
Quantifying Robustness Metrics in Parameterized
Static Timing Analysis

Khaled R. Heloue
ECE Department

University of Toronto
Toronto, Ontario, Canada

Chandramouli V. Kashyap
Strategic CAD Labs
Intel Corporation

Hillsboro, OR 97123

Farid N. Najm
ECE Department

University of Toronto
Toronto, Ontario, Canada

Abstract—Process and environmental variations continue to
present significant challenges to designers of high-performance
integrated circuits. In the past few years, while much research has
been aimed at handling parameter variations as part of timing
analysis, few proposals have actually included ways to interpret
the results of this parameterized static timing analysis (PSTA)
step. In this paper, we propose a new post-variational analysis
metric that can be used to quantify the (timing) robustnessof
designs to parameter variations. In addition to helping designers
diagnose if and when different nodes can fail, this metric can
guide optimization and can give insights onwhat to fix, by
identifying nodes with small robustness values and proceeding
to fix those nodes first. Inspired by the rich literature on design
centering, tolerancing, and tuning(DCTT), we use distance as
a measure for robustness. Our analysis thus determines the
minimum distance from the nominal point in the parameter
space to any timing violation, and works under the assumption
that parameters are specified as ranges rather than statistical
distributions. We demonstrate the usefulness of this distance-
based robustness metric on circuit blocks extracted from a
commercial 45nm microprocessor.

I. I NTRODUCTION

With the continuous scaling of integrated circuits, the
control over process and environmental parameters has
become increasingly difficult. As a result, PVT (pro-
cess/voltage/temperature) parameters are found to exhibit large
deviations from their nominal values, which causes circuit
delay variations and possibly timing failures. Therefore,one
needs to account for variability as part of the timing veri-
fication step. For ASICs, corner case analysis is tradition-
ally used, whereby timing is verified at all process corners
corresponding to extreme settings of PVT parameters. For
microprocessors, the resulting chips are typically “binned” at
different frequencies to account for variations. In the recent
past, this problem has become worse because, not only has the
number of parameters subject to variations increased, leading
to a larger number of corners, but also the within-die (local)
variations have become more significant, and they cannot be
handled using traditional corner analysis.

With the traditional approaches to timing verification be-
coming too expensive and unable to handle local variations,
new alternatives have emerged in recent years. These tech-
niques have focused on assessing the effects of parameter
variations on timing as part of the timing analysis step.
All these techniques consider circuit delay to be dependent
on a number of PVT parameters, and therefore can be
collectively described under the heading ofparameterized
static timing analysis(PSTA). Statistical static timing analysis

(SSTA) is one example of PSTA, in which parameters are
modeled as random variables with known distributions and
correlations [1], [2], and timing yield is estimated from
the corresponding distribution of circuit delay. In practice,
however, the statistical distributions and correlations of some
PVT parameters may be unknown or unavailable. Also, some
parameters, such as supply voltage or temperature, are not
truly random and are better modeled as simply unknown or
uncertain variables. Thus, some alternative PSTA techniques
have also been proposed, such as multi-corner static timing
analysis (MCSTA). MCSTA models parameters as uncertain
variables within given or known bounds, and attempts to verify
circuit timing at all corners in a single timing run [3], [4].
Although the circuit delay is captured accurately at the worst
case corner, the same cannot be said about other points in
the parameter space. Recently, some PSTA techniques [5], [6]
have addressed this limitation by proposing to capture, in a
single timing run, circuit delayexactly at all points in the
PVT space. This can be done by propagating in the timing
graph all the paths that can become dominant (critical) at any
setting of the PVT parameters, and pruning all other redundant
paths. In any case, the end result of all PSTA techniques is to
provide designers with parameterized timing quantities (arrival
times and/or slacks) which are expressed as functions of PVT
parameters.

