
Power Grid Correction Using Sensitivity Analysis

Meriç Aydonat
Department of ECE

University of Toronto
Toronto, Ontario, Canada

E-mail: maydonat@eecg.utoronto.ca

Farid N. Najm
Department of ECE

University of Toronto
Toronto, Ontario, Canada

E-mail: f.najm@utoronto.ca

Abstract—Power grid voltage integrity verification requires one to
check if all the voltage drops on the grid are less than a certain threshold.
This paper addresses the problem of correcting the grid when some
voltage drops exceed this threshold, by making minor modifications to
the existing design. The method uses current constraints that capture the
uncertainty about the underlying circuit behavior to find the maximum
voltage drop on the grid, and then to estimate the voltage drop as a
function of the metal widths on the grid. It formulates a non-linear
optimization problem and finds the required change in widths that
reduces the maximum voltage drop below the threshold while keeping
the total area cost at a minimum.

I. INTRODUCTION

As the supply voltages have been reduced in nanometer chip
technologies, modern integrated circuit (IC) designs have become
more succeptible to supply voltage fluctuations. With lower supply
voltages, smaller voltage drops become more significant and can
reduce the timing performance of the chip, leading to soft errors.
Thus, voltage integrity verification has become a crucial step in
reliable high-speed chip design.

Power grid verification is traditionally done by simulation, which
requires full knowledge of the current waveforms drawn by every
circuit block attached to the grid. These waveforms would be used
to simulate the grid and determine the voltage drop at every node.
However, this approach requires 1) a comprehensive set of currents
to be simulated, and 2) full knowledge of current waveforms which
is a problem if one would like to verify the grid early in the design
flow, before all the circuit details are available.

To overcome these problems, current constraints concept was
proposed in [1]. These current constraints are a set of upper bounds
on the currents that would be drawn by the underlying circuit. They
can be obtained by simulations or from the knowledge of overall
power dissipation of the circuit blocks. Using these constraints, a
linear program (LP) is formulated to check if the voltage drop at any
node exceeds a certain threshold under all possible current waveforms
that satisfy the constraints. If all the nodes meet their voltage drop
requirements, we call this grid a robust grid. An important advantage
of the constraint-based approach over the simulation based approach
is that it can be applied early in the design process when grid
modifications can be most easily incorporated.

Once the power grid verification has been done, some nodes may
be found to exceed the threshold. In this case, it is critical to find
some means to fix this problem without the need to re-design the
whole grid from scratch. This paper proposes a novel approach to
correct a given non-robust grid by making minor changes, namely
by changing the widths of metal branches on some level or levels of
the grid. Previous work [2], [3] tackled the problem of determining

This work was supported in-part by the Semiconductor Research Corpora-
tion (SRC) and by the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

the widths of metal branches to achieve a robust grid for a given set
of currents drawn by the underlying circuit. This work, on the other
hand, determines the required widths with incomplete information on
the circuit currents.

The method presented here builds on linear programming theory
to find the maximum voltage drop on the grid as a function of the
metal widths. Using non-linear optimization, it then finds the required
change in parameters that reduces the maximum voltage drop below
the threshold. In this paper, the method is restricted to “DC grids”,
i.e., for the case where all the currents are DC. We are working to
extend this to the general case of time-varying currents.

The paper is organized as follows. In the next section, the grid
model and the constraint-based approach are explained. In section III,
the basic linear programming terminology that will be used to
formulate the proposed method is introduced. The problem is defined
in section IV, and the correction approach is formulated in section V.
Finally, in sections VI and VII the experimental results and some
concluding remarks are given.

II. POWER GRID VERIFICATION

The power grid model and the constraint-based voltage integrity
verification method first introduced in [1] will lay the groundwork of
our proposed grid correction approach. This is a vectorless method in
the sense that it does not require complete information on the circuit
currents. It can be performed early in the design process, when the
circuit currents are not yet known.

A. The Power Grid Model

Consider an RC model of the power grid, where each branch is
represented by a resistor and where there exists a capacitor from
every node to ground. In addition, some nodes have ideal current
sources (to ground) to represent the current drawn by the underlying
circuit, and some grid nodes have ideal voltage sources (to ground) to
represent the connections to the external voltage supply. Let the power
grid consist of n + p nodes, where nodes 1, . . . , n have no voltage
sources attached, and nodes (n+1), . . . , (n+p) are the nodes where
p voltage sources are attached. Let ck be the capacitance from node
k to ground. Let ik(t) be the current source connected to node k,
where the direction of current is from the node to ground. We assume
that ik(t) ≥ 0 and that ik(t) is defined for every node such that the
nodes which have no current source attached have ik(t) = 0, ∀t. Let
i(t) be the vector of all current sources ik(t), and u(t) be the vector
of all node voltages. If we apply Modified Nodal Analysis (MNA)
to the grid, we have:

Gu(t) + Cu̇(t) = −i(t) + GVdd (1)

where G is the n×n conductance matrix of the grid, C is the n×n
diagonal capacitance matrix, and Vdd is a constant vector each entry

