
Fast Physics-Based Electromigration Checking for On-Die
Power Grids

∗

Sandeep Chatterjee†, Valeriy Sukharev$ and Farid N. Najm†

†ECE Department, University of Toronto, Toronto, ON, Canada, M5S 3G4
$Mentor Graphics Corporation, Fremont, CA 94538, USA

sandeep.chatterjee@mail.utoronto.ca, Valeriy_Sukharev@mentor.com,
f.najm@utoronto.ca

ABSTRACT
Due to technology scaling, electromigration (EM) signoff has be-
come increasingly difficult, mainly due to the use of inaccurate
methods for EM assessment, such as the empirical Black’s model.
In this paper, we present a novel approach for EM checking us-
ing physics-based models of EM degradation, which effectively
removes the inaccuracy, with negligible impact on run-time. Our
main contribution is to extend the existing physical models for
EM in metal branches to track the degradation in multi-branch in-
terconnect trees. We also propose effective filtering and predictor-
based schemes to speed up our implementation, with minimal im-
pact on accuracy. Our results, for a number of IBM power grid
benchmarks, confirm that Black’s model is overly inaccurate. The
lifetimes found using our physics-based approach are on average
3x longer than those based on a (calibrated) Black’s model, such
as currently used in industry. For the two largest IBM bench-
marks (700K branches each), our runtime is comparable to that
of the Black’s based approach, requiring 3 hours for the largest
grid.
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1. INTRODUCTION
As a result of continued scaling of integrated circuits technol-

ogy, electromigration (EM) has become a major reliability con-
cern for the design of on-die power grids in large integrated cir-
cuits. Standard practice in the industry is to break up a general
grid metal structure, typically a so-called interconnect tree (de-
fined later) into branches, to assess the reliability of each branch
separately using Black’s model [2] and then use the earliest branch
failure time as the failure time for the whole grid. This approach
is highly inaccurate, for many reasons. First, it ignores material
flow throughout the tree, from branch to branch. As a result,
if the individual branches happen to be short so that they are
deemed immortal due to the Blech effect in short lines, then the
tree would appear to be immortal, which is highly optimistic and
can be entirely misleading for design. In fact, due to material flow
across the tree, failures can and do happen even if the branches
are short. On the other hand, because the assumption of no ma-
terial flow between branches effectively means that the reliability
of nearby metal lines are independent of each other, then the tra-
ditional approach can also be highly pessimistic, as we will see in
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this paper. Indeed, two identical connected lines that carry the
same current density can in practice have quite different values of
mean time-to-failure (MTF), as Gan et. al. [5] have found, so that
connected lines can in fact influence each other leading to differ-
ent failure times. Due to the resulting pessimism, designers are
faced with an ever-shrinking margin between the predicted EM
stress and the stress allowed by EM design rules. This makes EM
sign-off very hard to achieve and causes overuse of metal resources
in the grid.

Furthermore, traditional EM checking assumes that a power
grid fails as soon as any one of its lines fails. This has been
referred to as a series model of grid failure, and its main problem
is that it ignores the inherent redundancy in the many parallel
paths of the power grid. As an alternative, the mesh model [3]
has been proposed to account for this redundancy, and its key
feature is that a grid is deemed to have failed, not when the first
line fails, but when the voltage drop at any grid node exceeds a
user specification. However, [3] still used the Black’s model to
compute the EM degradation of individual lines. Thus, in order
to get a more realistic estimate of grid reliability, one needs to
use a mesh model and abandon Black’s model in favor of more
physical EM models.

Indeed, some approaches based on physical EM models have
been recently proposed. Huang et. al. [7] have proposed an adap-
tation of Korhonen’s physical EM models to interconnect trees.
But unfortunately, the resulting approach is slow, requiring up
to 32 hours to estimate the failure time of a 400K node grid. In
the approach by Li et. al. [10], the time to failure of a junction
(where multiple branches meet in a tree) is found by replacing its
connected branches with semi-infinite limbs. Thus, atomic flow
across the whole tree is not accurately accounted for.

In this paper, we propose a fast physics-based EM checking
approach that accounts for material flow and coupling of stress in
interconnect trees, allowing arbitrary complex geometries. We be-
gin with the one-dimensional (1D) physical model for EM degra-
dation within branches proposed by Korhonen [8], and extend it
by introducing boundary laws at junctions so that it can track
material flow and stress evolution in multi-branch interconnect
trees. We refer to this as the extended Korhonen’s model. The
extended model starts out as a system of partial differential equa-
tions (PDE) coupled by the boundary laws, which we then scale
and discretize to reduce it to a system of ordinary differential
equations (ODE). We numerically solve this ODE system at suc-
cessive time-points to track the stress evolution and find the cor-
responding time of void nucleation(s). Even though we’re mainly
interested in the mesh model approach, we report both the series
model based failure time, as the earliest nucleation time in any
tree, and the mesh model based failure time, as the earliest time
when a node voltage drop violation is observed somewhere.

The random nature of EM degradation is accounted for by us-
ing a Monte Carlo method, in which successive samples of grid
time-to-failure are found, until the estimate of the overall MTF
has converged. We speed up our computation by using a filtering
scheme that estimates up-front the set of trees that are most likely
to impact the MTF assessment of the grid, a scheme which we
will show has minimal impact on accuracy. Further, we also intro-



duce a predictive scheme that allows for faster MTF estimation
by extrapolating the solution (stress curve) obtained from a few
initial time-points. Testing this approach on the IBM grid bench-
marks, with the largest grid up to 700K nodes, shows that the
MTFs estimated using our physics-based approach are on average
3x longer than those based on a (calibrated) Black’s model. This
justifies the claim that Black’s model can be overly inaccurate for
modern power grids and confirms the need for physical models.
With a run-time of 3 hours for the largest grid (700K nodes), this
approach appears to be suitable for large VLSI circuits.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present some relevant background material regarding
electromigration, numerical methods for solving PDEs and sta-
tistical methods which we will use later in the paper. Section 3
develops the extended Korhonen’s model and Section 4 details the
numerical technique that we use for solving the extended model.
Section 5 describes our overall power grid EM checking approach.
Section 6 outlines the implementation details and presents the ex-
perimental results. Finally, Section 7 concludes the paper.