A. Scope of This Work

While a large body of research has focused on theanalysis
step, very few proposals have presented clear answers for how
to interpret and utilize the results of PSTA in design. The
crux of the matter, and this is what motivated PSTA in the
first place, is that the goal is to produce asafe design, in
the sense that it must berobust to variations. In order to do
that, an essential requirement is to be able tomeasurethe
safety or robustness of a given design, i.e., itssusceptibility to
timing failure due to variations. But how does one formally
define robustness? How does one quantify the susceptibilityto
failure and determine how far a nominally safe design is from
the “edge of the cliff”? Finally, what does one need to do in
order to improve the robustness of a given design? One way to
quantify robustness, which is used in SSTA, is to use the notion
of yield to assess the safety of timing quantities. Indeed, timing
yield is one measure of robustness - it provides designers with
the probability of meeting/violating the timing constraints.
However, yield analysis via SSTA requires that all parameters



be modeled as random variables with known distributions
and correlations. As we noted earlier, the distributions and
correlations of PVT parameters may not always be available
or fully specified. Hence, for those PSTA techniques where
parameters are eitheri) modeled as uncertain (non-random)
variables in specified ranges, orii) where distributions are
unknown or unavailable, we need to define some other metric
which can be used to assess the robustness of timing quantities
resulting from these methods. One possible way of doing that
is to use thevolumeof the feasible region as a measure of
robustness. As part of their work on yield prediction, the
authors of [7] have proposed two techniques for approximating
the volume of the feasible region, theparallelepiped method
and theellipsoid method. However, it was found that, while
both techniques are accurate, they may not scale well with the
number of PVT parameters or the number of paths. Thus, this
approach can be costly on large designs.

B. Overview

In this paper, we hope to answer some of the above open
questions as we present a new metric that can be used to
quantify the (timing) robustness of a design to variations in
the case where parameters are given as ranges rather than fully
specified distributions. Our methodprocessesthe parameter-
ized timing quantities resulting from PSTA so as to extract
useful information about the susceptibility to timing failures.
We will define robustness as the minimumdistance, from the
nominal point in the PVT parameter space, to any other point
where a timing violation occurs. Such distance-based metrics
have been used in a different context in the realm of design
centering, tolerancing, and tuning (DCTT) [8], [9]. In DCTT,
optimal nominal values for somedesignable parametersare
selected so that thedistancefrom the nominal point (center
point of the design) to the boundary of theacceptability region
is maximized in the hope of maximizing the process yield.
Traditional DCTT operates in the space of design parameters,
whereas our distance metric is measured in the PVT parameter
space. It is also important to note that design centering has
only been traditionally applied to small, typically analog,
circuits, not to large digital integrated circuits; this isbecause
it relies on expensive statistical simulations to determine the
acceptability region of the design parameters, not to mention
that the number of those parameters increases with circuit size.
We will see that, in our use of a distance metric in PVT space,
these complications do not arise and the resulting approachis
computationally efficient.

Thus, the novelty of this paper is in its proposed appli-
cation, where we extend the use of such distance metrics to
the timing verification of large logic circuits, which, to our
knowledge, was never done before. Using this new distance-
based robustness metric, designers can not only diagnose if
and when different nodes can fail timing, but also get insight
on what to fix. In fact, our robustness metric can be used to
evaluate design quality and to guide optimization by ranking
different nodes according to their robustness, thus identifying
the least robust nodes and proceeding to fix those nodes
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Fig. 1. Timing graphs for (a) Inverter, and (b) 3-input OR gate

first. We also show that our robustness analysis can handle
parameterized timing quantities resulting from either exact [5],
[6] or bounded/approximate [3], [4] PSTA techniques. Also,
our metric is computed efficiently and scales well (linear
complexity) with the number of PVT parameters and the
number of paths.

The rest of the paper proceeds as follows. Section II covers
some basic terminology and describes how parameterized
timing quantities are represented in PSTA. In Section III, we
cover robustness analysis in detail, first by comparing the
notions of robustness and sensitivity, and then by defining
robustness using normed distances in higher dimensions. We
show some results in Section IV and conclude in Section V.

II. PRELIMINARIES

We will review the terminology used in static timing
analysis (STA) and describe how STA is extended to handle
PVT variations as part of parameterized static timing analysis
(PSTA).

A. Nominal Static Timing Analysis

In static timing analysis, the circuit under study is repre-
sented as a timing graph by creating a graph node for every
electrical net in the circuit (primary input, output, or internal
node) and a graph edge for everytiming arc (logic gate
input/output pair). The weight of every edge corresponds tothe
delay value from that input pin to the output pin. Thearrival
time at the output of a gate is computed first byadding the
input arrival times to their corresponding timing arc delays
(edge weights), and then taking themax over the result of
those additions. This procedure is repeated while topologically
traversing the timing graph and computing the arrival timesat
every node.