978-1-4244-8192-7/10/$26.00 ©2010 IEEE 808

of which is equal to the voltage source value. Let v(t) = Vdd −u(t)
be the vector of voltage drops. Then, (1) can be written as:

Gv(t) + Cv̇(t) = i(t) (2)

This is a revised sytem equation which represents the same circuit,
but with all the current sources reversed and the voltage sources set
to zero. In the rest of the paper, we will consider the DC version of
this model which can be easily seen as:

Gv = i (3)

B. Current Constraints

Local constraints are upper bounds on individual current sources.
One may specify that the current ik at node k does not exceed a
certain bound, iL,k. This value may be known from prior simulation
or it might be the result of engineering judgment, based on the area
of the cell or block. We assume that every current source tied to the
grid has an upper bound associated with it, so that if a node does
not have a current source attached, the upper bound for that current
is 0. We can express these constraints as:

0 ≤ i(t) ≤ iL, ∀t ≥ 0 (4)

Global constraints are upper bounds on the sums of currents for
groups of current sources. For example, if the total power consump-
tion of a certain functional block is known, then an upper bound
can be specified on the sum of currents drawn by all its internal
sub-blocks or cells. Assuming we have a total number of m global
constraints, then we can express them in matrix form as:

0 ≤ Si(t) ≤ iG, ∀t ≥ 0 (5)

where S is an m × n matrix that contains only 0s and 1s, which
indicate if that node is included in the constraint or not, and iG is
the vector of the upper bound values.

The local and global constraints can be combined into a single
inequality as follows:

0 ≤ Ui(t) ≤ im, ∀t ≥ 0 (6)

where U is an (n+m)×n matrix whose first n rows form an identity
matrix corresponding to the local constraints, and whose remaining
m rows form the S matrix, and where im is a (n + m) × 1 vector
which is the combination of iL and iG vectors.

C. DC Robustness

A grid is called robust if the maximum worst-case voltage drop
of all nodes is less than a given threshold. Therefore, checking the
robustness of a grid entails checking if the voltage drop at a node is
lower than a threshold over all the possible currents that satisfy (6).
A solution for the DC problem is presented in [1] which formulates
the problem so that it can be solved as an LP.

Making use of (3), we can express the DC constraints in terms of
DC voltages and DC currents in the voltage domain as:

0 ≤ UGv ≤ im (7)

Let ek be an n × 1 vector consisting of all 0s, except that its kth

entry is 1. We can, therefore, express the DC power grid verification
problem for the kth node as:

maximize vk = eT
k v (8)

such that 0 ≤ UGv ≤ im

III. LINEAR PROGRAMMING BASICS

The inequality constraints in (8) can be converted into equality
constraints by introducing slacks, and redefining the variables as
follows:

x =

[
v
s

]
, A =

[
UG
−UG

I

]
, b =

[
im
0

]
, c =

[
ek

0

]
(9)

where s ≥ 0 is a (2n + 2m) × 1 vector of slack variables, I is the
identity matrix of size 2n + 2m, b is a vector of size 2n + 2m, and
c is a vector of size 3n + 2m. Because the source current vector
is element-wise positive and the conductance matrix G is an M -
matrix [4], then v = G−1i ≥ 0. Using this new notation, we can
write the problem in the standard LP form, as:

maximize vk = cT x (10)

such that Ax = b (11)

x ≥ 0 (12)

Using standard linear programming terminology [5], any vector x
that satisfies (11) is called a solution of the LP. If it also satisfies
(12), x is called a feasible solution. The set of all feasible solutions
X can be expressed as:

X = {x | Ax = b, x ≥ 0} (13)

There is a column aj in A corresponding to every variable xj .
Because A contains an identity matrix of size 2n + 2m, it has rank
2n + 2m, and we can always find 2n + 2m linearly independent
columns {aj1 , aj2 , . . . , aj2n+2m} of A. These columns form a basis,
and the corresponding variables {xj1 , xj2 , . . . , xj2n+2m} are called
basic variables of the LP. Given a basis, we will denote the index
set of these variables by B = {j1, j2, . . . , j2n+2m}, and the index
set of the remaining variables by R. To simplify the notation, we
can assume that the columns forming the basis are moved to the first
2n + 2m columns of A, by permutation. Therefore, we can write:

A =
[

B R
]
, x =

[
xB
xR

]
, c =

[
cB
cR

]
(14)

where B = AB, and R = AR are submatrices of A corresponding
to B and R. Using (14), we can rewrite (10) and (11) as follows:

vk = cT
BxB + cT

RxR (15)

BxB + RxR = b (16)

Because the columns of B are linearly independent, then B−1

exists, and from (16), we have:

xB = B−1(b − RxR) (17)

From this, we can see that the values of the basic variables are
uniquely determined by the values of the non-basic variables. A
feasible solution for which xR = 0 is said to be a basic feasible
solution, and it has:

xB = B−1b, xR = 0 (18)

Theorem 1. If the LP has a feasible solution, then it also has a basic
feasible solution that gives the same objective function value vk.