2. BACKGROUND

2.1 Electromigration basics
Electromigration is the mass transport of metal atoms due to

momentum transfer between electrons (driven by an electric field)
and the atoms in a metal line. The process of EM degradation
can be divided into two phases: void nucleation and void growth.

Under conditions of high current density, metal atoms are
pushed in the direction of the electronic current. This creates
tensile stress at the cathode and compressive stress at the anode
(recall, electric current in the line flows from anode to cathode).
The amount of compressive stress needed to cause an extrusion
(and eventual short circuit to a neighboring line) is very high in
modern metal systems, hence lines don’t usually fail due to short
circuits. However, the tensile stress building up at the cathode
eventually leads to void nucleation when the stress reaches a crit-
ical threshold. This phase of EM degradation, when stress is
increasing over time but the void has not yet nucleated, is called
as the void nucleation phase. In this phase, the resistance of a
line remains roughly the same as that of a fresh (undamaged)
line.

Once a void nucleates at the cathode, the void growth phase
begins. In some cases, depending on the geometry of the line,
void nucleation by itself might be enough to cause line failure
due to open circuit [9]. In other cases, a line may still continue
to conduct current through the barrier material surrounding the
metal, thus it is not open circuited. With time, the void starts
to grow in the direction of the electronic current and the line
resistance increases towards some steady-state value. Line failure
is deemed to happen when the increase in line resistance reaches
a critical threshold, usually set at 10%− 20% of the initial value.

2.2 The Korhonen Model
Korhonen et al. [8] proposed a one-dimensional (1D) model to

describe the mechanical stress arising under the influence of elec-
tromigration. Consider a uniform metal line embedded in a rigid
dielectric, that carries a current density j(t). We are interested in
the time-varying mechanical stress σ(x, t) at location x from some
reference point, and at time t. Following Korhonen’s formulation,
σ is positive for tensile stress and negative for compressive stress,
and can be obtained by solving the PDE:

∂σ

∂t
=

BΩ

kbTm

∂

∂x

{

Da

(

∂σ

∂x
−

q∗ρ

Ω
j

)}

(1)

where Da is the coefficient of atomic diffusion, B is the bulk
modulus, Ω is the atomic volume, kb is the Boltzmann’s constant,
Tm is the temperature in Kelvin, q∗ is the absolute value of the
effective charge of the conductor and ρ is the resistivity of the
conductor. A void nucleates in the line once the stress exceeds
a predefined threshold value σth > 0. As in most recent works
on EM, we assume that diffusivity Da is the same throughout a
metal line. As a result, in our work voids will nucleate only at
the end points of metal lines. This is a mild assumption [10] [9]

because it is much more common in the field to find voids and line
failures at the end points of metal branches. Another quantity of
interest is the atomic flux in the line, Ja, defined as the number
of atoms that cross a cross-section of the line per second, per unit
area. The atomic flux can be written as [8] [4]:

Ja =
DaCΩ

kbTm

(

∂σ

∂x
−

q∗ρ

Ω
j

)

(2)

where C is the concentration of atoms. Note, Ja can be positive
or negative, depending on the reference directions chosen and the
actual direction of the electric current.

2.3 Diffusivity of metal lines
The atomic diffusion coefficient Da is usually expressed using

the Arrhenius law:

Da = D0e
−Q/(kbTm) (3)

where D0 is a constant and Q is the activation energy for va-
cancy formation and diffusion. Due to randomness in the micro-
structure of a metal line, the failure time due to EM is a random
variable. This randomness is primarily accounted for by the cor-
responding randomness in Da, which depends on the angles be-
tween grain boundaries that are part of the micro-structure, and
is assumed to be lognormally distributed [11] with mean Davg .
Strictly speaking, Da also depends on the stress value at a given
point. However, it has been reported that the numerical results
with stress dependent Da are “not too different” from constant
Da [8]. Hence, as in many previous works [7] [10], we will assume
that Da is stress-independent.

2.4 Method of Lines
The method of lines (MoL) is a special finite-difference tech-

nique for solving PDEs [14]. The basic idea of MoL is to discretize
the PDE in all but one independent variable, so that we are left
with a set of Ordinary Differential Equations (ODE) that approx-
imate the PDE. We can then use well established methods to solve
the ODE numerically.

Discretizing the PDE along any variable requires us to approx-
imate the partial derivatives. For a smooth function f : Rn → R,
the partial derivative with respect to the ith variable xi can be
approximated using a central difference formula [14]:

∂f

∂xi
(x) ≈

f(x+ ei∆x)− f(x− ei∆x)

2∆x
(4)

∂2f

∂x2
i

(x) ≈
f(x+ ei∆x) + f(x− ei∆x)− 2f(x)

(∆x)2
(5)

where ∆x is a small positive scalar and ei is the ith unit vector
(a vector that has 1 in position i and 0 elsewhere).

2.5 Limited Distributions
Let Y be a random variable (RV) with cumulative distribution

function (cdf) FY (t) and let l and u be two scalars with l < u and
at least one of them is finite. Then, the limited RV Y′ between
limits l and u has the following cdf [1]:

FY ′ (t) =







0, t < l
FY (t), l ≤ t < u
1, t ≥ u

(6)

In this paper, we refer to Y as the underlying RV and Y′ as the
limited RV.

3. INTERCONNECT TREE EM ANALYSIS
Modern power grids are made of Copper (Cu) and are fabri-

cated using dual damascene process. In dual-damascene process,
the metal line and via are formed simultaneously using copper.
A barrier metal liner (usually Tantalum) must completely sur-
round all Cu interconnects to prevent it from diffusing into the
surrounding dielectric. Cross section of a typical metal via struc-
ture in Cu dual damascene process is as shown in Fig. 1. Each
layer mostly consists of parallel stripes that are connected by vias



Figure 1: Cross sectional schematic of Cu dual dam-
ascene interconnects

Figure 2: A typical interconnect tree structure.

to other layers. Note that due to the presence of barrier metal
liner around vias between layers, Cu atoms from one layer cannot
diffuse to another layer. On every layer, power and ground stripes
are interspersed. As a result, the metal segments on every layer
are mostly trees, i.e., they contain no loops or cycles. Thus, all
previous work in this area assumes that the grid is made up of
interconnect trees.

