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Abstract—Power-gating is widely used in large chip design as a
way to manage the total power dissipation and avoid overheating.
It works by turning OFF the power supply to circuit blocks that
are not required to operate in certain operational modes. Many
authors have studied the scheduling of chip workload to manage
total power and temperature. But power-gating also has an
impact on the supply voltage levels across the die, because voltage
drop is generated in the grid depending on the combination of
blocks that are ON. We consider the question of how to manage
the chip workload so that supply voltage variations remain within
specs. The worst-case voltage drop is the result of two things, the
power budgets that were allocated to the various circuit blocks
during the design process and the combination of blocks that are
turned ON in a given operational mode. Intuitively, more blocks
can be turned ON simultaneously if the blocks are constrained to
have low current levels, and vice versa. In this paper, we propose
a framework to manage this trade-off between how many blocks
are ON simultaneously and how big the power budgets of the
individual blocks are, assuming resistive and capacitive (RC)
elements in the power grid model. Subject to user guidance,
we generate block-level circuit current constraints as well as an
implicit binary decision diagram (BDD) that helps identify the
safe working modes. If the blocks are designed to respect these
constraints, then the BDD can be used during normal operation
to check whether a candidate working mode is safe or not.

Index Terms—Power scheduling, power-gating, integrated cir-
cuits, power grid

I. INTRODUCTION

Power gating refers to design techniques that partition the logic

circuitry of a chip into functional blocks that may be selectively

powered ON or OFF. Modern high-performance chips include very

large power delivery networks (PDN). While the PDN is mostly

a passive RLC structure, PDNs often also include active devices

(e.g. MOSFETs) that implement power-gating to allow the supply

currents (including leakage) of major circuit blocks to be turned off

by disconnecting them from the rest of the PDN. Thus, such a circuit

block has its own local grid (as we call it) that may be cut off from the

rest of the PDN (which we call the global grid). We refer to a PDN

with active devices as an active PDN; otherwise it is a passive PDN.
Depending on what blocks that are ON/OFF, the total power dis-

sipation and temperature may exceed specifications, so that there is

a need to schedule the chip workload (which blocks are ON/OFF) in

order to remain within the allowed power/temperature specs. Several

authors have looked at this question, including for example [1], [2],

[3]. But the chip workload also impacts the voltage drop on the grid.

Depending on the combination of blocks that are in operation, large

amounts of current may flow through the PDN causing excessive

voltage variations that put both circuit performance and reliability at

risk. Proper design and operation of an active PDN is crucial to ensure
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supply integrity to the circuit blocks, and so avoid timing and signal

integrity problems.

Typically, every block may have multiple power states, which may

be as simple as: high-performance, low-power, standby, or OFF. We

assume that each block can either be turned ON or OFF – this can be

easily extended to multi-power states and is not a limitation to our

work. If every circuit block is in a certain power state, we say that the

chip overall is in a certain working mode. If some circuit blocks are

transitioning from one power state to another, we say that the chip is in

a transition mode. A power-gated PDN should be verified under both

working and transition modes. In this work, we focus on analyzing the

PDN under different working modes, but we are working to extend

this to transition modes.

Several computer-aided design (CAD) algorithms have been de-

veloped over the past decade to efficiently analyze and verify a

passive PDN. Typically, verification methods require simulating the

PDN to determine the voltage drop at every node, given detailed

information on the current sources tied to the grid, which represent

currents drawn by the underlying circuitry. These simulation-based

techniques include [4], [5]. An alternative power grid verification

scheme, such as in [6], [7], relies on information that may be available

at an early stage of the design, in the form of current budgets or current

constraints. These methods are referred to as vectorless verification

and consist of finding the worst-case voltage fluctuations at all nodes

of the grid under all possible transient current waveforms that satisfy

user-specified current constraints. The grid is said to be safe if these

fluctuations are below user-specified thresholds at all grid nodes.

With active PDNs, this verification becomes very difficult because

of the many working modes that the chip can have. For example, a

chip with 20 blocks, with 2 power states (i.e. ON and OFF) each,

has over a million working modes. A brute-force approach would

require exhaustive transient simulation under all possible working

modes, each covering a very large number of clock cycles to capture

the dynamics of the circuit. The authors in [8] propose an efficient

transient analysis approach of the power delivery network exploiting

localized voltage variations near the active blocks. Such an approach

requires full knowledge of the current waveforms drawn by every

logic block attached to the grid. Thus, it does not allow for early grid

verification, when grid modifications can be most easily incorporated.

Furthermore, the number of current traces needed to cover the space of

voltage drops exhibited on the grid is intractable for modern designs.

In [9], the authors propose a technique to drastically reduce the

number of full simulations, by modeling the local grids as switchable

current sources. Assuming that the current waveforms representing

the currents drawn by the underlying circuitry are available, the

method determines an approximate set of working modes that gen-

erates the largest average current from the block’s power-taps. Then,

the full grid is simulated under this set of working modes for hundreds

of clock cycles. A major problem in this work is that the worst-case

working modes are determined based on the currents rather than the

voltage drop.

Typically, in a large die, one cannot have all the circuit blocks
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turned ON simultaneously, so that there will always be some circuit

blocks that are turned OFF (so-called dark Silicon). During normal

chip operation, there is a need to manage the workload so that voltage

variations remain within specs. The chip will therefore include a

design component (a scheduler) to manage the workload of the active

PDN, leading to a safe schedule of workload. Developing a scheduler

requires, at the very least, up-front analysis to identify elements

or patterns of workload that represent safe operation; this is a key

problem that is addressed in this paper.

In active PDNs, the worst-case voltage drop is the result of two

things: the power budgets that were allocated to the various circuit

blocks during the design process and the combination of blocks that

are turned ON in a given working mode. Intuitively, more blocks can

be turned ON simultaneously if the blocks are constrained to have low

current levels, and vice versa. In this paper, we propose a framework

to manage this trade-off between how many blocks are ON simulta-

neously and how big the power budgets of the individual blocks are.

We focus on active RC power grids, but we are working to extend this

to the RLC case. Subject to user guidance, we generate block-level

circuit current constraints that identify the allowable transient current

waveforms for the underlying logic blocks as well as identify the safe

working modes that the grid can safely support. These working modes

are captured in a form of an implicit Binary Decision Diagram (BDD).

An on-chip run-time schedule can then use the BDD as a query engine

to check whether a candidate working mode is safe or not.