Fig. 1 shows the timing graphs for two simple logic gates,
an inverter and a 3-input OR gate. The edge weight,dio,
corresponds to the arc delay from inputi to the output. Since
the inverter has one input, the arrival time (AT ) at its output
is simply:

ATo = AT1 + d1o (1)

For the OR gate, its output arrival time is the maximum of the
sum of its three input arrival times and their correspondingarc
delays:

ATo =
3

max
i=1

(ATi + dio) (2)
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While arrival times are computed during forward propa-
gation in the timing graph,required times(RT ), which are
defined as the latest acceptable arrival times that would not
violate the timing constraints, must be computed based on
the information downstream, and thus require a backward
propagation from the primary outputs. For a node to pass
timing, its arrival time must not exceed its required time.
The concept ofslack, which is the difference between the
required time and the arrival time at a node, is generally used
as a measure of how close a node is to violating its timing
constraint. In general, we require the slackS to be positive:

S = RT −AT ≥ 0 (3)

In nominal static timing analysis, all the above timing
quantities (AT , RT , S) are computed under the assumption
that process and environmental parameters - and consequently
timing arc delays which depend on these parameters - are
fixed, typically at either theirnominal or corner values.
However, due to the increasing significance of variability,
parameterized static timing analysis (PSTA) techniques have
emerged, with the goal of handling parameter variations as
part of the timing analysis step.

B. Parameterized Static Timing Analysis

A key component of any PSTA technique is thedelay model
that captures the dependence of gate/interconnect delays on the
underlying process and environmental parameters. First-order
linear delay models are often used in the literature, and they
generally capture well this dependence. Under such a linear
model, the delayD of a timing arc is expressed as:

D = do +

p
∑

i=1

diXi (4)

where do is the nominal delay value anddi is the (first-
order measure of) sensitivity to parameterXi. Note thatXi

can represent the variation of any parameter, such as channel
length, supply voltage, or temperature. Also note thatdo and
the di’s are determined during library characterization.

Another component of PSTA is the model for the PVT
parameters. As noted above, while SSTA techniques [1], [2]
use random variables with known probability distributions

(e.g. Gaussian) to model the parameters, other PSTA tech-
niques [3]–[6] model them asuncertainvariables that are spec-
ified in given ranges. We will adopt this more general model,
based on uncertain parameters, because the distributions and
correlations of some PVT parameters may be unknown or
unavailable in practice. For simplicity, and without loss of
generality, we will assume that the variation range of every
uncertain parameterXi is normalized to[−1, 1]. Following
standard terminology, the linear model in (4) will be referred
to as a delayhyperplane.

Because path delay is the sum of gate and interconnect delay
hyperplanes on that path, it is also modeled as a hyperplane.
However, arrival times are not simply hyperplanes because,
when different paths converge at a node, a (nonlinear)max
operation must be performed to determine the arrival time at
that node. For example, consider Fig. 2, whereA1, A2, andA3

represent path delay hyperplanes. For purpose of illustration,
a single parameterXi is considered, so that the hyperplanes
are simply straight line segments. The dashed piecewise linear
function (in general piecewise planar) resulting from the max
operation corresponds to the exact representation of the arrival
time as:

AT = max(A1, A2, A3) (5)

where theAj ’s have the form in (4).
A similar piecewise planar function representing themin

operation arises when one is dealing with parameterized
slacks. For example, consider the circuit in Fig. 3 having two
primary outputs at registersR1 andR2. The arrival timeAT1

at the data input of registerR1 is represented by a piecewise
planar surface, sayAT1 = max(A1, A2, A3). Note however,
that the required timeRT1 at the data input ofR1 is not a
max surface but a (single) hyperplane. This is because we are
assuming that the arrival time at the clock input,r1, is the
delay hyperplane corresponding to a clock tree path. Hence,
the parameterized slackS1, at the input of registerR1 will be
given as a minimum of a set of hyperplanes, as follows:

S1 = RT1 −AT1 (6)

= RT1 −max(A1, A2, A3)

= RT1 + min(−A1,−A2,−A3)

= min
(

(RT1 −A1), (RT1 −A2), (RT1 −A3)
)

where we have used the fact thatmax(a, b) = −min(−a,−b).
A similar reasoning follows for the parameterized slackS2 at
the input of registerR2. As a result, the minimum slackS for
this circuit, being the minimum of all parameterized slacksat
registers inputs will also be represented as a piecewise planar
surface defined by the min operation above.