An interconnect tree is a continuously connected acyclic struc-
ture of straight metal lines within one layer of metalization such
that atomic flux can flow freely within it. Fig. 2 shows a typical
interconnect tree structure. Formally, an interconnect tree is a
graph T = (N ,B) with no cycles, where N is a set of grid junc-
tions and B is a set of resistive branches. A branch is defined
to be a continuous straight metal line of uniform width. A junc-
tion is any point on the interconnect tree where a branch ends
or where a via is located. Usually, but not always, current den-
sity around a junction is discontinuous. This discontinuity can
be brought about by either a change in the width of connected
branches, or by a change in the current itself due to the presence
of a via. Thus, every via is a junction but the converse is not true.
We define the degree of a junction to be equal to the number of
branches connected to it. Note that a via does not contribute to
the degree of a junction. In this paper, a junction with degree 1
will be referred to as a diffusion barrier, a junction with degree 2
will be referred to as a dotted-I junction, a junction with degree
3 will be referred to as a T junction and a junction with degree 4
will be referred to as a Plus junction. We treat corners in a tree
as dotted-I junctions. Junctions with degrees higher than 4 are
rarely found in practice. In general, it is worth noting that inter-
connect trees are always terminated by diffusion barriers and/or
vias, hence the atoms cannot diffuse from one tree to another, and
that different branches within a tree can have different widths.

3.1 Assigning reference directions
Before doing any analysis, we need to assign reference direc-

tions to all branches. This is necessary in order to consistently
track the directions of branch currents and atomic flux.

An interconnect tree is equivalent to a graph, with grid junc-
tions as vertices and branches as edges. With this analogy, there
are many ways to assign reference direction to the branches. We
choose the following way: starting from any diffusion barrier, we
traverse the whole interconnect tree using a breadth-first search
on the graph. This creates predecessor-successor relationships be-
tween the junctions. The reference direction for each branch is
then assigned from predecessor to successor. The branch current
(and atomic flux) is positive if it flows in the reference direction,
otherwise it is negative. Likewise, the reference point for distance

Figure 3: A simple 3-terminal tree Td.

is the predecessor junction, so that x = 0 is the predecessor and
x = L (line length) is the successor. In Fig. 2, if we start from
the leftmost diffusion barrier (labeled as n1), then the reference
directions for each branch would be as shown by the dashed arrow
lines.

3.2 Extending Korhonen’s model to trees
In order to correctly estimate the level of EM degradation

within a tree, we will extend Korhonen’s model to account for
the coupling between the branches. For better understanding, we
illustrate our approach with a simple example. Consider a simple
tree Td = (N ,B), with N = {n1, n2, n3} and B = {b1, b2}, with
reference directions as shown in Fig. 3. Branch bk has dimensions
Lk×wk×hk (length × width × height), carries a current density
jk and has an atomic diffusivity of Da,k, where k = {1, 2}. Note
that x1 = L1 and x2 = 0 denote the same point: the location
of n2. We are interested in stress as a function of position and
time, i.e. σ1(x1, t) and σ2(x2, t)) for branches b1 and b2, respec-
tively. Once σ1 and σ2 are known, we can easily determine the
EM degradation in the branches.

As we will see in Section 4, Korhonen’s model (18) gives us
the time rate of change of stress for a point within a branch, for
k = {1, 2}, as follows:

∂σk

∂t
=

BΩ

kbTm

∂

∂xk

{

Da,k

(

∂σk

∂xk
−

q∗ρ

Ω
jk

)}

, xk ∈ (0, Lk) (7)

However, in order to solve the PDE for the whole tree, we need to
also state the boundary conditions at all end-points of branches,
i.e. at junctions. The boundary conditions describe the behaviour
of stress at the junctions. For the example in Fig. 3, we will
discuss the two cases of a diffusion barrier and a dotted-I junction.

3.2.1 Diffusion Barrier
Junctions n1 and n3 are diffusion barriers, where the atomic

flux is blocked. Considering the nucleation phase first, Ja is zero
at the barrier so that from (2):

Ja,1(0, t) = 0 =⇒
∂σ1(0, t)

∂x1
=

q∗ρ

Ω
j1

Ja,2(L2, t) = 0 =⇒
∂σ2(L2, t)

∂x2
=

q∗ρ

Ω
j2

(8)

We next move to the void growth phase. For a void to nucle-
ate at n1 (n3), the electronic current must move away from n1

(n3), so that j1 < 0 (j2 > 0). Exactly what happens around a
void is somewhat complicated and cannot really be captured in
a 1D model. The recent work in [15] provides an extension of
the Korhonen 1D model to describe behaviour of stress around
a void. From this, stress falls to zero at the void surface but re-
mains at its original value a very short distance δ ≈ 1nm from the
void surface. We refer to δ as the thickness of the void interface.
From [15], the stress gradients at junctions n1 and n3 throughout
the void growth phase are:

∂σ1(0, t)

∂x1
=

σ1(0, t)

δ
and

∂σ2(L2, t)

∂x2
= −

σ2(L2, t)

δ
(9)

where σ1(0, t) = σ2(L2, t) = σth at the time of void nucleation.