II. OVERVIEW

In a power-gated design, functional blocks have their own local

grids that are connected to the global grid via wide multi-fingered

transistors, referred to as sleep transistors or power-gating switches.

Typically, a power-gating transistor may be modeled as an ideal

switch in series with a resistor, as in Fig. 1(a). We will refer to the

PDN model in Fig. 1(a) as the original grid.

Verifying the original grid for voltage drop is difficult because of

the large number of working modes that the grid can have. A brute-

force approach would be to verify the passive PDN corresponding to

every possible working mode. Clearly, this method is prohibitively

expensive as it requires the verification of an exponential number of

passive PDNs, corresponding to the exponential number of possible

working modes. Instead, in this work, we verify a slightly simplified

model of the grid, which we call the equivalent passive grid, shown in

Fig. 1(b). The simplification consists of simply moving the switches

down to the bottom of the grid, as shown in the figure. The key benefit

of this simplification is that as a result, as we will see in Section IV-B,

the voltage integrity verification of the equivalent passive grid requires

only one verification “run” for each local grid in isolation, combined

by means of a type of superposition in order to identify the set of safe

working modes for the full grid.

Fig. 1: (a) Schematic diagram of a power-gated PDN using

resistive switches, referred to as the original grid, and (b)

schematic diagram of the equivalent passive grid.

These benefits of using the equivalent passive grid come with a

very small accuracy cost. Based on HSPICE simulations of a 400k

nodes grid with 49 blocks, the relative error is below ±0.6 mV in

the maximum voltage drop on the “nodes of interest” of the ON

blocks, resulting from using the equivalent passive grid instead of the

original grid. Here, and throughout this paper, the “nodes of interest”

are the bottom-most nodes of the local grids that are tied directly

to the underlying chip circuitry, i.e., to the current sources shown

in the figures. Clearly, these are the only nodes whose voltage drop

“matters” because they directly affect circuit operation.

In this work, we will use the notion of a current container, intro-

duced in [10], to capture the block-level power budgets. A container

is usually expressed as a set of constraints on the currents drawn by

the underlying logic circuitry. Taken in isolation, a block (local grid)

can be analyzed separately using the inverse problem (constraints

generation) approach for passive grids [10] to give a container (or

set of containers) that respects the maximum allowable voltage drop,

referred to as a voltage drop threshold, at all the nodes of interest

in the block; this will be reviewed in Section III. Because we expect

lower levels of the grid to have less than ideal voltages, suppose that

the supply value applied at every block’s power taps is parameterized

by an artificial variable α. Specifically, for a block k with uniform

voltage drop threshold at all its nodes of interest, i.e. the nodes of

interest in that block have the same voltage drop threshold γk, suppose

the supply value is Vdd − (1 − α)γk. There is no need to actually

relate this supply value to any actual supply value that the full chip

may experience at certain layers. In fact, we will see that this α can be

viewed as a parameter that becomes a “knob” of sorts by which we can

have the local containers expand when the supply voltage is increased

or contract when it is decreased. The safety of these containers is not

assumed based on the choice of α. Rather, safety will be enforced as

part of the subsequent analysis of the full grid, from which we will

capture the set of safe working modes of the grid, represented by a

set of safe assignments of a Boolean vector β corresponding to any α.

This safe space of β will be captured with a BDD.

III. BACKGROUND FOR PASSIVE GRIDS

In this section, we describe a passive power grid model that will

be used throughout the paper and we review some key theoretical

results that were established for the constraints generation approach

for passive power grids [10]. The results of this section apply to any

passive grid, and will be invoked to describe the power grid of each

block in isolation as well as the full grid. Thus, for ease of extension

and to avoid repetition, we will define a passive power grid “problem”
P(·) that includes the description of the grid model in Section III-A

and the results presented in Sections III-B and III-C.

A. Passive Power Grids

Consider an RC model of a passive power grid. Some nodes of

the top level layers of the grid may be connected to ideal voltage

sources representing the connection to the external voltage supply

Vdd. Assuming flip-chip technology, we will refer to an ideal supply

voltage source as a C4, with the understanding that any parasitics that

are part of a true C4 pad structure have already been modeled and

included in the grid description. Note that, in this work, we assume

that a C4 pad is modeled with resistive and capacitive components

only, because we focus on RC power grids. We are working to extend

this to the RLC case in the future. Some nodes of the bottom-most

layers have ideal current sources (to ground) representing the currents

drawn by the logic circuits tied to the grid. There exists also a

capacitor from every grid node to ground. We assume that there are

no node-to-node capacitors in the grid.

Excluding the ground node, let the power grid consist of n + s
nodes, where nodes 1, 2, . . . , n are the nodes not connected to a

voltage source, while the remaining nodes (n+1), (n+2), . . . , (n+s)
are the nodes where the s voltage sources are connected. Let i(t)
be the non-negative vector of all the m current sources connected to
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the grid, whose positive (reference) current direction is from node-to-

ground. Let H be an n ×m matrix of 0 and 1 entries that identifies

(with a 1) which node is connected to which current source, and let

is(t) = Hi(t).
Let v(t) be the n× 1 vector of time-varying voltage drops (differ-

ence between Vdd and the true node voltages). We can write the RC

model for the power grid using Nodal Analysis, as [6]:

Gv(t) + Cv̇(t) = is(t) (1)

where C is a n× n diagonal non-negative capacitance matrix, which

is non-singular because every node is attached to a capacitor; G is

the n × n conductance matrix, which is known to be symmetric and

diagonally dominant with positive diagonal entries and non-positive

off-diagonal entries. With this, it can be shown that G is a so-called

M-matrix, so that G−1 exists and is non-negative, G−1 ≥ 0, i.e., its

every entry is non-negative.

Using a finite-difference approximation for the derivative, such as

a Backward Euler scheme v̇(t) ≈ (v(t)− v(t−Δt)) /Δt, the grid

system model (1) leads to:

v(t) = A−1Bv(t−Δt) +A−1Hi(t) (2)

where B = C/Δt is an n × n diagonal matrix with bii > 0, ∀i, and

A = G+B. It can also be shown that A, just like G, is anM-matrix,

so that A−1 ≥ 0. Let M = A−1 ≥ 0 and define the n ×m matrix

M ′ = MH ≥ 0.