The proof of this theorem can be found in [5]. A feasible solution
is called optimal if it solves the LP. As a corollary, if the problem
(10-12) has an optimal solution, then it has an optimal basic solution,
and it is enough therefore to deal with basic feasible solutions only.

Given a basis B, if, upon setting xR = 0, we get an xB ≥ 0, so
that the resulting solution x is feasible, then B is said to be a feasible

809

basis. If the resulting x is in fact an optimal solution of the LP, then
B is said to be an optimal basis, and (18) gives the optimal solution
of the LP.

Theorem 2. A feasible basis B is optimal if

d = cT
R − cT

BB−1R ≤ 0 (19)

The proof of this theorem is given in [5]. The Simplex Method
[6] uses the above result to find the optimal solution of the LP. In
this method, a starting basis is selected, and the columns of A are
swapped in and out of the basis until d ≤ 0. Thus, the final basis
obtained by solving the LP using Simplex Method is an optimal basis,
and it satisfies the condition (19). Most solvers that implement this
method return the optimal basis. Therefore, once we have solved the
LP using Simplex, we can make use of the available optimal basis.

Assuming that the power grid is connected, and assuming that the
local and global constraints are not (trivially) all zero, then the worst-
case voltage drop for any node k cannot be zero, and must be strictly
positive, vk > 0. Recall, from (9) and the definition of ek, that c has
at most one non-zero entry. Therefore, from (14), it must be the case
that either cR = 0 or cB = 0. Clearly, if, for an optimal basis B, we
have cB = 0, then the optimal basic solution of the LP is vk = 0,
due to (15) and (18). This contradicts our assertion that the worst-
case voltage drop on any node must be strictly positive. Therefore,
cB �= 0, and the optimal basis must be such that cR = 0.

As a result, when the Simplex method has “terminated”, we must
have, not only (19), but also in fact:

yT = cT
BB−1R ≥ 0 (20)

IV. PROBLEM DEFINITION

If a power grid is found to be non-robust, one would like to know
how to modify it, so that it becomes robust. Typically, this would
involve increasing the width of metal branches on some level of the
grid. Let r be the vector of parameters that can be changed. In this
paper, we assume that the elements of r correspond to metal widths,
so that the grid conductance matrix G = G(r) is linear in r. All
other matrices and vectors, such as A, x, vk are also functions of r,
so that the verification LP can be restated as:

maximize vk(r) = cT x(r) (21)

such that A(r)x(r) = b (22)

x(r) ≥ 0 (23)

where an initial value for r is available, which we denote as r0. We
refer to the verification problem at r0 as the nominal problem, and
its solution the nominal solution.

In order to determine the impact of a change in r on the worst-
case voltage drop, the brute-force approach would be to re-solve the
verification problem at every value of r, but this is too expensive.
Instead, we propose an approach where the nominal solution at r0

is used to directly find the worst case solutions in a neighborhood
around it. This approach will rely on the validity of the optimal
basis at r0 in a neighborhood around r0. In fact, Theorem 2, along
with (23), can be used to determine the boundary of the neighborhood
around r0 in which the same optimal basis remains valid, as we will
see below.

V. PROPOSED SOLUTION

Suppose we identify a neighborhood around r0 in which y ≥ 0,
throughout. For any r in this neighborhood, let us maintain the same

basis B that was found as optimal at r0, so that cR = 0 is also
maintained. If we can find a basic feasible solution at r, then, with
cR = 0 and y ≥ 0, this x(r) must be optimal, by Theorem 2. This
can be achieved by, requiring (22) to ensure that x(r) is a solution,
requiring (23) to ensure it is feasible, and setting xR(r) = 0 to
ensure that x(r) is basic. Using (15) and (16), this leads to:

vk(r) = cT
BxB(r) (24)

B(r)xB(r) = b (25)

which, as long as xB(r) ≥ 0, gives us directly the optimal solution
of the LP at r.

This leads us to a revised definition of a (possibly smaller)
neighborhood around r0, determined by:

y(r) ≥ 0 and xB(r) ≥ 0 (26)

Throughout this neighborhood, the solution of (24) and (25) is the
optimal solution of the LP. We will call this neighborhood the safety
region and the points along its boundary the breakpoints. Thus, we see
that the notion of the safety region is crucial to an efficient approach,
because it allows us to discover the solution of the LP efficiently, by
simply solving the linear system in (25).

Our approach follows from the single and multi-variable Taylor
series expansions of xB and y around the initial operating point r0,
which we use to determine the breakpoints. Because the conductance
matrix is linear in r, then B and R are also linear in r and the second
derivatives of G, B, and R with respect to r are always zero. This
fact will be useful in the following sections. Furthermore, to simplify
the notation, we will drop the arguments r or r0 in connection with
the matrices like G, B, and R.