3.2.2 Dotted-I Junction
The atomic flux interaction at dotted-I junction n2 is the key

to describing the coupling of stresses in branches b1 and b2. Con-
sidering the nucleation phase first, the metal is continuous across
n2, which is the same physical point of both b1 and b2, so that:

σ1(L1, t) = σ2(0, t) (10)



and atomic flux can flow freely between b1 and b2 [6]. Because
the material flow across an infinitesimal boundary at n2 has to
be continuous, we have:

w1h1Ja,1(L1, t) = w2h2Ja,2(0, t) (11)

Next considering the void growth phase, once a void nucleates at
n2, it is shared by both branches b1 and b2. For our 1D model, we
make the reasonable assumption that the void covers the entire
cross-sectional area of the junction. As a result, there would be
no flow of atomic flux between b1 and b2. Hence, during the void
growth phase, we effectively treat n2 as a diffusion barrier for
both branches b1 and b2, so that:

∂σ1(L1, t)

∂x1
= −

σ1(L1, t)

δ
and

∂σ2(0, t)

∂x2
=

σ2(0, t)

δ
(12)

Using (7) and the boundary conditions obtained from (8), (9)
and (10)-(12), we then formulate an initial value problem (IVP)
to solve for stress. As we will see later, the IVP combined with
the initial condition σ1(x1, 0) = σ2(x2, 0) = σres, where σres

is the so-called residual stress [7] before the application of elec-
tric current, will completely determine σ1 and σ2. We will next
generalize the above schemes for capturing flux interactions at
junctions, into a set of laws that forms the basis for our approach.

3.3 Boundary Laws for junctions
Boundary laws govern the interaction of atomic flux at junc-

tions. Consider a junction np, and let Bp be the set of branches
connected to np. Let tf,p be the time of void nucleation for this
junction. Then, the boundary laws (motivated mainly by the law
of conservation of mass) can be stated as:

Law 1. For t < tf,p, the number of metal atoms flowing into np

per unit time is the same as the number of metal atoms flowing
out from it:

∑

bk∈Bp,in

wkhkJa,k =
∑

bk∈Bp,out

wkhkJa,k (13)

where wk (hk) is the width (height) of the branch, Bp,in is the
set of branches for which the reference direction is going into np,
and Bp,out is the set of branches for which the reference direction
is going out from np.

Law 2. For t ≥ tf,p, there is no flow of atomic flux between
the connected branches Bp. The stress gradient at the junction,
generalizing from (9) and (12), is:

∂σk,p

∂xk
= ±

σk,p

δ
(14)

where σk,p is the value of stress at end-point np of branch bk.
The sign is positive for bk ∈ Bp,out and negative for bk ∈ Bp,in.

Law 3. Until a void nucleates at np, the stress values in any two
branches where they meet at np are equal.

3.4 Void growth and resistance change
Once the stress at any point in the tree reaches σth, a void nu-

cleates at that point. As noted before, in our EM model, void nu-
cleation can occur only at junctions and not within the branches.
We assume that once a void nucleates at a junction, it is shared
by all the branches connected to that junction. Tracking void
growth is useful in order to determine the branch resistances and
the corresponding current densities. Recent work [15] shows that
the initial void growth rate is very high. Hence, as a conserva-
tive approximation, we assume that once a void nucleates at any
junction np, the void lengths for all branches bk connected to np

reach their steady state values in a very short period of time.
Thus, when a void nucleates we assume that line resistance rises
immediately to its steady state value, for all connected branches.
The steady state value for void length is:

lk,v = Lk

(

σT

B
+

q∗ρjkLk

2BΩ

)

(15)

and correspondingly, the branch resistance will be:

Rk = ρblk,v
/

Ab + ρm(Lk − lk,v)
/

Am (16)

where σT is the thermal stress [15], and ρm(ρb) and Am(Ab)
are the resistivity and cross-sectional area of the metal (liner),
respectively. Note that for any branch bk, lk,v and jk are inter-
dependent on each other. As such, we iteratively find jk and lk,v
using modified Richardson iteration.

4. SOLVING THE EXTENDED MODEL
In this section, we will describe our approach for solving the

extended Korhonen’s model for trees. First, for points within
a branch, we will use the method of lines (MoL) to convert the
PDEs into a set of ODEs by discretizing along the spatial domain.
Then, using the laws proposed in Section 3.3, we will derive the
boundary conditions at the junctions. Finally, we merge the two
and state the final initial value problem (IVP) that describes the
stress evolution for a given tree.

4.1 Scaling Korhonen’s model
Korhonen’s model (1) is often scaled by introducing dimension-

less variants of stress, distance (length) and time [4]. This leads
to stable PDEs that are easier to solve numerically. We define
the following scaling factors for any branch bk ∈ B:

τ
△

=
BΩ

kbTm

Davgt

L2
c

, ηk
△

=
Ωσk

kbTm
, ξk

△

=
xk

Lk
(17)

where Davg is the average atomic diffusivity of the metal (see
Section 2.3), Lc is some chosen characteristic length to ensure
proper scaling and 0 ≤ xk ≤ Lk. The new variables τ , η and ξ
are referred to as reduced time, stress and distance, respectively.
Using (17) in (1) and applying the chain-rule, we get:

∂ηk

∂τ
= θk

∂

∂ξk

(

∂ηk

∂ξk
− αk

)

(18)

where θk = (L2
cDa,k)/(L

2
kDavg), αk = (q∗ρjkLk)/(kbTm), jk

is the current density and Da,k is the diffusivity for bk. Since,
for any given branch, αk is not a function of distance ξk, then
∂αk/∂ξk = 0 and we get:

∂ηk

∂τ
= θk

∂2ηk

∂ξ2k
(19)

For any branch bk, (19) constitutes the scaled PDE system to be
solved. Also, the atomic flux in bk can be restated in terms of
reduced variables:

Ja,k =
Da,kC

Lk

(

∂ηk

∂ξk
− αk

)

(20)

4.2 Discretization for a tree branch
We uniformly discretize branch bk into N segments, where N

is the same for all branches (because we have scaled all branch
lengths to 1 as in (17)). The reduced stress at each of the N + 1
discrete spatial points {0, 1, . . . N} in the branch is denoted by
ηk,i and the time rate of change of ηk,i is (from (19)):

∂ηk,i

∂τ
= θk

∂2ηk,i

∂ξ2k
for i = 0, 1, . . . N (21)

Further, we approximate the partial derivatives with respect to ξ
using the central difference approximation, so that (21) leads to:

dηk,i

dτ
= θk

(

ηk,i+1 + ηk,i−1 − 2ηk,i

(∆ξ)2

)

(22)

where ∆ξ = ∆ξk = 1/N , ∀k. The corresponding atomic flux
Ja,k,i at the ith point is:

Ja,k,i =
Da,kC

Lk

(

ηk,i+1 − ηk,i−1

2∆ξ
− αk

)

(23)

Note that for each branch, the ODEs at junctions (i = {0, N})
require the values for ηk,−1 and ηk,N+1, which are not part of
the ξk domain. The values at these ghost points are obtained
by solving for the respective boundary condition(s), as we next
explain.



