenodesand,
basedontheirflagsafterfirst andsecondpasses,decidehow to
build the reducedgrid Ω2h. As for the fourth pass,it decides
whichneighborsof a removednodei areusedto interpolatethe
voltageat i.

Beforedescribinghow thealgorithmworkswith anexample,
someobservationsmaybehelpful in explainingthealgorithm.
Following the algorithm,a node i which is marked asH (V)
afterthefirst passandmarkedasR (removed) afterthesecond
passis anodewhosehorizontal(vertical)neighborsaremarked
asK (kept). Theothervertical(horizontal)neighborsof i would
bemarkedasR (removed). On theotherhand,a nodei which
is markedasN after thefirst passandmarkedasR (removed)
after thesecondpassis a nodewhose(horizontalandvertical)
neighborsaremarked asR (removed). The voltageat sucha
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Figure2: Reductionof anirregulargrid.

nodewould beinterpolatedfrom its diagonalneighborsasex-
plainedin thealgorithm.Theonly exceptionto thisscenariois
whenanodei is markedasN afterthefirst passandthenoneof
its neighbors,j, is markedasK (kept) duringthesecondpass.
Since j is markedasK duringthesecondpass,this invokesan
updateoperationon j which causesi to be flaggedasH (V)
assumingthati is ahorizontal(vertical)neighborof j. If thefi-
nal flag of i afterthesecondpassis R (removed), theni should
be treatedasa nodeflaggedasH (V) after the first passand
flaggedasR afterthesecondpass.This is becausethehorizon-
tal (vertical)neighborsof i areflaggedasK (kept). Thegiven
exampleshows sucha scenarioat thenodewhich is the inter-
sectionof the fourth row andthe fifth column(the upperleft
corneris theintersectionof thefirst row andfirst column).The
tagassociatedwith thatnodeshowsthatthisnodeis flaggedas
N after thefirst passandasR afterthesecondpass.However,
thereis anintermediateflagof H associatedwith thatnodeafter
theupdateoperationis appliedto its right neighborduringthe
secondpassof thealgorithm.

Anotherpoint worth noting concernsbuilding the reduced
grid after the nodesareproperlyflaggedaskept or removed.
AMG doesn’t worry aboutbuilding the reducedgrid because
AMG handlesgrid reductionby consideringthesystemmatrix
only. Thatis, AMG defineswhichnodesareto beremovedand
whicharetobekeptby goingthroughthematrixentriesandap-
plying somereductionalgorithm. Oncethat is defined,AMG
thendefinestheinterpolationoperatorwhichis thenusedto de-
fine thereducedsystemmatrix A2h asexplainedearlier. Then
AMG reductionis simplyappliedto A2h directly. However, one
of themajorreasonsof theinefficiency of AMG reductionisbe-
causeAMG doesn’t build a representative grid of theproblem
but ratherrelieson thematrix for grid reduction.

In order to avoid that, we proposeworking with the ac-
tual grid to definean efficient reductiontechnique.Thus,we
needto definea mechanismfor building thereducedgrid Ω2h.
Onestraightforwardtechniqueis to considerthe reducedsys-
tem matrix A2h andaccordinglybuild the reducedgrid, Ω2h.
This is alwayspossiblebecausethereis a one-to-onecorrela-
tion betweenactualgridsandmatrices.However, building the
reducedgrid this way mayproducea rathercomplex grid Ω2h

with diagonal(non-horizontalandnon-vertical)edges.Given
sucha reducedgrid Ω2h, it becomeshardto efficiently reduce
that grid. Furthermore,it becomesalmostimpossibleto de-

Figure3: BasicMultigrid operator.

fine a grid reductionalgorithmthancanberecursively applied
to producecoarserand coarsergrids. For thesereasons,we
proposea simplermethodfor building the reducedgrid, Ω2h,
whichmaintainsthegrid structure(sothatit includesonly hor-
izontalorverticaledges)thusallowing therecursiveapplication
of thereductionalgorithm.As explainedin thereductionalgo-
rithm, themethodinvolvesfirst decidingwhich nodesarekept
andwhich nodesare removed, andthensimply addingedges
betweenkepthorizontalandverticalneighbors.

Next weillustratehow thegrid reductionalgorithmworkson
theexamplegivenin Fig. 2. Initially, all nodeshavethedefault
statusof N exceptfor thenodeswhich shouldbekept. In this
example,thesewouldbeall thecornernodesof thegrid (dashed
nodesin Fig. 2). A tag consistingof two fields is associated
with every nodeof thegrid. The left field indicatesthestatus
of thenodeafter thefirst passandthe right field indicatesthe
statusof thenodeafterthesecondpass.