A. Single Parameter Variations

In this section, we assume that there is only one parameter that
can be changed, i.e., r consists of a single element; it is a scalar.
This makes the safety region simply an interval around r0 in one
dimension.

1) Voltage Drop Estimation: The Taylor series expansion for
xB(r) around the nominal point r0 gives:

xB(r) = xB(r0) +

∞∑
i=1

x
(i)
B (r0)

i!
(r − r0)

i (27)

where x
(i)
B (r0) is the ith derivative of xB(r), evaluated at r0. It is

shown in [7] that this derivative is given by:

x
(i)
B (r0) = (−1)ii!

(
B−1 dB

dr

)i

xB(r0) (28)

for i ≥ 1. We can also write (28) as:

x
(i)
B (r0) = −i

(
B−1 dB

dr

)
x

(i−1)
B (r0) (29)

Combining (27) with (24), leads to:

vk(r) = vk(r0) + cT
B

∞∑
i=1

x
(i)
B (r0)

i!
(r − r0)

i (30)

In practice, the summation does not need to be carried out to infinity.
In fact, in all test cases that we have seen, the nonlinearity is not very
severe at all, so that truncation can be done quite accurately, and we
write:

vk(r) = vk(r0) + cT
B

N∑
i=1

x
(i)
B (r0)

i!
(r − r0)

i (31)

810

where N is a small integer, in practice about 3. In order to make use
of this result, we need to 1) have xB(r0), which we already know
from the nominal solution, 2) evaluate dB/dr at r0, and this can be
easily done because the dependence of G on r is well known based
on the construction of G from element stamps during modified nodal
analysis (MNA), and 3) to be able to compute the product of B−1

by a vector, which we can do using LU factorization. As a result,
we have an easy-to-evaluate, polynomial expression for the solution
vk(r) throughout the neighborhood. It remains to discover the safety
region.

2) Safety Region Estimation: In order to discover the safety region,
we will develop an expression for y(r). We start by writing the Taylor
series expansion for:

y(r) = RT B−T cB (32)

as we did for xB(r), which gives:

y(r) = y(r0) +
∞∑

i=1

y(i)(r0)

i!
(r − r0)

i (33)

We define:

π(r) = B−T cB (34)

so that

y(r) = RT π(r) (35)

Claim. For i ≥ 1, the ith derivative of y(r) with respect to r is
given by:

y(i)(r) = i
dRT

dr
π(i−1)(r) + RT π(i)(r) (36)

Proof: We will prove this claim by induction. The basis case,
for i = 1, is trivially true due to (35), which gives:

y(1)(r) =
dRT

dr
π(r) + RT π(1)(r) (37)

Now, assuming the claim is true for i − 1, then:

y(i−1)(r) = (i − 1)
dRT

dr
π(i−2)(r) + RT π(i−1)(r) (38)

Let us take the derivative of this equation:

y(i)(r) = (i − 1)
dRT

dr
π(i−1)(r) +

dRT

dr
π(i−1)(r)

+RT π(i)(r)

= i
dRT

dr
π(i−1)(r) + RT π(i)(r) (39)

which is the desired result.
As was done for xB, we can write the ith derivative of π(r) with

respect to r at r0 as:

π(i)(r0) = −i

(
B−T dBT

dr

)
π(i−1)(r0) (40)

If we insert this in (36) at r0 and reorder, we get:

y(i)(r0) = i

(
dRT

dr
− RT B−T dBT

dr

)
π(i−1)(r0) (41)

In (27) and (33) we model the behavior of xB(r) and y(r) based
on their Taylor series expansions around r0. In practice these Taylor
series can be safely truncated, up to an apropriate order, say N . Since
we require all the entries of these two vectors to remain nonnegative,

we can equate the resulting N th order polynomials to zero, and find
their roots, i.e., ∀j:

xBj(r0) +
N∑

i=1

x
(i)
Bj(r0)

i!
(r − r0)

i = 0 (42)

yj(r0) +

N∑
i=1

y
(i)
j (r0)

i!
(r − r0)

i = 0 (43)

From this, the smallest root to the right of r0 and the largest root to the
left of r0 determine the breakpoints. Between these two breakpoints,
we are guaranteed that y(r) ≥ 0 and xB(r) ≥ 0.

B. Multi-Parameter Variations

In this section we will generalize our findings to the case of a
vector of parameters. This corresponds to changing the widths of
different metal branches, possibly by different amounts.

1) Voltage Drop Estimation: We can write the multivariable Taylor
series expansion for xB(r) around r0 using multi-index notation (see
Appendix 1) as:

xB(r) = xB(r0) +

∞∑
|α|=1

∂αxB(r0)

α!
(r − r0)

α (44)

Similar to (29) in the single parameter case, ∂αxB(r) is given by (see
Appendix 2 for proof):

∂αxB(r) =
∑
|β|=1

−iβB−1∂βB∂α−βxB(r) (45)

where the scalar constant iβ is the value of the nonzero index
β in α. For example, let us take α = {α1, α2, . . . , αp}. For
β = {1, 0, . . . , 0}, iβ is α1, for β = {0, 1, . . . , 0}, iβ is α2,
and so on.