4.3 Boundary Conditions at diffusion barrier
Consider a diffusion barrier np connected to branch bk. We

have two cases, one where np is at the predecessor junction (ξk =
0, start of the branch) and one where it is at the successor junction
(ξk = 1, branch end). We first obtain the boundary conditions
for np at ξk = 0. Let τf be the time of void nucleation at this
barrier. Then, the corresponding boundary condition is (using
(13) and (14)):

∂ηk,0

∂ξk
=

{

αk τ < τf ,
ηk,0(Lk/δ) τ ≥ τf

(24)

where ηk,0 corresponds to σk,p in (14), with ηk,0 = ηth at τ = τf .
Using the central difference approximation, we get:

ηk,−1 =

{

ηk,1 − 2∆ξαk τ < τf ,
ηk,1 − 2∆ξηk,0(Lk/δ) τ ≥ τf

(25)

Similarly, for a diffusion barrier at ξk = 1, we get:

ηk,N+1 =

{

ηk,N−1 + 2∆ξαk τ < τf ,
ηk,N−1 − 2∆ξηk,N (Lk/δ) τ ≥ τf

(26)

4.4 Boundary Conditions at dotted-I junction
Consider a dotted-I junction np. Without loss of generality, we

will assume that np is at the end of branch 1 and at the beginning
of branch 2. To solve the ODE at np, we need the value of at
least one of the ghost points (η1,N+1 or η2,−1). Let τf be the
time of void nucleation at this junction. Then, using (13), we get
(h1 = h2 within a metal layer):

w1Ja,1,N − w2Ja,2,0 = 0 for τ < τf (27)

Also, from law 3, η1,N = η2,0 when τ < τf . Hence, the time rate
of change of stress should also be the same, so that using (19):

∂η1,N

∂τ
=

∂η2,0

∂τ
=⇒

∂2η1,N

∂ξ21
=

θ2

θ1

∂2η2,0

∂ξ22
for τ < τf (28)

Substituting the value of J from (23) in (27) and applying the
central difference formula in (28), we can obtain the value of ghost
points. Due to lack of space, we omit the complete derivation and
only present the final value of η1,N+1:

η1,N+1 = η1,N−1 + (r12q1 + w21q2)/(r12 + w21) (29)

where r12 = L1/L2, w21 = w2/w1, p21 = Da,2/Da,1, q1 =
2∆ξ (α1 − w21r12p21α2) and q2 = 2(r212p21η2,1 − η1,N−1 + (1 −
r212p21)η1,N ). Using law 2, np is treated as a diffusion barrier
during the void growth phase. Thus, for τ ≥ τf :

η1,N+1 = η1,N−1 − 2∆ξη1,N (L1/δ)

η2,−1 = η2,1 − 2∆ξη2,0(L2/δ)

Due to space constraints, we are also unable to show the corre-
sponding boundary conditions for T and plus junctions, but they
can be obtained by following the same procedure as done for the
dotted-I junction.

4.5 Formulating the IVP for a tree
For any given tree T ∈ {N ,B}, the discretized equations (21)

for branches bk ∈ B, combined with initial and boundary condi-
tions give the corresponding IVP formulation. Again, for clarity,
we will revisit the example presented in Section 3.2. For simplic-
ity, we will show the IVP formulation only for the scenario when
no voids are present in the tree. For Td (shown in Fig. 3) we can
describe the stress evolution in terms of reduced variables as:

PDE
∂ηk,i

∂τ
= θk

∂2ηk,i

∂ξ2k
for i = {0, 1, . . . N}, k = {1, 2}

B.C. Ja,1,0 = 0, Ja,2,N = 0, w1Ja,1,N − w2Ja,2,0 = 0,

and η1,N = η2,0

I.C. ηk,i = ηres at τ = 0 ∀k, i
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Figure 4: For Td, (a) stress evolution at junctions
with time and (b) stress profile with time. L1 =

L2 = 50 µm, j1 = −j2 = 6e9 A/m2 and σth = 600 MPa.
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Figure 5: 95% confidence bounds on MTFs as es-
timated by the Extended Korhonen’s model vs the
experimental results as reported in Fig. 3 of Gan et.
al. [5].

where ηres = (Ωσres)/(kbTm) is the reduced initial stress, called
the residual stress [7]. Then, using (22), (25), (26) and (29) in
the above equations, we obtain the following ODEs:

dη1,0/ dτ = −K1 (2η1,0 − 2η1,1) +K1qn1

dη1,i/ dτ = K1 (η1,i−1 − 2η1,i + η1,i+1) i ∈ {1, N − 1}

dη1,N/ dτ = ̺12K1

(

2η1,N−1 − 2(1 + p21r12w21)η1,N

+ 2p21r12w21η2,1
)

+ ̺12K1qn2
(= dη2,0/ dτ) (30)

dη2,i/ dτ = K2(η2,i−1 − 2η2,i + η2,i+1) i ∈ {1, N − 1}

dη2,N/ dτ = K2

(

2η2,N−1 − 2η2,N
)

+K2qn3

where

qn1
= −2∆ξα1, qn2

= 2∆ξ(α1 − w21r12p21α2), qn3
= 2∆ξα2

K1 = θ1/(∆ξ)2, K2 = θ2/(∆ξ)2, ̺12 = r12/(r12 + w21)

Formulating the IVP for any given tree can be done by following
the same procedure. We use adaptive step Runge-Kutta methods
to solve (30), and the solution for Td is as shown in Fig. 4.