As shown in Fig. 2, afterthefirst pass,anedge(row or col-
umn) consistingof at leastonekept node,hasits extremities
flaggedaskept. Theremainingnodeson thatedgeareflagged
with H orV basedonwhethertheedgeis horizontalor vertical.
Note thatsomenodesstill have a statusflag of N which indi-
catesthatthesenodeshavenotbeenvisitedduringthefirst pass.
Thenafterthesecondpass,nodeswith a K flag arekeptwhile
thosewith anRflagareremoved.Then,thethird passinvolves
addingedgesbetweenthekeptnodeswhichareneighborsthus
resultingin thecoarsergrid Ω2h.

Finally, we note that if our grid reductionalgorithmis ap-
plied to aregulargrid, thenit producesoptimalreduction.That
is, it reducesthesizeof thegrid by almosta factorof four as
illustratedin Fig. 3.

3.2 Interpolation

AMG interpolationis guidedby (4) and(5). Thus, the inter-
polationoperatorshouldbe chosento relatethe voltageof a
removednode,i, to thevoltagesof thosekeptnodeswhich are
stronglyconnectedto i. Typically, AMG considersaconnection
betweentwo nodesto be strongwhen

�
ai j
� � maxl �� i

�
ail
�&%

θ,
where0 ' θ ' 1 (θ is typically chosento be 0.25 in prac-
tice [12]). With sucha choiceof the interpolationoperator,
thecoarsegrid correctionwouldefficiently reducetheerror.

In our reductionalgorithm, the statusflags indicatewhich
neighborsof a removednodeareto be usedfor interpolation,
basedon the fact that they arekept andstrongly connectedto
a removednodem. As for the interpolationweights,theseare
obtainedby consideringthe valuesof conductancesbetween
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the nodes.Thus,if the voltageat a removednodem is inter-
polatedfrom the voltagesat nodesA andB, thenthe (linear)
interpolationfunctionINT �(� is definedas:

V � m�)� INT � V � A�+* V � B�,�-� a0V � A� � a1V � B� (6)

wherea0 � gmA
gmA. gmB

anda1 � gmB
gmA. gmB

. Here,gmA it is thecon-
ductancebetweennodesm andA, andgmB is theconductance
betweennodesm andB. Note that our techniquefor choos-
ing theinterpolationweightsis similar to thetechniqueusedin
AMG. To illustrate,considera removednodem whosevoltage
will be interpolatedfrom thevoltagesat thekeptnodesA and
B. AMG usesthefollowing interpolationscheme[12]:

V � m�)�
�
amA

�
amm

V � A� �
�
amB

�
amm

V � B� (7)

whereamA is theentryof theA matrix relatingnodesm andA,
andamB is the entry of the A matrix relatingnodesm andB.
As for amm, oneAMG approachis to defineit asthediagonal
entryof theA matrix correspondingto nodem. Anothercom-
mon AMG methoddefinesamm as: amm � �

amA
� � �

amB
�
. For

thepower grid problem,
�
amA

� � gmA and
�
amB

� � gmB, which
showsthatour interpolationtechniqueis motivatedby AMG.

However, this is not the full story. Recall that our grid re-
ductionalgorithmdiffers from AMG grid reductionmethods;
it is actuallybasedon SMG reduction- it usesonly geometric
informationandremovesasmany nodesaspossible.Hence,it
is possibleto comeacrosscaseswherearemovednodei hasall
thenodesthatarestronglyconnectedto it removedaswell. To
illustratethis, considerFig. 4, wherea filled nodeindicatesa
removednodeandablanknodeindicatesanodethatis kept. In
this example,we assumethatevery horizontalor vertical link
representsastrongconnectionbut two nodesthatareseparated
by two or morelinks arenotstronglyconnected.Thissituation
is typical of power grids. Thus, r is stronglyconnectedto m
andm is stronglyconnectedto B, but r andB arenot strongly
connected.NodessuchasB that areseparatedby two strong
links from r, but which arethemselvesnot stronglyconnected
to r, aresaidto be two-level stronglyconnectedto r. Our re-
ductionwould remove noder, aswell asall thenodesthatare
stronglyconnectedto it, m, n, p, andq. However, it canbe
shownthatouralgorithmguaranteesthat,if anodei is removed,
eithersomenodesthat arestronglyconnectedto i arekept or
somenodesthataretwo-level stronglyconnectedto i arekept.
Therefore,in our interpolationtechnique,if all stronglycon-
nectedneighborsof a nodehave beenremovedalongwith it,
we useits two-level stronglykeptneighborsfor interpolation.
This is clearly illustratedin Fig. 4 wherethevoltageat noder
is interpolatedfrom thosenodeswhich aretwo-level strongly
connectedto r; specifically, nodesA, B, C, D, andE. Notethat
this approachmaintainsthe advantageof efficient grid reduc-
tion aswell asmeetsthe requirementof a good interpolation
operator.