Using (24), we can express the voltage drop in the safety region
as:

vk(r) = vk(r0) + cB
N∑

|α|=1

∂αxB(r0)

α!
(r − r0)

α (46)

2) Safety Region Estimation: Let us write the multivariable Taylor
series expansion for y(r) = RT π(r) around the initial point r0 as:

y(r) = y(r0) +

∞∑
|α|=1

∂αy(r0)

α!
(r − r0)

α (47)

Similar to (36), ∂αy(r0) is given by:

∂αy(r) =

⎛
⎝ ∑

|β|=1

iβ∂βRT ∂α−βπ(r)

⎞
⎠ + RT ∂απ(r) (48)

where the previous definition of iβ is valid (see Appendix 2 for
proof). And, ∂απ(r) is given by:

∂απ(r0) =
∑
|β|=1

−iβB−T ∂βBT ∂α−βπ(r0) (49)

which has the same form as (45). As a result, the safety region is
defined by the values which make all the elements of the vectors de-
fined in (44) and (47) stay nonnegative. In practice, these expressions
can be truncated up to an order N . Therefore, at the breakpoints, at
least one entry, j, of one of these vectors satisfy:

xBj(r0) +
N∑

|α|=1

∂αxBj(r0)

α!
(r − r0)

α = 0 (50)

yj(r0) +
N∑

|α|=1

∂αyj(r0)

α!
(r − r0)

α = 0 (51)

811

These are N th order polynomials in r. For example, in the case when
N = 3, and say, there are two parameters under consideration, i.e.
r = (r1, r2) and r0 = (r10, r20), (50) and (51) will have the form:

m111j(r1 − r10)
3 + m112j(r1 − r10)

2(r2 − r20)

+m122j(r1 − r10)(r2 − r20)
2 + m222j(r2 − r20)

3

+m11j(r1 − r10)
2 + m12j(r1 − r10)(r2 − r20)

+m22j(r2 − r20)
2

+m1j(r1 − r10) + m2j(r2 − r20)

+m0j

= 0 (52)

where the ms are constants that depend on the partial derivatives of
xBj(r) and yj(r).

The breakpoint in a given direction is given by the intersection of
these equations and the direction vector. For example, if the direction
vector is r = (u1t, u2t) where u2

1 + u2
2 = 1, (52) will be a third

order polynomial in t:

n3jt
3 + n2jt

2 + n1jt + n0j = 0 (53)

where the ns are constants that depend on the ms in (52). We can
easily solve these equations for all entries in xB and y to find the
smallest t corresponding to the breakpoint.

C. Nonlinear Optimization

Once we have parametric equations for the voltage drop and the
breakpoints, we can construct a nonlinear optimization problem to
minimize the voltage drop in the safety region:

minimize vk(r) = cT
BxB(r) (54)

such that xB(r) ≥ 0 (55)

y(r) ≥ 0 (56)

where xB(r) and y(r) are given by (27) and (33) in the single
parameter case, and (44) and (47) in the multiparameter case by
truncating them up to an order N .

A number of nonlinear optimization algorithms are given in [8]. We
used the steepest descent line search method with cubic interpolation
to determine the step length in our implementations.

Note that the safety region represents the region where the optimal
basis (found at the nominal solution) remains optimal. If the algorithm
reaches a breakpoint as the minimizer, we can re-solve the LP
given by (21-23) to determine the new optimal basis and restate the
functions to reduce the voltage drop in the new safety region.

Algorithm 1 describes the reduction of the worst-case voltage
drop at a given node. It starts with the solution of the nominal
linear program to determine the optimal basis. Using this basis, the
expressions for the voltage drop estimation and the safety region are
computed. Then, the nonlinear optimization algorithm is employed.
First, the search direction is found. Then, the maximum step length
that can be taken is calculated by finding the breakpoint in that
direction. Using the maximum step length, an appropriate step length
that reduces voltage drop is computed. If a step length that reduces
the voltage drop cannot be found, the algorithm exits. Using the step
length and the direction, the parameter values are updated and the
new voltage drop is calculated. If the maximum step is taken, the LP
is re-solved to get the optimal basis in the new region. This procedure
is repeated until the voltage drop on the node in consideration is less
than the threshold. It remains to check that all node voltages are also
now below the threshold.