We assume that a certain number of grid nodes d ≤ n (the “nodes

of interest”) are required to satisfy certain user-provided voltage drop

threshold specifications, captured in the d× 1 vector Vth ≥ 0. These

would typically be nodes at the lower metal layers, where the chip

circuitry is connected. Thus, we assume that these nodes are internal

to the blocks. Let P be a d× n matrix consisting of 0 and 1 elements

only, specifying (with a 1 entry) the nodes that are subject to a voltage

threshold specification. Note that P ≥ 0 and has exactly one 1 entry

in every row, otherwise 0s, and that no column of P has more than a

single 1 entry.

With this, let P(n,m, d,G,C,H, P ) denote a passive power grid

problem as described above.

B. Safe Containers

For completeness of presentation, we review some terminology

introduced in [10] that is crucial to our work. The following definition

introduces the notion of a container for a vector of current waveforms,

which will help us express constraints that guarantee grid safety.

Definition 1: (Container) Let t ∈ R, let i(t) ∈ R
m be a function

of time, and let F ⊂ R
m be a closed subset of R

m. If i(t) ∈ F ,

∀t ∈ R, then we say thatF contains i(·), represented by the shorthand

i(·) ⊂ F , and we refer to F as a container of i(·).
Definition 2: (Safe Grid) A grid is said to be safe for a given

function i(t), defined ∀t ∈ R, if the corresponding Pv(t) ≤ Vth,

∀t ∈ R.

To check if a power grid is safe, one would typically be interested

in the worst-case voltage drop at some grid node k, at some time

point τ ∈ R, over a wide range of possible current waveforms.

Using the above notation, and given a container F that contains a

wide range of current waveforms of interest, we can express this as

maxi(·)⊂F (vk(τ)). Clearly, because F is the same irrespective of

time, and applies at all time points t ∈ R, then this worst-case voltage

drop must be time-invariant, independent of the chosen time point

τ . Therefore, one way to check grid safety is to compute the worst-

case voltage drop attained by each component of v(t), denoted as

v∗(F) = emaxi(·)⊂F (v(τ)) where the “emax(·)” notation denotes

element-wise maximization, as in [10]. In [6], the authors provide an

exact expression for the worst-case voltage drop v∗(F) that requires

an infinite sum of emax(·) operations. Thus, requiring the exact

v∗(F) is prohibitively expensive and so we will instead use an upper-

bound on v∗(F) based on the following.

Definition 3: For any F ⊂ R
m, define:

v(F)
�

= G−1A emaxI∈F (M ′I) (3)

with the convention that emaxI∈F (M ′I) = 0, if F = φ.

Note that, in (3), I ∈ R
m is a vector of artificial variables, with

units of current, that is used to carry out the emax(·) operation.

In [6], it has been shown that v(F) is an upper-bound on v∗(F):

v∗(F) ≤ v(F), ∀F ⊂ R
m

(4)

Furthermore, in [11], the authors show that, for a certain range of the

discretization time-step Δt, the accuracy of this upper-bound relative

to v∗(F) is quite good.

Definition 4: (Safe Container) A container F is said to be safe if

P v(F) ≤ Vth.

Thus, a safe container F is useful because, due to (4), it guarantees

that Pv∗(F) ≤ Vth, so that the grid is safe for that container. A safe

container F can be expressed as a set of constraints on the circuit

currents that load the grid, thereby providing a set of linear current

constraints that are sufficient to guarantee grid safety. In previous

work [6], current containers were specified and the corresponding

worst-case voltage drop was found by a process of optimization. In

later work [10], these containers were generated for passive grids so

that, if the circuit is designed to respect these constraints, the grid

becomes safe by design. In this work, we build on and extend the

work of [10] to the case of active grids. Some of the major results

in [10] are restated below as they are necessary to understand the flow

of the paper.

C. Maximal Containers

Let u ∈ R
n and define the sets U , F(u), and S as follows:

U
�

= {u ∈ R
n : u ≥ 0, Pu ≤ Vth} (5)

F(u)
�

= {I ∈ R
m : I ≥ 0, M ′I ≤MGu} (6)

S
�

= {F(u) : u ∈ U} (7)

where U is effectively a set of safe voltage drop assignments u, F(u)
is a special kind of container constructed based on u ∈ U , and S is

the set of all containers F(u) corresponding to u ∈ U . It turns out

that it is enough to consider only containers of the form (6), due to the

following necessary and sufficient condition.

Lemma 1: [10] A container J ⊂ R
m
+ is safe if and only if it is a

member of S or a subset of a member of S.

The importance of this lemma is two-fold: 1) F(u) is safe for any

u ∈ U and 2) all interesting safe containers J may be found as either

specific F(u) for some u ∈ U , or as subsets of such F(u). The

authors in [10] show that if Vth,k = 0, for some k, then the only

non-empty container in S is the trivial one F(0) = {0}. Therefore,

throughout this paper we will assume that Vth > 0.

Note that, if J ⊆ F(u), for some u ∈ U , with J 	= F(u),
then clearly F(u) is a better choice than J . Choosing J would

be unnecessarily limiting, while F(u) would allow more flexibility

in the circuit loading currents. Therefore, it is enough to consider

only containers of the form F(u) with u ∈ U . Going further, if

F(u1) ⊆ F(u2) with F(u1) 	= F(u2), then clearly F(u2) is a better

choice than F(u1). Thus, in a sense, the “larger” the container, the

better. Therefore, we are interested in safe containers that are not fully

contained in any other safe container. These containers are referred to

as maximal containers.

IV. PROPOSED APPROACH – THEORY

Given the equivalent passive model in Fig. 1(b), our approach

consists of two stages: 1) we perform isolated block analysis to gen-

erate block-level current containers by adapting the standard inverse

problem (constraints generation) approach introduced in [10] – this

will be discussed in Section IV-A; and 2) these block-level containers

will then be used to identify the behavioral patterns of the whole chip
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Fig. 2: (a) Simple example of a power grid with 2 blocks, and

(b) block 1 in isolation with a supply value of Vdd− (1−α)γ.

that are safe based on the voltage analysis of the full grid, which we

capture as an implicit binary decision diagram (BDD) – this will be

discussed in Section IV-B. Our approach uses an internal parameter

α that becomes a “knob” of sorts by which we can have these block-

level containers expand or contract, and in turn, the BDD will either

allow for less or more blocks to operate simultaneously.