4.6 Verifying the model
Fig. 5 shows a comparison of the MTF as obtained using the

extended Korhonen’s model and the experimental results reported
in Fig. 3 of Gan et. al. [5]. The model parameters used are same
as given in [5]. The comparison is made in terms of 95% confi-
dence interval on the MTF, and as can be seen from Fig. 5, there
is a good agreement between the results of our model and the ex-
perimental data. Clearly, by accounting for material flow between
connected branches, the extended Korhonen’s model can be used
for determining the EM degradation in interconnect trees.

Now that we have presented and verified the Extended Korho-
nen’s model, we will describe how it can be used for EM assess-
ment of the entire power grid.



5. POWER GRID EM ANALYSIS
Because EM is a long-term failure mechanism, short-term tran-

sients that may be typically experienced in chip workloads do not
play a significant role in EM degradation. Hence, and consistent
with standard practice in the field, we use an effective-current
model [16], so that the grid currents are assumed to be constant
at some average (effective) value, at least during the void nucle-
ation phase. Once a void nucleates, branch resistances change
fairly quickly and the currents change, also fairly quickly, to new
effective values. Thus, between any two successive void nucle-
ations, the grid has fixed currents, voltages, and conductances
and so can be modeled using a DC model. To denote the fact
that conductances (and the corresponding voltages) change from
one nucleation phase to the next, as in [3], we express the grid
model as:

G(t)v(t) = is (31)

where G(t) is the time-varying (but piecewise-constant) conduc-
tance matrix, v(t) is the corresponding time-varying (but piece-
wise constant) vector of node voltage drops and is is the vector
of effective values of the current sources tied to the grid.

5.1 The Main Approach
As explained earlier, we use the mesh model to find the Mean

Time to failure (MTF), in which the grid is deemed to have failed
when enough voids have nucleated that the voltage drop spec-
ification exceeds at some grid node. As a byproduct, however,
this process also produces the time when the first void nucleates,
which helps us generate the MTF as per the series model, in which
a grid is deemed to have failed when the first void nucleates. We
report the series model MTF for comparison purposes.

We assume that the grid is undamaged (no voids) at t = 0. A
voltage-drop threshold value for every grid node (or a subset of
grid nodes) is given, which is captured in the vector vth. Initially,
all node voltage drops are less than vth, i.e. v(0) < vth. A power
grid is a collection of interconnect trees. As such, to estimate the
EM degradation of the grid, we formulate an IVP for every tree
as shown in Section 4.5 and numerically integrate it to obtain
the stress as a function of position and time. Every time a void
nucleates at a junction, we calculate the new branch resistances
and current density values. The corresponding boundary condi-
tions are updated and we re-formulate the IVP for all trees using
the updated boundary conditions. The time of first void nucle-
ation gives the time to failure (TTF) of the grid as per the series
model. Due to increase in branch resistances, the voltage drops
in the grid continue to increase as we move forward in time. The
earliest time when the voltage drop exceeds vth is the TTF of the
grid as per the mesh model.

To account for the random nature of EM degradation, we per-
form Monte Carlo random sampling to estimate the MTF. In
each Monte Carlo iteration, we assign new randomly-generated
diffusivity values to all the branches in the grid. This effectively
produces a new instance of the whole power grid, which we refer
to as a sample grid. We then use the above extended Korhonen
model and the IVP formulation to generate a TTF value based
on the series model and another that is based on the mesh model.
With enough samples, we form two averages as our estimates of
the series MTF and the mesh MTF.

LetT be the RV that represents the statistics of mesh grid TTF
for this approach, then expected value of T, denoted by E[T], is
the mesh MTF of the grid. Using goodness of fit methods, we
found that normal distribution is a good fit for T (see Fig. 6).
Therefore, we can use standard statistical sampling (Monte Carlo)
[12] to find the value of E[T] to within user-specified error toler-
ance. The number of samples required for Monte Carlo to termi-
nate is determined such that we have (1− λ)× 100% confidence
(e.g. λ = 0.05 for 95% confidence) that the relative error in MTF
estimation is less than a user provided relative error threshold ǫ
(e.g. ǫ = 0.1 for 10% relative error threshold).

Though this is the most accurate approach, numerically solv-
ing all the trees in the power grid using the extended Korhonen’s
model is computationally expensive. Hence, we use the main ap-
proach only on smaller grids. The results from this approach serve
as a benchmark of comparison for more optimized approaches.
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Figure 6: (a) Goodness-of-fit plot for normal dis-
tribution and (b) pdf using 100 mesh TTF samples
from ibmpg2 main approach.

5.2 Improved performance
We will now present a method that drastically reduces the run-

time with almost no impact on accuracy of results. We will refer
this as the Filtering approach. For each sample grid, solving all
the trees up to the time of grid failure yields a specific sequence
of void nucleation times in certain trees that are of interest. In
particular, all trees that nucleate their first void before the time
of grid failure are of interest to us. All trees that nucleate their
first void after the grid failure are inconsequential to us, and we
would do well to not solve them in the first place. Unfortunately,
we don’t know up-front which set of trees should be solved, and
which can be discarded. However, we can devise an approximate
but conservative filtering scheme that indicates which subset of
trees will most likely nucleate before all the rest, which we will call
the active set, and we then solve only these trees. To do this, we
use the easy-to-compute but approximate Riege and Thompson
model [6] to estimate the time to first void nucleation in a tree.
We have verified empirically that this is always less than or equal
the true time to first void nucleation, thus giving us a conservative
estimate of the subset of trees leading to grid failure.

For a given sample grid, we restrict our attention to trees
whose estimated first void nucleation times are smaller than some
threshold t = tm. We refer to tm as the active set cutoff thresh-
old. tm is a part of the Monte Carlo process. We start with a
sufficiently high value for tm, that is reduced as more samples are
obtained. Trees that are likely to nucleate before tm, based on
the Riege and Thompson estimate, are declared to be part of the
active set and will be numerically solved. Because the estimate
is conservative, then the active set may include some trees that
ideally would not need to be solved. If the sample grid fails before
tm, we obtain a sample TTF. On the other hand, if the sample
grid hasn’t failed up to t = tm, we set the TTF sample equal to
tm, and such a sample is called a limited sample. Thus, in our
Monte Carlo approach, we effectively sample from RV T′ that
has a limited normal distribution (l = −∞ and u = tm) with
underlying normal RV T. However, we can estimate the mean
of the underlying RV E[T] using the samples obtained from the
limited RV T′, as shown next.