A

D E

B

n r p

m

q

  C

Figure4: Interpolationfrom reducedgrid nodes.

3.3 Time Domain Analysis

Well-designedpowergridsarecharacterizedby smoothvoltage
variation.Thus,it is quitefeasibleto ignoretherelaxationstep
of AMG without jeopardizingtheaccuracy of thesolution.By
adoptingthis approach,our techniqueactuallybecomesa di-
rectsolverasopposedto regularmultigrid whichis aniterative
solver. Direct solversoffer significantspeed-upsover iterative
solverswhentransientanalysisis performed[1, 3,4]. However,
themajorproblemwith directsolversis their highmemoryre-
quirement[1]. As a matterof fact, it may be impossibleto
solve a very largesystemusinga directsolver. In suchcases,
an iterative solver hasto beusedandtheproblemis seriously
aggravatedwhenperformingtransientanalysisbecauseaniter-
ativesolverhasto beusedatevery timestep.

However, our approachoffers an efficient solution to this
problembecauseit usesa directsolver to solve a reducedsys-
tem of muchsmallerdimension. Thus,our techniqueavoids
thememorylimitation of directsolverswhile maintainingtheir
speed-upadvantage.Of course,theadvantagesof theproposed
techniquecomeat a slight costin theaccuracy of thesolution
sincethe relaxationstepis ignoredand interpolationis used.
However, theresultsin thenext sectionshow that this error is
small enoughto maintainthe efficiency andsuitability of the
proposedtechnique.

4 Experimental Results

Theproposedmultigrid methodhasbeenimplementedandin-
tegratedinto a linearsimulatorwritten in C++. All experimen-
tal resultsreportedin thissectionwereobtainedby runningthe
simulationsona400MHzULTRA 2 Sunworkstationwith 2GB
of RAM andrunningtheSunOS5.7operatingsystem.

Thepracticalityandefficiency of theproposedtechniqueare
illustratedby applyingit for theanalysisof thepower gridsof
two real industrialASICdesigns.Wewill referto thesedesigns
asC1 andC2. Bothdesigns,C1 andC2 are0.18µCMOSdesigns
andhave a supplyvoltageof 1.8 V. Given thepower grid, the
techniquerequiresasinput thecurrentsassociatedwith thedif-
ferentpowerdrainson thechip.

Differentcurrentmeasurescanbe usedfor the analysisde-
pendingon theapplicationof interest.For instance,while peak
currentis a goodrepresentative measurefor IR drop, average
currentis a bettermeasurefor electromigrationanalysis. On
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Table2: Grid reductionandCPUtimes(sec)usingexactsolve
aswell asourmultigrid-like(MG) technique.

Design Level # of nodes Exacttime MG time
0 318074
1 187630

C1 2 128864 456.79 21.6
3 101209
4 86883
0 671088
1 421460

C2 2 310143 1114.13 69.28
3 258591
4 231982
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Figure5: Error in nodesvoltagesfor theC1 design.

theotherhand,a currentwaveformis thesuitablecurrentmea-
surefor transientanalysis.A straight-forwardtechniquefor ob-
tainingany currentmeasureof interestis to simulatethepower
drainsundernominalloadsandrealisticswitchingfactors.This
is how thecurrentmeasureswe usedfor our analysiswereob-
tained.In all ourexperimentsfor DC analysis,weusedthepeak
currentdrawn by thepower drainsasour currentmeasure.As
for transientanalysis,thecurrentmeasureusedwasthecurrent
waveformassociatedwith thedifferentpowerdrains.

Theirregularpowergridsof thetwo designs,C1 andC2, were
simulated.Theviasbetweenconsecutivelayersaremodeledas
ideal shortsandthe proposedapproachis appliedonly to the
two lowest metal layers(M1, M2). This is motivatedby the
fact that the lowestmetallayerscontribute the largestnumber
of nodes.Thenodescontributedby thehighermetallayersare
maintainedasthey are.

Severalgrid reductionsareappliedandtheproblemaccord-
ingly mappedto thecoarsergrids(asexplainedearlier, there-
ductionis repeateduntil thegrid is coarseenoughasspecified
by theuser).Specifyingfour levelsof reduction,Table2 shows
the numberof nodesof the grid at every level. Table2 also
shows theCPUtimesfor solvingthegivenlinearsystemusing
botha regulardirectsolver (shown in column4) aswell asthe
proposedmultigrid-like technique(shown in column5). It is
clearthat theproposedtechniqueis almost16 / to 20 / faster
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Figure6: Error in nodesvoltagesfor theC2 design.

Table3: Grid reductionandCPUtimesfor transientanalysis.