This section includes the bulk of our theoretical contribution,

culminating in the result of Lemma 6 that establishes the principle

of superposition for the equivalent passive grid. In addition, we show

that the block-level current containers (in Lemma 3) as well as the

upper-bound on the worst-case voltage drop (in Lemma 5) have

certain scalability properties in terms of the internal parameter α.

These results allow us to easily manage the trade-off between the

power budgets of the blocks and the number of blocks that are ON

simultaneously. Throughout the rest of this section, we will refer to the

example in Fig. 2(a) to help the reader better understand our approach.

A. Isolated Block Analysis

In this section, we prove some key results that are applicable to any

passive grid, and thus will be used for every block in isolation.

1) Safety Condition: Grid safety relates to the voltage drop at

every node, i.e., the difference between the ideal supply voltage value

Vdd and the true node voltage, denoted v̂i(t) at every node i. Note

that the voltage drop Vdd − v̂i(t) is relative to the ideal Vdd, and that

when we say that node i has a user-specified voltage drop threshold γ,

we implicitly mean that γ is the threshold relative to Vdd, so that the

node is safe if Vdd − v̂i(t) ≤ γ. For a block in isolation, and because

we expect lower levels of the grid to have less than ideal voltages,

suppose its power taps are connected to a parameterized ideal voltage

supply of Vdd− (1−α)γ, with 0 ≤ α ≤ 1, as shown in the example

in Fig. 2(b). When α = 1, this supply value is Vdd and it decreases all

the way to Vdd−γ for α = 0. For any node i in that block, [Vdd−(1−
α)γ]− v̂i(t) is the voltage drop relative to Vdd − (1− α)γ, and it is

easy to see that the node safety condition Vdd−v̂i(t) ≤ γ is equivalent

to [Vdd − (1 − α)γ] − v̂i(t) ≤ αγ. Thus, the voltage drop threshold

relative to the supply value Vdd − (1− α)γ is simply αγ. It is in this

sense that the α parameter is simply a “knob” that, when reduced,

exerts a more stringent safety conditions on grid nodes, which would

naturally result in a smaller container for the local blocks, allowing

more blocks to be turned ON simultaneously, and vice-versa. This α
becomes an internal parameter that represents the trade-off between

the sizes of local grid containers and the number of full grid working

modes that will be deemed to be safe.

We can then easily extend and re-derive the theory of the passive

grids from Section III so that it is parameterized by 0 ≤ α ≤ 1.

Consider the generic passive power grid problem, denoted earlier as

P(n,m, d,G,C,H, P ) which we will apply to an isolated block. We

assume that the voltage drop threshold specification is uniform within

every block, i.e. all the “nodes of interest” in that block have the same

voltage drop threshold γ > 0, relative to Vdd. We capture this by

the d × 1 vector γ1d, where 1d is a d × 1 vector whose every entry

is 1. Assuming that the power taps of the isolated passive grid are

connected to an ideal voltage source of Vdd − (1 − α)γ, let v(t) be

the vector of voltage drops relative to [Vdd− (1−α)γ] at all nodes in

the block, then as we saw above, a safe voltage drop assignment for

the block in isolation must satisfy:

Pv(t) ≤ αγ1d (8)

For any α ∈ [0, 1], define the sets U(α), L(u), and S(α) as

follows, motivated by (8):

U(α)
�

= {u ∈ R
n : u ≥ 0, Pu ≤ αγ1d} (9)

L(u)
�

={I ∈ R
m : I ≥ 0, M ′I ≤MGu} (10)

S(α)
�

= {L(u) : u ∈ U(α)} (11)

The following lemma shows that, for any α > 0, S(α) always has

a current container that allows a non-zero current. This will be useful

later on. The proofs for this and all other theoretical results below are

not shown, due to lack of space.

Lemma 2: For any α ∈ (0, 1], S(α) always has a non-empty

member L(u) with L(u) 	= {0}.
2) Scalability of Current Containers: In [10], the authors

proposed several algorithms for passive grids that generate a container

L(u) ⊆ R
m
+ that is both safe and maximal. These algorithms target

specific design objectives such as the total peak power that a grid can

safely support, the uniformity of current distribution across the die

area, or a combination of both objectives. The peak power algorithm

in [10], once extended and parameterized by α as above, then applied

to the grid in Fig. 2(b), for different values of α, generates the

current containers shown in Fig. 3(a). Generating current containers

for different values of α requires solving an optimization problem

for every required value of α, which is computationally expensive.

In this section, we show that, under a certain mild condition on the

design objective, the resulting containers can be found by “scaling”

the container corresponding to α = 1, as we will see in Lemma 3,

which is clearly much faster than generating the containers for every

required value of α.
Typically, these algorithms, such as in [10], can be expressed in the

following general form:

maxu∈U(α)

(
maxI∈L(u) f(I, u)

)
(12)

where f(I, u) : R
m × R

n → R is some real-valued objective

function. For example, the peak power algorithm in [10] can be

expressed in the form of (12) where f(I, u) =
∑
∀j Ij . Notice that,

for any u ∈ R
n, the inner maximization finds the maximum value

of f(I, u) over all possible current assignments I ∈ L(u). Thus, the

result of the inner maximization is a function of u, denoted as:

g(u) = maxI∈L(u) f(I, u) (13)

and referred to as the design objective. The largest g(u) achievable

over all possible safe voltage drop assignments u ∈ U(α) is found

using the outer maximization, the result of which is a function of α,

denoted as g∗(α), i.e.

g∗(α) = max
u∈U(α)

g(u) = max
I∈L(u)
u∈U(α)

f(I, u) (14)

For any α ∈ [0, 1], let u∗(α) be a vector function that evaluates to

a value of u for which the outer maximization attains its maximum,

i.e. g(u∗(α)) = g∗(α), ∀α ∈ [0, 1]. In general, u∗(α) may not be

unique. The vector u∗(α) produced in (14) can be used to construct

the current container L(u∗(α)), where L(·) is defined in (10). Note

that the optimization problem (14) is always feasible, because 0 ∈
U(α) and 0 ∈ L(0), so that u∗(α) is well-defined and the resulting

container L(u∗(α)) is non-empty.
The lemma below is a key theoretical result that gives a sufficient

condition under whichL(u∗(α)) for any supply value Vdd−(1−α)γ,

can be found by simply scaling u∗(1) to get u∗(α), which will then

be used to construct L(u∗(α)) as in (10). This will be useful for the

full grid analysis.
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Fig. 3: (a) A current container F1(α) for the left block in

Fig. 2(a) for different values of α, (b) the set of safe working

modes W(α) for different values of α under the containers

generated for each block in isolation, i.e. F1(α) and F2(α).