Algorithm 1 Nonlinear Optimization
1: rreq = r0

2: while (vmax > vth) do
3: Solve the LP given in (21-23) using Simplex for at r = rreq and

get the optimal basis
4: Find the expression for vk(r) using (31) or (46)
5: Find the safety region expressions using (27) and (33), or (44) and

(47)
6: max step taken = FALSE

7: while (max step taken is FALSE) do
8: p = FIND SEARCH DIRECTION(rreq)

9: λmax = FIND MAX STEPLENGTH(p, rreq)

10: λ = FIND STEP LENGTH(p, rreq, λmax)

11: rreq = rreq + λp

12: vmax = vk(rreq)

13: if (λ = λmax) then
14: max step taken = TRUE

15: return rreq

D. Top Level Algorithm

Recall that a robust grid refers to a grid in which the highest voltage
drop among all nodes is less than a given threshold value. However,
Algorithm 1 was focused on a single node. Algorithm 2 describes the
overall procedure. It starts with identification of the maximum worst-
case voltage drop on the grid and the offending node. If it is less than
the threshold, the grid is deemed safe. If not, the required parameter
values that result in the maximum voltage drop on that node to be
less than the threshold are found using Algorithm 1. Then, the grid
is re-verified using the new parameter values to check if any other
nodes exceed the threshold, and the procedure is repeated until the
maximum voltage drop on the grid is less than the threshold. In all
cases that we tested, we found that no other nodes ever exceeded the
threshold, once the initial maximum node voltage was reduced below
the threshold. Thus, a single run of Algorithm 1 was enough in all
cases and, therefore, there was no practical benefit in re-verifying the
whole grid after Algorithm 1 had terminated.

Algorithm 2 Full grid correction
1: grid unsafe = TRUE

2: rf = r0

3: while (grid unsafe) do
4: Verify all nodes at r = rf to identify the node, k, with the

maximum worst-case voltage drop, vmax.
5: if (vmax ≤ vth) then
6: grid unsafe = FALSE

7: else
8: Find the required change in parameter, rreq , to reduce the

maximum voltage drop at k, below vth using Algorithm 1
9: rf = rreq

VI. EXPERIMENTAL RESULTS

The grid correction algorithm was implemented in C++. The pa-
rameters were taken to be the widths of metal lines on different layers.
A number of test grids were generated based on user specifications,
including grid dimensions, metal layers (M1-M9), pitch and width per
layer, and current source distribution. For the full grid verification,
the DC equivalent of the algorithm in [9] was used. The computations
were carried out on a 64-bit Linux machine with 8GB memory. As
it stands, this algorithm can suggest changes of width that may be
extremely small, such as 1% increase or less on many parameters.
For practical reasons, it makes more sense to change the width by

812

0 50 100 150

Voltage Drop Before Correction (mV)

0

50

100

150

V
ol

ta
ge

 D
ro

p
A

ft
er

 C
or

re
ct

io
n

(m
V

)

Fig. 1. Correlation plot of voltage drops before and after correction for
38,201 node grid.

only some significant increment, say 5% or 10% increase, and not to
bother with very small increases. We can accommodate this easily by
rounding the values returned by the algorithm to, say, the nearest 5%
or 10% setting. Our implementation includes this optional rounding
step, and, as a sanity check, we apply a final check that this node
voltage drop is still below threshold, before leaving Algorithm 1. In
all test cases that we have run, we have not found that any further
work is required, and the node voltage has always remained below
the threshold.

We tested the multi-parameter variations on a number of grids,
varying the number of parameters between 6-18. The maximum
voltage drops on the grids before and after correction are given in
Table I. We also show the number of Simplex solutions required for
Algorithm 1, the runtime of individual node correction, and the total
runtime of Algorithm 2. The individual node correction time is the
time it takes for Algorithm 1 to reduce the voltage drop on the node
with the initial maximum voltage drop. We see that the grids were
corrected in a reasonable amount of time. The total runtime takes
into account the full grid verifications done before the correction to
determine the node with the maximum voltage drop and after the
correction to see if any other voltage drop requires reduction. It can
be improved with faster grid verification techniques.

Table II gives the required changes in grid parameters to reduce the
maximum voltage drops on the grid below the threshold. We can see
that, in some cases, only some parameters may need to be changed,
which means the voltage drop is more sensitive to those parameters.
It can be seen that the required area increase is modest, generally
below 10% for the test cases that we tested. In the absence of an
approach like ours, the only option available today for correcting the
grid is, perhaps, to simply increase the metal widths everywhere. It
is clear that, generally, an increase in metal width everywhere will
fix the grid. However, with no further guidance as to which metal
widths should be increased, the required overall area increase can
be substantial. We have tested this, for the grids under study, by
increasing all metal line widths until the grid becomes robust, and
the overall area increase is reported in the last column of Table II, as

60 70 80 90 100 110 120 130 140 150

Voltage Drop (mV)

0

6000

12000

18000

N
um

be
r

of
 N

od
es

(a) Before correction

60 70 80 90 100 110 120 130 140 150

Voltage Drop (mV)

0

6000

12000

18000

N
um

be
r

of
 N

od
es

(b) After correction

Fig. 2. Voltage drop histograms before and after correction for 38,201 node
grid. All drops have been reduced below the threshold of 137 mV.