Design Exacttransienttime MG transienttime
C1 921.16seconds 28.32seconds
C2 14.3hours 86.36seconds

thantraditionalsimulation.Notethat thesamedirectsolver is
usedfor solvingboththeoriginalsystemaswell asthereduced
systemwhich verifiesthat thespeedupis not dueto anadvan-
tageof onesolver overanother. In orderto verify theaccuracy
of the results,the exact solutionis comparedto the estimated
solutionreturnedby our technique.Thehistogramsof percent-
ageerrorsin the voltagesof the differentnodesof the power
gridscorrespondingto the two designs,C1 andC2, areshown
in Figs.5 and6 respectively.

For thedesignC1, thedistributionof thenodevoltageerrors
hasameanof � 0 0 0077%andastandarddeviationof 0 0 0333%.
For C2, the error distribution hasa meanof � 0 0 0026%anda
standarddeviationof 0 0 0167%.Furthermore,Figs.5 and6 also
show thattheerrorsatall thepowergrid nodesof bothdesigns
lie in the � 1 0 0% to 1 0 0% range. In fact,designC1 haserrors
that rangefrom � 0 0 93%to 0 0 66%while designC2 haserrors
that rangefrom � 0 0 30% to 1 0 0%. Thus, it is clear that the
proposedtechniqueprovidesanaccuratesolutionto thepower
grid problemata significantspeed-upover regularsolvers.

As explainedearlier, the proposedmultigrid-like technique
is evenmoreadvantageouswhenappliedfor transientanalysis.
This is illustratedin Table3, which shows thetime requiredto
runa transientsimulationof thepowergridsof thetwo designs
usinga regularsolver andtheproposedtechnique.Thepower
gridsaresimulatedfor adurationof 4 nswith 0.4nstimesteps.
The speedupadvantageis clear in both cases.However, it is
moresignificantin thecaseof theC2 designandthereasonis
thatdesignC2 is simulatedusinganiterativesolverduetomem-
ory limitations,requiringa total of 140 3 hours.Our technique,
on theotherhand,usesa directsolver to solve theproblemat
thereducedgrid. Thus,only oneinitial factorizationis needed
andonly forward/backwardsolvesareneededat theremaining
time steps.Thetotal time requiredfor transientanalysisusing
theproposedmultigrid-like techniqueis 860 36 seconds,repre-
sentingaspeed-upof 600/ for transientanalysis.
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Figure7: Error in thevoltagewaveformn theC1 design.
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Figure8: Error in thevoltagewaveformin theC2 design.

Other methodsto speed-uppower grid analysishave been
proposed[4]. In [4], a hierarchicalpower grid analysistech-
niqueis proposedwhich givesspeed-upsbetween2 / and5 /
for DC analysis.Theauthorsalsoproposeutilizing parallelism
which increasesthe speed-upsto the range10 / to 23 / [4].
However, their proposedmethodoffers no speed-upswhen
transientanalysisis appliedin serialmode.Smallerspeed-ups
between1 0 8 / and5 0 1 / canstill beobservedwhenparallelex-
ecutionis usedfor transientanalysis. Note that the speed-up
comparisonis a function of the linear solvers being usedas
well asthesizeof theproblemsbeingsolved.However, experi-
mentalresultsshow thatourmethodpromisesmoresignificant
speed-upsat a minimal cost in accuracy. Furthermore,these
speed-upsareevidentfor bothDC aswell astransientanalysis.

Finally, it remainstoverify theaccuracy of theresultingtran-
sientsolution. This is illustratedby Figs.7 and8 which show
the voltagewaveform at one nodeof the power grids of de-
signsC1 andC2 respectively. It is clearthat themultigrid-like
techniqueaccuratelytrackstheexact voltagewaveformat the
givennode. Comparisonsat othernodesshow similar results.
Figs.7 and8 show anerrorin thenodevoltageof under0.17%
or about3 mV (wefind avoltagedropof 23mV, while theexact
waveformshowsadropof 20mV).

Thus, the multigrid-like techniqueprovides very accurate
simulationresultsfor bothDC aswell astransientanalysisof
thepower gridswith theaddedadvantageof significantspeed-
upoverregularanalysistechniques.

5 Conclusion

An efficient PDE-like methodfor power grid analysisis pre-
sented. It follows the basiclines of thoughtof the multigrid
techniquewhichis widely usedfor thesolutionof smoothPDE
problems.However, theproposedtechniquefallsunderthecat-
egory of direct solversandthus,significantlydiffers from the
regularmultigrid methodwhichfallsunderthecategoryof iter-
ativesolvers.Experimentalresultsonrealdesignsshow speed-
upsof oneto two ordersof magnitudeovercurrentmethodsfor
bothDC andtransientanalysis.
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