Lemma 3: If g(cu) = cg(u), for any real number c > 0 and u ∈
R

n, then u∗(α) = αu∗(1), ∀α ∈ [0, 1].
Thus, for any α ∈ [0, 1], we have

L(u∗(α)) =
{
I ≥ 0 : M ′I ≤ αMGu∗(1)

}
(15)

It can be shown that the design objectives used in [10] satisfy the

condition of the above lemma, so that the condition of the lemma is

indeed mild and practical, leading to the above very useful scalability

property. Referring to the grid in Fig. 2(b), the peak power algorithm

in [10] for α = 1 gives u∗(1) = [100 100]T mV. Thus, for α = 0.5,

we immediately have u∗(α) = αu∗(1) = [50 50]T mV. This gives us

a scaled container L(u∗(α)).
B. Full Grid Analysis

In this section, we apply the results of Section IV-A to every

block of the grid. Every block has its own current container that

has the above scalability property in terms of the parameter α. The

importance of this section is two-fold: 1) we show that the worst-case

voltage drop contribution at the nodes of interest in the full grid due

to the activity of each individual block also has a scalability property

in terms of α, culminating in the result of Lemma 5, and 2) we show

that the upper-bound on the worst-case voltage drop on the nodes of

interest in the full grid due to the activity of a set of blocks is equal

to the sum of the individual contributions of each block in that set,

as presented in Lemma 6. Thus, an upper-bound on the worst-case

voltage drop contribution on the nodes of interest in the full grid due

to the activity of a set of blocks for some value of α can be simply

found by adding the scaled contribution of every block in that set for

α = 1.

1) Definitions: In isolation, each block is a separate passive

power grid, and P(nk,mk, dk, Gk, Ck, Hk, Pk) denotes its passive

grid problem. Furthermore, let Bk = Ck/Δtk be the nk × nk

capacitance matrix resulting from the Backward Euler numerical

integration scheme on block k, so that Ak = Gk + Bk. Also, let

Mk = A−1
k ≥ 0 and M ′

k = MkHk.

We assume that the voltage drop threshold specification is uniform

within a block, so that all nodes of interest within the same block have

the same threshold specification, i.e. Vth,k = γk1dk , where γk > 0
and 1dk is a dk × 1 vector of ones. This assumption does not limit

our work but allows for several scalability properties, as we will see

below, that lead to the computational efficiency of our approach.

For every block k in isolation, let uk be a voltage drop assignment

(relative to (Vdd − (1 − α)γk)) at all nodes in block k. For every

isolated block k and for any α ∈ [0, 1], define the sets Uk(α),Lk(uk),
and Sk(α), based on the analysis in Section IV-A, as follows:

Uk(α)
�

= {uk ∈ R
nk : 0 ≤ Pkuk ≤ αVth,k} (16)

Lk(uk)
�

={Ik ∈ R
mk : Ik ≥ 0, M ′

kIk ≤MkGkuk} (17)

Sk(α)
�

= {Lk(uk) : uk ∈ Uk(α)} (18)

For every α ∈ [0, 1] and for any uk ∈ Uk(α), let gk(uk) be a design

objective for block k satisfying the conditions of Lemma 3, and let

g∗k(α) be defined as follows:

g∗k(α) = max
uk∈Uk(α)

gk(uk) (19)

Let u∗k(α) be a vector function that evaluates to a value of uk for

which the above maximization attains its maximum: gk(u
∗
k(α)) =

g∗k(α), ∀α ∈ [0, 1]. Then, using Lemma 3, u∗k(α) can be expressed

as:

u∗k(α) = αu∗k(1), ∀α ∈ [0, 1] (20)

It is important to note that u∗k(α) depends on the choice of gk(uk)
so that Lk(u

∗
k(α)) depends on gk(uk) as well. For ease of notation,

let Fk(α)
�

= Lk(u
∗
k(α)), again keeping in mind that Fk(α) depends

on the choice of the design objective gk(uk).
During chip design, we can set the internal parameter α to ensure

the chip currents respect the desired power budgets for the individual

blocks. Thus, in the discussion below, we assume the chip is designed

to respect these local containers, so that an ON block draws a current

that is consistent with Fk(α), i.e. Ik ∈ Fk(α), and an OFF block

does not draw any current, i.e. Ik = 0.

We will use the notation B and B
q to denote the Boolean spaces

B = {0, 1} and B
q = {0, 1}q . Let βk ∈ B denote the mode of

operation of block k, i.e. βk = 1 if block k is ON, otherwise βk = 0.

Also, let β = [β1 · · · βq] ∈ B
q denote a working mode for the chip.

Define F(α, β) ⊂ R
m as follows:

F(α, β) =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

I1
...

Iq

⎤
⎥⎦ ∈ R

m : Ik ∈

{
Fk(α), if βk = 1
{0}, if βk = 0

⎫⎪⎬
⎪⎭
(21)

Notice that F(α, β) denotes a current container for all the current

sources attached to the grid under the working mode β and for the

parameter α.

With this, we can define υ(α, β) to be an upper-bound on the

worst-case voltage drop experienced by the nodes of interest in the

equivalent passive grid under the given α and β, based on the passive

grid analysis in (3), as follows:

υ(α, β) = Pv(F(α, β)) = PG−1A emaxI∈F(α,β)(M
′I) (22)

Notice that the current vector I that is used to carry out the maximiza-

tion in (22) has the vector form defined in (21), i.e. its components

I1, I2, . . . , Iq correspond to the current sources attached to block 1,

block 2, . . . , and block q. The columns of M ′ in (22) correspond to

the different components of I , so that we can partition M ′ as follows:

M ′ =
[
Z1 Z2 · · · Zq

]
(23)

where Zk is an n×mk matrix that is multiplied by Ik in (22).

For any α ∈ [0, 1], let

υk(α)
�

= PG−1A emaxIk∈Fk(α)(ZkIk) (24)

and

V (α) = [υ1(α) · · · υq(α)] (25)

Notice that for any α ∈ [0, 1], we have Ik ≥ 0, ∀Ik ∈ Fk(α), and

Zk ≥ 0, because M ′ ≥ 0. Furthermore, we have G−1A = In +
G−1(A − G) = In + G−1B ≥ 0, where In is the n × n identity

matrix, and P ≥ 0, so that υk(α) ≥ 0. Therefore, V (α) ≥ 0, ∀α ∈
[0, 1]. Furthermore, the following lemma shows that if α > 0, then

V (α) > 0. This will be useful in Section V.