“Fixed area cost”. The overall metal area increase is large, ranging
from 15% to 20%, and this area overhead can seriously complicate
signal line routing. Thus, the value of our approach is that it allows
one to selectively and intelligently increase metal width to achieve
grid robustness.

In Figure 1, the correlation plot of the voltage drops before and
after the correction for the 38,101 node grid is given. We see that
the algorithm successfully reduced all the voltage drops exceeding
the threshold. Finally, the histograms of the voltage drops before and
after the correction is given in Figure 2.

813

TABLE I
MAXIMUM VOLTAGE DROPS ON THE GRIDS BEFORE AND AFTER CORRECTION AND THE RUNTIMES OF ALGORITHMS 1 AND 2

Number of Maximum voltage drop Maximum voltage drop Number of Simplex Individual node Total
nodes before correction (mV) after correction (mV) solutions correction time runtime
1,407 113.02 99.90 2 3.3s 5.56m
6,757 123.56 111.2 5 37.2s 59.33m
13,685 91.55 80.43 2 3.55m 50.57m
26,228 59.70 53.27 14 23.83m 14.53h
38,201 152.30 136.37 4 21.3m 32.9h
67,712 129.48 115.4 21 5.41h 4.97d

TABLE II
AREA COST COMPARISON OF THE PROPOSED APPROACH WITH THE BRUTE-FORCE CORRECTION APROACH

Number of Required Change in Parameter (%) Total Fixed
nodes r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 area cost area cost
1,407 10 20 10 20 0 5 9.68 % 15 %
6,757 0 10 0 10 0 10 0 20 1.11 % 15 %

13,685 5 5 20 20 5 5 20 20 10 0 8.54 % 15 %
26,228 5 5 20 10 0 0 20 10 0 0 15 10 35 5 5.62 % 20 %
38,201 5 5 20 10 0 0 25 15 0 0 5 0 0 0 10 5 35 5 5.43 % 15 %
62,712 5 5 15 10 0 0 20 15 0 0 0 0 0 0 5 5 35 0 5.24 % 20 %

VII. CONCLUSION

Voltage drop on the power grid is a key concern for design of
modern integrated circuits. It is traditionally done by comparing the
voltage drops on the grid with a certain threshold that guarantees
reliable circuit performance. In this work, we propose a novel method
to correct the grid with minimal change when some nodes exceed
the given threshold. It builds on linear programming and the current
constraints-based verification approach, and formulates the problem
as a non-linear optimization problem to find the required change in
metal widths that reduces the maximum voltage drop on the grid
below the threshold. We only considered the DC currents in this
work; correction in the case of transient currents is a part of ongoing
research.

APPENDIX 1

A multi-index [10] α = (α1, . . . , αn) is an n-tuple of nonnegative
integers. Here are the definitions of some common mathematical
concepts used in multi-index notation. The norm:

|α| = α1 + . . . + αn

The factorial:

α! =
n∏

i=1

αi!

The power of a vector x = (x1, . . . , xn):

xα =
n∏

i=1

xαi
i

Similarly, the partial differential operator:

∂α =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

=

n∏
i=1

∂αi

∂xi
αi

For example if α = (3, 1, 2) , then |α| = 3 + 1 + 2 = 6 and
α! = 3!1!2! = 12. If x = (−4, 2, 1), then xα = (−4)32112 = −128.

Next, we give the multivariable Taylor series expansion using
multi-index notation:

f(x) = f(x0) +
∞∑

|α|=1

∂αf(x0)
(x − x0)

α

α!

Here, x and x0 are vectors of length n and the sum is over all norms
of multi-indices of length n. The Taylor series expansion of order N
sums the terms up to the multi-indices of norm N .

For illustration we will “unpack” Taylor series expansion of order
3, in the case when n = 2. Let x = (u, v), x0 = (u0, v0), and
(h, k) = (u − u0, v − v0) There are two indices α = (1, 0) and
α = (0, 1) that have |α| = 1. Their contribution to the expression
will be:

∂

∂u
f(x0)

h1k0

1!0!
+

∂

∂v
f(x0)

h0k1

1!0!
= fu(x0)h + fv(x0)k

There are three indices which have norm 2. They are α = (2, 0),
α = (1, 1), and α = (0, 2). They contribute:

fuu(x0)
h2k0

2!0!
+ fuv(x0)

h1k1

1!1!
+ fvv(x0)

h0k2

2!1!

= fuu(x0)
h2

2
+ fuv(x0)hk + fvv(x0)

k2

2

Finally, there are four multi-indexes of norm 3: α = (3, 0), α =
(2, 1), α = (1, 2), and α = (0, 3). They contribute:

fuuu(x0)
h3k0

3!0!
+ fuuv(x0)

h2k1

2!1!

+fuvv(x0)
h1k2

1!2!
+ fvvv(x0)

h0k3

0!3!