For both RV’s T and T′, using the law of total expectation [17],
we can write:

E[T] = E[T|T ≤ tm]FT (tm) + E[T|T > tm](1− FT (tm)) (32)

E[T′] = E[T′|T′ ≤ tm]FT ′ (tm) + E[T′|T′ > tm](1− FT ′ (tm))

where FT (t) is the cdf of the normal RV T and FT ′ (t) is the cdf
of limited normal RV T′. From the definition of limited RV, we
have E[T′|T′ ≤ tm] = E[T|T ≤ tm], E[T′|T′ > tm] = tm and
FT ′ (tm) = FT (tm). Hence, we can write:

E[T′] = E[T|T ≤ tm]FT (tm) + tm(1− FT (tm)) (33)

Subtracting (33) from (32), we get:

E[T] = E[T′] + (E[T|T > tm]− tm)(1− FT (tm))

= E[T′] + E[T− tm|T > tm](1− FT (tm)) (34)

The term E[T − tm|T > tm] is the Mean Residual Life (MRL)

of the power grid at t = tm. Define µ , E[T], µ′ , E[T′] and



pf , FT (tm). Since we know T has a normal distribution, the
MRL of the power grid at t = tm can be expressed in terms of µ
and pf . From (34), after some algebraic manipulation, we obtain:

µ =
µ′ + (κ− 1)tm

κ
(35)

where κ = pf + φ
(

Φ−1(pf )
)

/Φ−1(pf ), Φ(t) and φ(t) are re-
spectively the cdf and probability distribution function (pdf) of a
standard normal distribution N (0, 1). Φ−1 denotes the inverse cdf
of of N (0, 1) which can be computed on most operating systems
using erfinv() function. As we will show next, we can estimate
µ′ and pf from the statistical sampling process. Thus, we can
evaluate the RHS of (35) to estimate µ.

Similar to the main approach, we stop the Monte Carlo process
when we are (1 − λ) × 100% confident that the relative error in
estimated MTF is less than some user provided threshold ǫ. In
other words, we stop if:

δµλ

/

µ ≤ ǫ ⇐⇒ δµλ

/

µ̂ ≤ ǫ
/

(1 + ǫ) (36)

where δµλ is (1− λ)× 100% confidence bound on the estimation
error δµ, as explained below.

Let {T ′
1, T

′
2, . . . T

′
s} be s samples obtained from RV T′ using a

Monte Carlo process. Then, µ̂′ = (1/s)
∑s

k=1 Tk is the estimated

value of µ′ and p̂f = 1 − |{T ′
k : T ′

k > tm}|
/

s is the estimated
value of pf . Using µ̂′ and p̂f in (35) we get µ̂, the estimated
value of µ. Note that µ′, pf and µ are the true values, so that
lims→∞ µ̂′ = µ′, lims→∞ p̂f = pf and lims→∞ µ̂ = µ. Then,
the error in estimation is δµ = |µ̂ − µ|, δµ′ = |µ̂′ − µ′| and
δpf = |p̂f − pf |. A (1 − λ) × 100% confidence bound on error
δµ means that the interval [µ̂ − δµ, µ̂ + δµ] will contain the true
value (1− λ)× 100% of the time.

Using the obtained TTF samples, we can find the confidence
bounds on δµ′ and δpf (for a chosen confidence level λ), which in
turn gives us the confidence bound on δµ. For lack of space, we
skip the details and present the final expression:

δµλ =

√

√

√

√

(δµ′
λ)

2

κ̂2
+

z2
λ/2

(tm − µ̂′)2p̂f (1− p̂f )

κ̂4s

[

1 +

(

1 +
1

y2

)2
]

(37)
where δµ′

λ is the (1−λ)×100% confidence bound on µ′, zλ/2 is the

(1−λ/2)-percentile of N (0, 1), κ̂ = p̂f +φ(y)/y and y = Φ−1(p̂f ).
Note δµ′

λ is obtained from simulation, using the technique given
in [1]. We obtain at least 30 TTF samples before starting to check
the stopping criteria (36).

5.2.1 TTF predictor approach
We next describe a predictor-based approach to further speed

up the MTF computation. This approach is applied on top of the
filtering approach explained earlier.

All test data that we’ve seen shows a profile of tensile stress
evolution over time that follows a particular trend: it is a mono-
tonically increasing function of time with a gently decreasing slope
(see for example Fig. 4). Once a tree in the active set has been
solved for a few time-points, it should be possible to extrapolate
the rest of the trend, with some suitably nonlinear fitting function.
The fitting function can thus be used as a TTF predictor, to find
a good estimate of the nucleation times for all junctions within
the tree. Parameters of the function can be found using least-
squares fitting, based on the points already solved. While various
exponential or log functions may be suitable, we have found em-
pirically that the following power function template provides a
very good fit:

f(t) = atb+c ln t (38)

where a, b and c are parameters to be determined using regression
analysis and least-squares fitting and f(t) is the stress value at
time t. Note that ln(f(t)) is a simple quadratic in ln t, with ln a,
b and c as the three coefficients. Once we estimate the time of
void nucleations using the TTF predictor, we can predict the time
(and sequence) of void nucleations. For each void nucleation, we
update the corresponding branch resistances and voltage drops
until the grid fails.