Lemma 4: For any α ∈ (0, 1], we have V (α) > 0.
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2) Scalability: It is expensive to compute V (α) for different

values of α, as this would require solving q emax(·) operations as

in (24), i.e. q×n linear programs. The lemma below shows that, under

a certain mild condition on gk(·), V (α) has a scalability property in

terms of α.
Lemma 5: If gk(cu) = cgk(u) for any real number c > 0, u ∈ R

nk

and k ∈ {1, . . . , q}, then V (α) = αV (1), ∀α ∈ [0, 1].
Based on the above lemma, for any α ∈ [0, 1], we have

V (α) = V (1)α (26)

which is clearly much faster to compute than solving q instances

of (24) for every required value of α.
3) Superposition: It is practically impossible to solve (22) for

every required β, as this could lead to combinatorial explosion in the

required values of β. The lemma below establishes the principle of

superposition for the equivalent passive grid.
Lemma 6: For any α ∈ [0, 1] and β ∈ B

q , we have

υ(α, β) =
∑q

k=1 βkυk(α) = V (α)β (27)

The importance of the above lemma is that, for a given value of

α ∈ [0, 1], υ(α, β) can be found for different working modes β by

a simple matrix-vector multiplication between V (α) and β, which is

faster than solving (22) for every required β.
This leads to our main theoretical result and the main reason behind

the computational efficiency of our work, as follows. Combining the

results of Lemmas 5 and 6, for any α ∈ [0, 1] and β ∈ B
q , under a

certain mild condition on gk(·), we have

υ(α, β) = V (1)αβ (28)

Thus, we can find an upper-bound on the worst-case voltage drop

experienced by the nodes of interest in the full grid υ(α, β) for

any α ∈ [0, 1] and β ∈ B
q by solving υk(1), defined in (24),

∀k ∈ {1, . . . , q}, constructing V (1), defined in (25), and performing

a single matrix-vector multiplication, as in (28). This is clearly much

faster than solving (22) for every required value of α and β.
4) Safe Working Modes: In a power-gated PDN, the power

gating switches of a block are turned off when the logic circuitry

underlying that block is in “idle” or “sleep” state. Clearly, the voltage

levels inside an OFF block do not affect the voltage integrity of the

PDN and the only nodes whose voltage drop “matters” are the nodes

of interest inside the ON blocks as they are connected to switching

logic circuitry. In this section, we provide a formal definition for

the safety of the equivalent passive grid that is based on the voltage

drops at the nodes of interest inside the ON blocks. Furthermore, we

provide an equivalent mathematical condition that captures this safety

criterion.
We start by defining the safety condition for the full grid:
Definition 5: The equivalent passive grid is said to be safe under

F(α, β) if for every node of interest i that belongs to an ON block j,

we have υi(α, β) ≤ γj .
In the following lemma we will provide an equivalent mathematical

condition that captures the safety of the equivalent passive grid. We

will introduce a new voltage drop threshold vector that is a function

of the working mode β, denoted as vth(β), which will then be used

to check if the grid is safe by comparing υ(α, β) to vth(β), as we

will prove in Lemma 7. Based on the working mode β, the entries

of vth(β) that correspond to the nodes of interest that belong to OFF

blocks will become very large, so that the voltage drop at those nodes

does not impact the safety of the grid, whereas the entries of vth(β)
that correspond to the nodes of interest that belong to ON blocks will

have the original voltage drop threshold specification.
Let T be a d × q matrix of 0 and 1 entries that identifies (with a

1) which node of interest belongs to which block, i.e. Tij = 1 if the

ith node of interest belongs to the jth block, otherwise Tij = 0. Also,

let vth(β) = Vth + ρT (1q − β), where ρ > 0 is a large number.

It is enough for ρ to be larger than ‖V (1)1q‖∞. Notice that for any

β ∈ B
q , we have β ≤ 1q , so that 1q − β ≥ 0 which, because ρ ≥ 0

and T ≥ 0, gives ρT (1q − β) ≥ 0. Thus, we have:

vth(β) = Vth + ρT (1q − β) ≥ Vth > 0 (29)

Lemma 7: For any α ∈ [0, 1] and β ∈ B
q , the equivalent passive

grid is safe if and only if V (α)β ≤ vth(β).
For any β ∈ B

q such that V (α)β ≤ vth(β), β is said to be a safe

working mode. Define the set W(α) to be the set of all safe working

modes under the blocks’ containers Fk(α), i.e.

W(α)
�

= {β ∈ B
q : V (α)β ≤ vth(β)} (30)

which can be captured by a BDD.

To better visualize this, consider again the example of Fig. 2(a). In

Fig. 3(b), we show the setW ′(α) = {x ∈ R
q : V (α)x ≤ vth(x)} for

different values of α. Notice that, for any α ∈ [0, 1], W(α) consists

of the Boolean vectors β ∈ B
q that lie inside the space W ′(α). So,

W(0.3) =

{[
0
0

]
,

[
1
0

]
,

[
0
1

]}
andW(0.2) =

{[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]}
,

as shown in Fig. 3(b).

So far, any α ∈ [0, 1] will give us the required block-level current

containers Fk(α) = Lk(u
∗
k(α)) and the corresponding set of safe

working modesW(α), as defined in (17) and (30).

Fig. 4: Trade-off for different values of α.

V. APPLICATION

Referring again to the example of Fig. 2(a), notice that F1(0.3) ⊃
F1(0.2), as shown in Fig. 3(a). The same case holds for the right

block of Fig. 2(a) but is omitted due to lack of space. Furthermore,

W(0.3) ⊂ W(0.2), as shown in Fig. 3(b). Therefore, α = 0.3 allows

more flexibility to the underlying circuitry but allows less flexibility in

terms of the number of safe working modes, as compared to α = 0.2.

There is a clear trade-off for different values of α. In Fig. 4, we show

the trade-off achieved for different values of α on a 5k node grid with

16 blocks. Some values of α allow for large local power budgets but a

small number of safe working modes, whereas other values of α allow

small local power budgets but large number of safe working modes.