While some PSTA techniques [5], [6] capture exactly the
piecewise planar surfaces representing the nonlinear max and
min operations, other techniques [3], [4] approximate and/or
bound those operations using a single hyperplane. In general,
both exact and approximate PSTA techniques result in timing
quantities (arrival times/slacks) being parameterized asfunc-
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tions of the PVT parameters, as follows:

AT (X) =

{

ao +
∑p

i=1
aiXi, approx. PSTA

maxn
j=1

(aoj +
∑p

i=1
aijXi), exact PSTA

(7)

S(X) =

{

so +
∑p

i=1
siXi, approx. PSTA

minn
j=1

(soj +
∑p

i=1
sijXi), exact PSTA

(8)

wheren is the number of hyperplanes that define the piecewise
planar surfaces of the max and min operations, and−1 ≤
Xi ≤ 1 for all i.

III. ROBUSTNESSANALYSIS

Although parameterized expressions of timing quantities re-
sulting from PSTA are very useful, they do notdirectlyprovide
a metric of robustness of these timing quantities to variations.
Some furtherprocessingof these expressions is required, to
extract this information. We are interested in transforming
complex expressions of PVT parameters, such as (7) and (8),
into a measurable or quantifiablerobustness metric. In this
section, we first define such a metric as a measure of how close
a node is to violating its timing constraint. We also compare
robustness and sensitivity and highlight the subtle difference
between the two notions. Finally, we present our mathematical
formulation for robustness analysis and describe our algorithm.

A. From Sensitivity to Robustness

Suppose that one is comparing two design realizations
of the same circuit, for which PSTA has provided the two
different parameterized slacks at some node,S1(X) and
S2(X). Alternatively, suppose thatS1(X) andS2(X) are the
parameterized slacks at two nodes of the same design. Either
way, we are interested in comparing the robustness ofS1(X)
and S2(X). If, at the nominal pointX = 0, it turns out that
S1(0) ≥ S2(0) ≥ 0, then one might be inclined to assume
that S1 is more robust thanS2 because it is larger, and thus
variations would seem to affect it less adversely. However,this
is not always true, as it may turn out thatS1 is moresensitive
to variations thanS2, and consequently more prone to failure.
Hence, sensitivity is an important measure that is closely tied
to robustness.

X

Slack

S1

S2

d1 d20 Xmax

X

Slack

S1
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(a) More sensitive, less robust (b) More sensitive, more robust

Fig. 4. Sensitivity and Robustness

As an example, Fig. 4 shows a comparison of two param-
eterized slacks,S1(X) and S2(X), where we have assumed
a single parameterX, varying in [0,Xmax]. Fig. 4a shows a
case where the slack with the larger nominal value turns out to
be less robust. In fact, althoughS1(0) ≥ S2(0), S1(X) fails
“before” S2(X), because the value ofX for which S1(X)
becomes zero,d1, is smaller thand2, the value ofX for
which S2(X) becomes zero. In this case, the more sensitive
slack turns out to be the one that is less robust. On the other
hand, Fig. 4b shows a case where the opposite happens: even
though S1(X) is more sensitive thanS2(X), it is actually
more robust. This is becauseS1(X) does not fail in[0,Xmax],
while S2(X) fails for X = d2. Therefore, while robustness
is related to thesusceptibility of a node to violating timing,
sensitivity is related to the magnitude of timing deviation,
per unit parameter variation, irrespective of whether or not
timing is actually violated. Thus, a node having the larger
sensitivity yet not failing anywhere in the parameter space
is “more robust” than a node having smaller sensitivity, yet
failing somewhere in the parameter space.

In order to fully capture the notion of design robustness,
we need to somehow make use of both the nominal values
and the sensitivities, in relation to the threshold where timing
failure occurs.