Table 1: Comparison of power grid (mesh) MTF
using the main approach and Filtering approach

Grid Main Filtering Error Speed-up

Name µallm runtime µactm runtime (%)

(yrs) (hrs) (yrs) (hrs)

ibmpg1 6.14 0.15 6.10 0.08 0.62 1.92x

ibmpg2 6.65 2.10 6.63 0.87 0.28 2.41x
ibmpg5 5.98 20.51 5.94 0.53 0.72 38.83x
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Figure 7: (a) High current density profile and possi-
ble failure locations as predicted using (b) Extended
Korhonen’s model and (c) Black’s model

6. EXPERIMENTAL RESULTS
All approaches have been implemented in C++ and tested on

a number of IBM power grid benchmarks [13], using a quad-core
3.4GHz Linux machine with 32GB of RAM. The voltage drop
threshold vth is defined to be 5% of vdd for all grid nodes, except
ibmpg6, for which vth is defined to be 10% of vdd. The inter-
connect material is assumed to be Copper, so that the following
parameters are used in our EM model: σres = 421 × 106Pa [7],
B = 1.35× 1011Pa, Ω = 1.66× 10−29m3, kb = 1.38× 10−23J/K,
q∗ = 8.0109 × 10−19C, σth = 600 × 106Pa [7] and δ = 10−9m.
A nominal temperature of 373K is used for all simulations. Each
branch is discretized into N = 16 segments. We use a relative
tolerance of 10−3 and an absolute tolerance of 10−6 for the ODE
solver. For all grids, we used λ = 0.05 (95% confidence bounds)
and ǫ = 0.1 (maximum relative error threshold of 10%). In our
implementation, we use a shared memory model to parallelize the
computation and take advantage of the quad core machine.

Table 1 compares the accuracy and runtime of the main ap-
proach vs. the filtering approach. Since the main approach slows
down considerably as the grid size increases, we were able to use
it on only the three smallest benchmarks. µallm and µactm denote
the estimated MTF using the the main approach and the filtering
approach, respectively. From table 1, it is clear that as the grid
size increases, the filtering approach leads to significant speed-
ups with negligible loss in accuracy. For the largest grid we could
test (ibmpg5 with 2002 trees), the filtering approach obtained a
speed-up of ∼ 39x over the main approach with error being only
0.72%. This shows the value of the filtering approach.

Table 2 lists the MTFs estimated per the series and mesh
models using three approaches, based on: i) Black’s model as
implemented in [3] (columns µblks and µblkm ), ii) our extended Ko-
rhonen’s model with the active set filter (µacts and µactm ) and iii)
our extended Korhonen’s model with the active set filter and the
TTF predictor (µpres and µprem ). In order to give a fair comparison,
we calibrate Black’s model with data obtained from Korhonen’s
model. From the table, we note that µacts > µblks and µactm > µblkm
for all grids except ibmpg1. Overall, the mesh MTF estimated
using our approach is 3x longer than that found using Black’s
model. Finally, in the table we compare the MTF results from
the filter-only approach to those based on using the filter and
TTF predictor. Overall, for all the reported grids, the predic-
tor based variation of the filtering approach achieves an average
speed-up of nearly 2x over the filter-only approach, with average
error being 7.92%.



Table 2: Comparison of power grid MTF as estimated using Black’s model and Extended Korhonen’s model

Power Black’s Model Extended Korhonen’s Model

Grid Filtering Filtering + Predictor

Grid # #bra- #trees µblks µblkm tblk µacts µactm tact µpres µprem tpre µprem

µblkm

tact

tpre

Error

Name nodes nches (yrs) (yrs) (hrs)a (yrs) (yrs) (hrs)a (yrs) (yrs) (hrs)a (%)b

ibmpg1 6K 11K 709 7.91 11.74 0.001 3.57 6.10 0.08 3.62 6.52 0.03 0.56 2.67x 6.89

ibmpg2 62K 61K 462 1.20 2.94 0.06 4.22 6.63 0.87 4.19 6.79 0.31 2.31 2.81x 2.42

ibmpg3 410K 401K 8.1K 0.90 3.91 0.90 3.35 6.09 7.99 3.35 6.67 4.27 1.71 1.87x 9.52

ibmpg4 475K 465K 9.6K 0.64 2.01 1.10 4.11 8.77 13.73 4.07 9.87 6.81 4.91 2.02x 12.54

ibmpg5 249K 496K 2K 1.49 2.90 0.16 4.17 5.94 0.53 4.18 6.53 0.25 2.25 2.11x 9.96

ibmpg6 404K 798K 10.2K 1.04 1.96 0.33 3.88 8.96 4.64 3.88 9.39 2.07 4.78 2.24x 4.79

ibmpgnew1 316K 698K 19.5K 1.56 3.20 0.17 3.74 12.13 0.47 3.68 13.25 0.42 4.15 1.12x 9.23

ibmpgnew2 718K 698K 19.5K 0.84 4.63 2.99 3.63 5.30 3.21 3.58 5.73 2.60 1.24 1.23x 8.04
a

tblk, tact and tpre denote the run-time(s) for Black’s model, Filtering and predictor based approaches, respectively.
bThe error is calculated for mesh MTF between the Filtering and Filtering+predictor approaches
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Figure 8: (a) Low current density profile and possi-
ble failure locations as predicted using (b) Extended
Korhonen’s model and (c) Black’s model

In order to show the inaccuracy in Black’s model, we present
two scenarios, based on an interconnect tree from ibmpg2, which
is a straight metal stripe with 192 branches. In the first scenario,
we apply a high current density profile to the tree (see Fig. 7).
In this case, Black’s model predicts the first failure time of about
4 yrs, whereas the actual failure time found using the Extended
Korhonen’s model is around 7.8 yrs. In the second scenario, we
apply a low current density profile (see Fig. 8). Here, due to the
Blech effect, Black’s model predicts that no failure would occur.
However, accounting for the material flow between the branches,
we found that the first failure would occur around 20 yrs. Thus,
Black’s’ model was pessimistic in the first scenario and optimistic
in the second one.

7. CONCLUSION
We proposed a fast physics-based EM checking approach for

on-die power grids that removes the unrealistic assumptions in-
herent in traditional industrial tools. Computational speed is
achieved using an efficient filtering scheme and a fast predictor-
based approach, with minimal impact on accuracy. The MTFs
estimated using our physics-based approach were 3x longer on
average than those based on a (calibrated) Black’s model. The
method is quite fast and is suitable for very large power grids.
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