= fuuu(x0)
h3

6
+ fuuv(x0)

h2k

2
+ fuvv(x0)

hk2

2
+ fvvv(x0)

k3

6

APPENDIX 2

Claim.
∂αxB(r) =

∑
|β|=1

−iβB−1∂βB∂α−βxB(r) (57)

814

where

BxB(r) = b (58)

Proof: Since B is independent of β, we can rearrange (57) as:
∑
|β|=1

iβ∂βB∂α−βxB(r) + B∂αxB(r) = 0 (59)

We will prove this claim by induction. Let us assume we have p
parameters. The base case is for α = ej = (0, . . . , 1, . . . , 0). Here,
the only index β with non-zero iβ is β = ej , thus (59) reads:

∂B

∂rj
xB(r) + B

∂xB(r)

∂rj
= 0 (60)

which gives the same result as taking the derivative of (58) with
respect to rj .

Next, we assume that (59) is true for α − ej = (α1, . . . , αj −
1, . . . , αp):

∑
|β|=1

i′β∂βB∂α−ej−βxB(r) + B∂α−ej xB(r) = 0 (61)

Here,

i′β =

{
αk − 1, β = ek = ej

αk, otherwise
(62)

Now, let us take the derivative of (61) with respect to rj :

∑
|β|=1

i′β∂βB∂α−βxB(r)+
∂B

∂rj
∂α−ej xB(r)+B∂αxB(r) = 0 (63)

Here, the second term:

∂B

∂rj
∂α−ej xB(r) = ∂βB∂α−βxB(r) (64)

for β = ej . Therefore, we can include it in the summation. This adds
1 to the previously defined i′β when β = ej , making iβ = αk, ∀k.
As a result, we can rewrite (63) as:∑

|β|=1

iβ∂βB∂α−βxB(r) + B∂αxB(r) = 0 (65)

which is the same as (59), concluding the proof.

Claim.

∂αy(r) =

⎛
⎝ ∑

|β|=1

iβ∂βRT ∂α−βπ(r)

⎞
⎠ + RT ∂απ(r) (66)

where

y(r) = RT π(r) (67)

Proof: Once more, we will prove this claim by induction. The
base case for α = ej gives:

∂y(r)

∂rj
=

∂RT

∂rj
π(r) + RT ∂π(r)

∂rj
(68)

which is trivially true from the derivative of (67) with respect to rj .
Next, let us assume the claim is true for α − ej = (α1, . . . , αj −

1, . . . , αp):

∂α−ej y(r) =

⎛
⎝ ∑

|β|=1

i′β∂βRT ∂α−ej−βπ(r)

⎞
⎠ + RT ∂α−ej π(r)

(69)

Here, i′βs are defined the same as in (62). If we take the derivative
of with respect to rj , we get:

∂αy(r) =

⎛
⎝ ∑

|β|=1

i′β∂βRT ∂α−βπ(r)

⎞
⎠

+
∂RT

∂rj
∂α−ej π(r) + RT ∂απ(r) (70)

Here, the second term:

∂RT

∂rj
∂α−ej π(r) = ∂βRT ∂α−βπ(r) (71)

for β = ej . Thus, it can be moved inside the summation sign, by
adding 1 to the previously defined i′β when β = ej , making iβ =
αk, ∀k. Consequently, we can rewrite (70) as:

∂αy(r0) =

⎛
⎝ ∑

|β|=1

iβ∂βRT ∂α−βπ(r0)

⎞
⎠ + RT ∂απ(r0) (72)

which is the same as (66).

REFERENCES

[1] D. Kouroussis and F. N. Najm. A static pattern-independent technique
for power grid voltage integrity verification. In ACM/IEEE 40th Design
Automation Conference (DAC-03), pages 99–104, Anaheim, CA, June
2-6 2003.

[2] S. U. Chowdhury and M. A. Breuer. Minimal area design of
power/ground nets having graph topologies. IEEE Transactions on
Circuits and Systems, CAS-34(12):1441–1451, December 1987.

[3] R. Dutta and M. Marek-Sadowska. Automatic sizing of power/ground
(p/g) networks in VLSI. In ACM/IEEE 26th Design Automation
Conference (DAC-89), pages 783–789, June 25-29 1989.

[4] J. N. Kozhaya, S. R. Nassif, and F. N. Najm. A multigrid-like technique
for power grid analysis. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 21(10):1148–1160, October 2002.

[5] I. Maros. Computational Methods of the Simplex Method. Springer,
2003.

[6] G. B. Dantzig. Linear Programming and Extensions. Princeton
University Press, 1998.

[7] R. M. Freund. Postoptimal analysis of a linear program under simulta-
neous changes in matrix coefficients. Mathematical Programming Study,
24:1–13, 1985.

[8] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.
[9] N. H. Abdul Ghani and F. N. Najm. Fast vectorless power grid

verification using an approximate inverse technique. In ACM/IEEE 46th
Design Automation Conference (DAC-09), pages 184–189, July 26-31
2009.

[10] X. S. Raymond. Elementary Introduction to the Theory of Pseudodif-
ferential Operators. CRC Press, 1991.

815

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