B. Quantifying Robustness

For the simplified scenario shown in Fig 4, one can define
robustness as simply the value ofX for which timing is
violated. This would be a good metric to use because it is
quantitative; it would allow one to conclude, for example, that
S2 is more robust thanS1 wheneverd2 > d1. However, in the
general case where several parameters are varying, and where
parameterized timing quantities are piecewise planar surfaces,
each with a different set of sensitivities, things can get more
complicated. For one thing, finding a setting for the parameter
vectorX where timing is violated is not as simple as finding
the x-intercept in Fig. 4, and requires a search in a higher-
dimensional space. Furthermore, there could be be many such
settings, making it hard to judge which one to use as a measure
of robustness.

1) Distance-based Metric:We propose that a distance-
based metric is a good choice for robustness analysis. Specifi-
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cally, we define the robustness metric as theminimum distance
from the nominal pointin the PVT parameter space to any
point where a timing violation occurs. Distance can easily
abstract the large dimensionality of the problem by presenting
a simple quantifiable measure that can be computed with little
effort. By measuring distance fromthe nominal point, we are
implicitly assuming that the nominal design is feasible, i.e., it
meets the timing constraints. Thus, the minimum distance to
any timing violation reflects the smallest (magnitude) deviation
from the nominal point that would “break” the design.

In fact, such distance-based metrics have been used in the
past as part of design centering for yield maximization [8]–
[10]. The goal of design centering is to determine the optimal
nominal settings of thedesign parameters, which are con-
strained to satisfy performance specifications in the presence
of tolerances. These nominal values (which define the center
point of the design) are optimized such that thedistance from
the design center to the boundaryof the acceptability region
is maximized, in the hope of maximizing yield. Distance is
therefore used in design centering as a measure of safety, since
the more “distant” the center is from the boundary, the higher
is the expected yield. In our case, where we work with PVT
parameters, rather than design parameters, we do not try to
recenter our design so that distance is maximized. Instead,
we only use distance as a measure of how robust a timing
quantity (or a design) is in the face of PVT variations. In fact,
in our problem, the nominal PVT point is fixed, as well as
the ranges of variation, whereas in design centering, the space
under study is that of the design parameters, whose nominal
values, as well as tolerances (ranges) are to be determined.

C. Mathematical Formulation

In this section, we present the mathematical formulation of
our robustness analysis by means ofnormed distancesto the
boundary of the region where timing is met.

1) The Feasible Space:In general, given a parameterized
timing quantity T (X), we define its robustness,r, as the
minimum distance (using some vectornorm) from the nominal
PVT point,X = 0, to any point in the PVT space whereT (X)
violates timing. Recall that we have assumed in Section II-B
that PSTA has already been used to analyze the design, and
that parameterized slacksS(X) and/or arrival timesAT (X)
are available. Each timing quantity is either a hyperplane or
a collection of n hyperplanes defining a piecewise planar
surface, as shown in (7) and (8). In the analysis that follows,
we assume that one is dealing with parameterized slacks

S(X), however, the same analysis can be easily applied to
the case of parameterized arrival times. Recall thatS(X) is
defined in (8) as the minimum ofn hyperplanes:

S(X) = min (S1(X), . . . , Sn(X)) (9)

wheren ≥ 1 (for approximate PSTA,n = 1), and where:

Sj(X) = soj +

p
∑

i=1

sijXi, j = 1, . . . , n (10)

We also assume that this set ofn hyperplanes has already
been reduced using pruning techniques, such as in [5], [6], so
that every hyperplaneSj(X) can become the minimum,i.e.,
S(X) = Sj(X), for someX.

With the above expressions for slack, the space where
timing is satisfied,C, is defined byS(X) ≥ 0, which can
be expressed as a convex polytope (intersection of linear
constraints) by replacingS(X) by its expression in (9), as
the minimum ofn hyperplanes:

C =

{

X
∣

∣

∣
Sj(X) = soj +

p
∑

i=1

sijXi ≥ 0, j = 1, . . . , n

}

(11)
Also, we assume that the ranges ofXi’s are normalized to
[−1, 1], so that the parameter space,D, is defined as the
following p-cube:

D =
{

X
∣

∣

∣
−1 ≤ Xi ≤ 1, i = 1, . . . , p

}

(12)

Therefore, the intersection ofC with D corresponds to allX
in D for which timing is met,i.e., S(X) ≥ 0. We refer to this
C ∩D as thefeasible region. As mentioned earlier, we assume
that the nominal design is feasible (meets timing), so that the
nominal pointX = 0 is inside the feasible region. If one starts
at the nominal point and moves outward, then two cases may
arise. Either the boundary ofC is encountered and crossed
first at which point timing is violated (i.e., Sj(X) < 0 for one
or morej), or the boundary ofD is encountered and crossed
first, at which point the range is exceeded (i.e., |Xj | > 1 for
one or morej). For robustness analysis, we are interested in
the minimum distance from the nominal point to any point
within the rangeD at which timing is violated. Therefore, we
are interested in the minimum distance to the boundary ofC,
obviously provided thatS(X) fails somewhere insideD.