Thus, the question becomes, which α should we choose?

In this section, we will describe two design objectives: 1) the

maximum peak-power dissipation that each block can safely support

and 2) the largest number of safe working modes. In Section V-A,

we will describe some types of user-specified constraints that our

approach can handle, basically constraints on the peak power that each

block can safely support and the allowable working modes, and we

will see that these constraints can be represented as linear inequalities

on α, i.e. αmin ≤ α ≤ αmax. Based on the design objectives, we will

either choose αmax to allow large local power budgets at the cost of

small number of safe working modes, or αmin to allow more blocks to

turn ON simultaneously at the cost of smaller local power budgets. Or,

as probably the most useful case, an intermediate value of α between

the two limits will be chosen to achieve some objective on the size of

the local containers or the percentage of safe working modes.
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A. User-specified Constraints

In this section, we will examine two approaches for users to

influence the range of α based on any specifications that may be

known about the design at an early stage, thus achieving different

trade-offs for chip operation. In a sense, these specifications will help

reduce the range of α to a range that reflects design knowledge.

The user can enforce some working modes to be allowed during

chip operation, which we can incorporate as in (33). Also, the user can

enforce any local current/power budgets to satisfy some constraints,

which we can incorporate as in (37). Assuming that the working

modes constraints and the current/power constraints are consistent

and feasible, so that there exists an α ∈ [0, 1] that satisfies (33)

and (37), then we can define the allowable range of α as follows:

αmin ≤ α ≤ αmax (31)

where αmin = max(0,Δmin) and αmax = min(Δmax, α, 1).
1) Working Modes Constraints: Suppose we have some knowl-

edge about the working modes of the circuit, for example, if there

exists some dependencies among the blocks, i.e. a subset of the blocks

are required to be ON at the same time. In general, let W0 denote

the set of user-specified working modes that are required to be safe.

This type of constraint can be easily embedded into our framework

by searching for α that satisfiesW0 ⊆ W(α). We will see below that

this constraint can be represented as a linear constraint on α, i.e.

α ≤ α (32)

We will assume that for any β ∈ W0, we have β 	= 0, as we

already have 0 ∈ W(α), ∀α ∈ [0, 1], because V (α)0 = 0 ≤ vth(0).
For any β ∈ W0, let w(β) = V (1)β. Recall that V (1) > 0, due to

Lemma 4, which, combined with β ≥ 0 and β 	= 0, ∀β ∈ W0, gives

w(β) > 0, ∀β ∈ W0. The following lemma transforms the constraint

W0 ⊆ W(α) into a linear inequality on α.

Lemma 8: If gk(cu) = cgk(u), for any real number c > 0, u ∈
R

nk and ∀k ∈ {1, . . . , q}, then for any α ∈ [0, 1], W0 ⊆ W(α) if

and only if:

α ≤ α, where α
�

= min∀β∈W0,∀i (vth,i(β)/wi(β)) (33)

2) Current/Power Constraints: A broad range of power bounds

can be imposed on the resulting containers, given specifications

about the design at an early stage. In the following, we will discuss

several examples of such constraints that could be embedded in our

framework and we will show in Lemma 10 that these constraints can

be represented as a linear inequality on α, i.e.

Δmin ≤ α ≤ Δmax (34)

Define ψk(α) to be the largest instantaneous peak power dissipa-

tion achievable under Fk(α), which is conservatively approximated

by
ψk(α) = Vdd maxIk∈Fk(α)

(
1
T
mk

Ik
)

(35)

Recall that for any α ∈ [0, 1], Fk(α) is non-empty, so that ψk(α) ≥
0 is well-defined. Also, recall that Fk(1) allows a non-zero current

Îk ≥ 0, so that ψk(1) ≥ Vdd

(
1
T
mk

Îk
)
> 0.

The simplest bounds are on the minimum and peak-power, referred

to as local constraints, such as ψlb ≤ ψ(α) ≤ ψub where ψ(α) =
[ψ1(α) · · · ψq(α)]

T is a q × 1 vector of the peak power dissipation

that each block can safely support and ψlb and ψub are vectors of user-

specified lower and upper bounds on the peak power dissipation of the

blocks. Another bound commonly available from design specification

is the peak total power dissipation of a group of blocks, referred to as

global constraints, that is available at an early stage of the design, then

assuming we have a total of κ global constraints, we can incorporate

these constraints as slb ≤ Fψ(α) ≤ sub where F is a κ × q matrix

that consists only of 0s and 1s which indicate which block is present

in each constraint, so that F ≥ 0 has no row with all zeros, slb and sub

are κ×1 vectors representing the lower and upper bounds on the peak

power dissipation. We can represent the local and global constraints

compactly as:
plb ≤ Uψ(α) ≤ pub (36)

where plb =

[
ψlb

slb

]
, pub =

[
ψub

sub

]
, and U =

[
Iq

F

]
.

The following lemma establishes the scalability of ψ(α), which

will be useful to prove Lemma 10.

Lemma 9: If gk(cu) = cgk(u), for any real number c > 0, u ∈
R

nk and ∀k ∈ {1, . . . , q}, then ψ(α) = αψ(1), ∀α ∈ [0, 1].
The following lemma transforms the user-specified power constraints

into a linear inequality on α. Notice that U ≥ 0 and U has no row

with all zeros, and ψ(1) > 0. Therefore, Uψ(1) > 0.

Lemma 10: If gk(cu) = cgk(u), for any real number c > 0 and

u ∈ R
nk ∀k ∈ {1, . . . , q}, then we have plb ≤ Uψ(α) ≤ pub if and

only if
Δmin ≤ α ≤ Δmax (37)

where Δmin = max∀i
(

plb,i

Uψ(1)|i

)
and Δmax = min∀i

(
pub,i

Uψ(1)|i

)
.

B. Maximum Local Power

The design team may be interested in a workload scheduler that

allows as much local power dissipation as possible to the underlying

circuit. We refer here to the instantaneous power dissipation, which is

conservatively approximated by Vdd

∑mk

j=1 ik,j(t) for every block k,

where ik,j(t) is the time-varying current waveform representing the

current drawn by the jth current source in block k. Recall that ψk(α)
defines the peak power dissipation that block k can safely support

in the underlying circuit. Thus, we are interested in an α that allows

the highest possible
∑
∀k ψk(α), while satisfying the user-specified

requirements on the resulting local containers and working modes,

i.e. (31). We can formulate this as the following linear program:

σ∗ = Maximize 1
T
q ψ(α)

subject to αmin ≤ α ≤ αmax

(38)

Let αp be a scalar at which the above maximization attains its maxi-

mum. In other words, αmin ≤ αp ≤ αmax such that 1T
q ψ(αp) = σ∗.