2) Normed distance to a hyperplane:We want the mini-
mum distance to the boundary of the convex polytopeC de-
fined by the set ofn linear constraints in (11),Sj(X) ≥ 0, ∀j.
The boundary corresponds ton hyperplanes,hj , j = 1, . . . , n,
where:

hj : Sj(X) = 0 (13)

:

p
∑

i=1

sijXi = −soj (14)

: aT
j X = bj (15)

whereaj is the vectoraT
j , [s1j s2j · · · spj ] andbj , −soj .



Let dn(Xo, hj) be the distance, in an arbitrary vector norm
‖X‖, from a pointXo to the hyperplanehj . This so-called
normed distancecan be expressed in terms of the norm’s unit
ball, Bn = {X | ‖X‖ ≤ 1}, as follows [11]:

dn(Xo, hj) = min{|λ|
∣

∣ (Xo + λBn) ∩ hj 6= ∅} (16)

Therefore, in order to determine the normed distance fromXo

to hj , one needs to dilate the unit ball byλ aroundXo until
it touchesthe hyperplane. Fig. 5 shows different unit balls
B2, B∞, andB1 (in 2-D) for the L2-, L∞-, and L1-norms,
respectively, where:

L2-norm = ‖X‖
2

=

√

√

√

√

p
∑

i=1

X2

i (17)

L∞-norm = ‖X‖
∞

=
p

max
i=1

|Xi| (18)

L1-norm = ‖X‖
1

=

p
∑

i=1

|Xi| (19)

The normed distance in (16) can also be expressed in terms
of the dual norm‖X‖⋆, as follows [10], [11]:

dn(Xo, hj) =
|aT

j Xo − bj |

‖aj‖
⋆ (20)

where the dual norm is‖u‖⋆ = sup{uT v
∣

∣ ‖v‖ ≤ 1}. For the
Lp-norm ‖X‖p, defined by:

‖X‖p =

(

∑

i

|Xi|
p

)
1

p

, (21)

the dual norm is theLq-norm ‖X‖q, such that:

1

p
+

1

q
= 1 (22)

Note that theL2-norm is self dual, and that theL1 and L∞

norms are duals of one another.
Therefore, using the very simple normed distance expres-

sion in (20), we can efficiently determine the distance (in
any Lp-norm) from the nominal PVT pointX = 0 to every
hyperplanehj defining the boundary ofC, and record the
smallest such distance as the robustness metric,r, of S(X).

3) Algorithm and Illustration: A description of the algo-
rithm, Find Robustness, is shown in Algorithm 1. It takes as
input a parameterized slack,S(X), and returns its robustness,
r, as defined above. The algorithm starts by checking two
corner cases. First, the nominal slack is checked, at the
nominal pointX = 0 (line 1). If S(0) ≤ 0, then the nominal
slack violates timing. In that case,X = 0 is not feasible, and
we simply setr = 0. Nodes withr = 0 are the least robust
because they violate timing even before considering parameter
variations. The second corner case to check is whether the
minimum value (overX) of S(X) is positive (line 3). Since
S(X) is the minimum ofSj(X)’s and−1 ≤ Xi ≤ 1, this can
be easily checked as follows:

min
X
{S(X)} =

n

min
j=1

{

soj −

p
∑

i=1

|sij |

}

(23)
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Fig. 6. Robustness Analysis

If the above expression is positive, it simply means thatS(X)
does not fail anywhere in the parameter space and, in that
case, we setr = ∞. Nodes withr = ∞ are the most robust
since they are not prone to timing violations anywhere inD.

Algorithm 1 r ← Find Robustness(S(X))

Input: S(X) = min(S1(X), . . . , Sn(X))
whereSj(X) = soj +

∑p

i=1
sijXi

Output: r ∈ R

1: if (S(0) ≤ 0) then
2: return r = 0
3: else if (min

X
{S(X)} > 0) then

4: return r = ∞
5: else
6: r = ∞
7: for (j = 1, . . . , n) do
8: Sj(X) = 0 → hj : sT

j X = −soj

9: rj = dn(0, hj) =
|soj |

‖sj‖
⋆

10: if (rj < r) then
11: r = rj

12: return r

If both these corner conditions are not met, thenS(X)
will fail somewhere in the parameter spaceD. In that case
(line 5), we first setr = ∞ (or some upper bound value).
Then, we compute the normed distance,rj , from the nominal
point X = 0 to the (boundary) hyperplanehj defined by
Sj(X) = 0. To do that, we use the formula in (20) for
some choice ofLp-norm and its corresponding dualLq-norm.
Typically, L2-normed distances are mostly prevalent in the
literature on design centering, with some use ofL∞-norm
(and its correspondingL1 dual norm). This is done for all
boundary hyperplaneshj ’s, and the smallest value ofrj is
recorded as the robustness ofS(X) (lines 10-11).

Fig. 6 is a simple 2-D example depicting graphically how
robustness analysis works, when both theL2 andL∞ norms
are used. Note that the parameter space is defined by the
square region where the two parameters are restricted to vary
in −1 ≤ X1,X2 ≤ 1, and the feasible space where timing is
met is defined by the grey triangle-like region that contains
the nominal PVT pointX = 0. The striped region outside the
boundary of the feasible space is the region where timing is
violated. Fig. 6a shows the robustness,r2, computed inL2-
norm. This is equivalent to inflating anL2-normed unit ball
(disk) aroundX = 0 as shown, until it touches one of the
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hyperplanes at the boundary. Similarly, aL∞-normed unit ball
(square) is inflated aroundX = 0 in Fig. 6b to obtain the
robustness,r∞, in L∞-norm.

D. Unbiased vs Biased Analysis

The robustness analysis presented so far has assumed that
the PVT parameters are uncertain variables given in ranges
and having equal spreads (assumed to be [-1,1]). As a result,
the analysis implicitly gives equal weights to all possible
directions in the space. This option would be the most appro-
priate if absolutely no additional information is known about
parameter variations and their interactions. We will referto
this type of analysis asunbiased analysis. On the other hand,
if additional or partial information is available, whetherit is
from historical data or from process experience, then one could
make use of this information so as tobias the robustness
metric computation. For example, if parameters have different
spreads, then one can use a scaling (diagonal) matrix to scale
the norm itself and compute the distance-based metric in the
new scaled norm. Also, if it is observed that certain parameters
exhibit somecovariance, that is, if certain parameters are
likely to vary in the same (or opposite) direction, then one
can rotate the norm by a nondiagonal scaling matrix. It is
shown in [10] that, given any (diagonal or nondiagonal) scaling
matrix W , the scaled norm is given by‖X‖W =

∥

∥W−1X
∥

∥,
and its scaled dual norm is given by‖X‖⋆W =

∥

∥WT X
∥

∥. Both
unbiased and biased analyses are depicted in Fig. 7, where (b)
we have scaled the unbiasedL2-norm by reducing the range
of X2, and (c) have rotated the norm by45◦, emphasizing the
fact thatX1 andX2 are likely to vary in the same direction.

IV. RESULTS

In this section, we present the simulation results that were
obtained on a45nm commercial microprocessor design. Two
parameterized static timing analysis flows were implemented
in C++ on top of an STA timing engine. The first is an exact
PSTA flow that parameterizes timing quantities in the form of
piecewise planar surfaces (collection of hyperplanes) defined
by the max or min operations described in (7) and (8). The
exact PSTA implementation is based on the pruning techniques
of [5], [6]. The second flow is an implementation of the ap-
proximate PSTA technique of [4], which parameterizes every
timing quantity as a single hyperplane. For both flows, we
have considered global variations in four different parameter
types, namely supply voltage (Vdd), Miller Coupling Factor

Rcrit

Fig. 8. Cumulative robustness distribution of failed slacks

(MCF ), and channel length for both NMOS and PMOS
devices (Ln andLp). In addition,Ln andLp are each divided
into two types, based on whether the device is nominal or
low power, and further into three types based on layout
dependent information. Parameter variations are assumed to
be independent, so a total14 different PVT parameters were
considered in the analysis (12 for L, MCF , and Vdd). In
our robustness analysis, theL2-norm was used to compute
all normed distances from the nominal point to the boundary
hyperplanes, as is typical in design centering.

We ran both exact and approximate PSTA on different
microprocessor blocks and have determined parameterized
arrival times at every node and parameterized slacks at the
inputs of all registers in the blocks. Our robustness analysis
was then applied on the parameterized slacks to quantify their
robustness, as described in Section III. Recall that we have
normalized the variation range of every parameter to[−1, 1],
and have considered14 parameters. Therefore, if a slack fails
somewhere in the parameter space, then its robustnessr must
fall betweenrmin = 0 andrmax (based onL2-norm), where:

rmax =

√

√

√

√

14
∑

i=1

(±1)2 ≈ 3.74 (24)

Fig. 8 shows a plot of the cumulative robustness distribution
of all failed slacks for one microprocessor block,ckt1. It
provides a ranking of all failed slacks according to where
in the range[0, 3.74] their robustness falls. Looking at the
plot, it makes sense to start by fixing the slacks that have the
smallest values of robustness, since those are the ones that
are most prone to failure. In general, it is useful to have a
robustness threshold,Rcrit, such that all slacks with robustness
less thanRcrit would be considered critical and thus fixed.
Note thatRcrit does not have to be large since one is interested
in detecting the slacks that are failing for asmall deviation
around the nominal point, at least for microprocessors.

Fig. 9 shows a plot of nominal slack vs robustness for
different nodes. Slack values were normalized, and16 nodes
with very similar nominal slacks were picked (as shown). We
have also assumed, for purpose of illustration, that if a slack
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Fig. 9. Nominal Slack vs Robustness

goes below90% of its nominal value (due to variations), then
this would be considered a timing failure. In other words,
we’re simply using90% of nominal slack instead of0 as
the threshold for failed slack. Based on this slack threshold,
we have computed the robustness of the different slacks, and
plotted nominal slack vs robustness. As shown on the plot,
robustness values fall in[0.05, 0.6], which is a large spread
given that the nominal slacks are almost the same. In fact,
if one had no access to robustness information, all the16
slacks wouldseemto be equally robust looking only at their
nominal slack. However, after factoring in our quantifiable
robustness metric, one can easily determine which nodes are
the most susceptible to variations. In a sense, the circled slacks
are closer to the edge of the cliffthan the ones with larger
robustness.

We also checked if the results of robustness analysis are
consistent when applied toi) exact PSTA vsii) approximate
PSTA. First, exact PSTA is invoked on another microprocessor
block, ckt2, to obtain parameterized arrival times at every
node and parameterized slacks at the inputs of all registersin
the block. There were≈ 1500 parameterized slacks, withn
(number of hyperplanes defining every slack) ranging from1
to 346 hyperplanes. Robustness analysis is then applied on the
parameterized slacks with slack threshold set to0, and (exact)
robustness is recorded. Then, approximate PSTA is invoked,
and parameterized slacks were obtained, each consisting of
only a single hyperplane. Robustness analysis is then applied
and (approximate) robustness is recorded. Out of the1500
parameterized slacks, only41 slacks failed somewhere in the
parameter space, and thus have robustness values in[0, 3.74].
Fig. 10 shows a plot of approximate robustness (based on
approximate PSTA) versus exact robustness (based on exact
PSTA). In general, for the results of both robustness analyses
to be consistent, the ranking of slacks in terms of their
robustness should be preserved. In other words, the points
should follow some straight line (not necessarilyy = x,
althoughy = x would be an ideal case). This is what we see
in this plot; the points are highly correlated (we have found
the correlation coefficient to beρ = 0.93) and they fall close
to y = x.
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V. CONCLUSION

In this paper, we presented a new robustness metric that can
be used to quantify the vulnerability of designs to parameter
variations. Our robustness metric provides a novel way to
easily interpret the results of parameterized static timing
analysis byi) determining if and when nodes can fail,ii)
ranking those nodes according to their robustness, andiii)
fixing the ones that are least robust. Using distance as the
metric for robustness, we find the smallest normed distance
from the nominal point in the parameter space to any timing
violation, which can be computed efficiently using closed form
expressions.
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