Because the feasible region of (38) is non-empty, it follows that αp

is well-defined. Therefore, the resulting block-level containers are

Fk(αp) which describe the following current constraints:

ik(t) ≥ 0 (39)
M ′

kik(t) ≤ αpMkGku
∗
k(1) (40)

for every k ∈ {1, . . . , q}, where ik(t) is the time-varying current

waveform representing the current drawn by the kth block. Further-

more, the resulting set of safe working modes is:

W(αp) = {β ∈ B
q : αpV (1)β ≤ vth(β)} (41)

Recall that, from Lemma 9, we have ψ(α) = αψ(1). Notice that

for any αmin ≤ α ≤ αmax, we have αmaxψ(1) ≥ αψ(1), because

ψ(1) ≥ 0, or equivalently, we have ψ(αmax) ≥ ψ(α), for any

αmin ≤ α ≤ αmax. It follows that 1T
q ψ(αmax) ≥ 1

T
q ψ(α), for

any αmin ≤ α ≤ αmax, so that 1T
q ψ(αmax) = σ∗. Therefore, there

is no need to solve (38) and we can simply set αp = αmax.

C. Maximum Working Modes

Another approach that the design team might be interested in is

a workload scheduler that allows as much flexibility for the blocks

to turn ON simultaneously as possible, while still satisfying the user-

specified requirements. Let |W(α)| denote the cardinality of the set

W(α). Thus, we are interested in α that maximizes |W(α)| and

satisfies the user-specified requirements. We can find such an α by

solving the following optimization problem:

μ∗ = Maximize |W(α)|

subject to αmin ≤ α ≤ αmax

(42)
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TABLE I: Comparison of the two design objectives

Power Grid
Power

BDD Constraints Maximum Local Power Maximum Working Modes Runtime
Constraints

Nodes Blocks
Min. Avg. # of working

Max. ONa αp P (αp)
ω(αp)

αw P (αw)
ω(αw)

Isolated Block Full Grid

Power (mW) modes (×10−3) (mW) (×10−3) (mW) Analysis Analysis

5k 4 102 4 1 150 144 25.00% 108 102 56.25% 51 msec 14 sec

5k 9 38 18 2 174 71 9.76% 94 38 92.96% 103 msec 2 sec

5k 16 20 16 1 290 66 0.10% 90 20 99.40% 171 msec 1 sec

53k 16 164 29 2 101 239 48.29% 69 164 71.31% 279 msec 3.6 min

53k 25 102 43 4 113 172 1.04% 68 102 84.75% 338 msec 1.9 min

50k 36 66 53 3 154 146 - 70 66 - 447 msec 45 sec

600k 64 413 84 7 65 446 - 60 413 - 1 sec 2.9 hr

1.3M 100 568 120 11 68 655 - 59 568 - 3 sec 11.2 hr
a the maximum number of ON blocks in the user-specified working modes.

Let αw be a scalar at which the above maximization attains its maxi-

mum. In other words, αmin ≤ αw ≤ αmax such that W(αw) = μ∗.

Because the feasible region of (42) is non-empty, it follows that αw

is well-defined. Therefore, the resulting block-level containers are

Fk(αw) which describe the following current constraints:

ik(t) ≥ 0 (43)
M ′

kik(t) ≤ αwMkGku
∗
k(1) (44)

for every k ∈ {1, . . . , q}. Furthermore, the resulting set of safe

working modes is:

W(αw) = {β ∈ B
q : αwV (1)β ≤ vth(β)} (45)

The following lemma shows that αmin attains the maximum

of (42), so that we can let αw = αmin without solving (42).

Lemma 11: If gk(cu) = cgk(u), for any real number c > 0, u ∈
R

nk , and ∀k ∈ {1, . . . , q}, then |W(αmin)| = μ∗.

VI. EXPERIMENTAL RESULTS

The approach discussed in Section IV has been implemented in

C++. We conducted tests on a set of power grids that were generated

based on user specifications, including grid dimensions, metal layers,

number of blocks, number of metal layers in the global grid, pitch and

width per layer, and C4 and current source distributions. The technol-

ogy specifications were consistent with 1V 45 nm CMOS technology.

Table I shows the characteristics of a number of test grids. The grids

generated have 8 metal layers in total with 6 metal layers in the global

grid. Also, the number of nodes attached to current sources range from

800 to 214k. All results were obtained using a hyperthreaded 12-core

3GHz Linux machine with 128GB of RAM. The optimizations were

performed using MOSEK optimization package [12]. All the linear

systems are solved using Cholmod [13] from SuiteSparse [14]. In

our implementation, we use Pthread to parallelize the computation

and take advantage of the 12-cores machine. The runtime breakdown

of our approach, i.e. the isolated block analysis and the full grid

analysis, is shown in columns 12-13 of Table I, which represent the

wall clock time for the parallel Pthread implementation. Recall that

in the isolated block analysis, the block-level containers are generated

based on a choice of the design objective gk(·). In our tests, we used

the peak power algorithm in [10] as the design objective for all the

blocks.

Table I compares the results of using αp (Section V-B) and αw

(Section V-C) based on user-specified constraints. In column 3, we

describe the user-specified constraints on the local power. Specifically,

we require the average of the peak powers of all the blocks to be larger

than the specification in column 3. Furthermore, in columns 4-5, we

describe the user-specified constraints on the working modes, i.e. the

number of user-specified working modes as well as the maximum

number of blocks that are ON in those working modes. Denote by
P (α) the average of the peak powers of all the blocks under the

block containers Fk(α). Also, denote by ω(α) the percentage of the

working modes that are safe under block containers Fk(α). To study

the difference between the the generated block containers and the

W(·) using αp and αw, we found the average of the peak powers of all

the blocks under Fk(αp) and Fk(αw), which are P (αp) and P (αw),
and the percentage of safe working modes in W(αp) and W(αw),
which are ω(αp) and ω(αw). For instance, on a 53k node grid with

25 blocks, the average of the peak powers for all blocks underFk(αp)
and Fk(αw) are 172 mW and 102 mW, respectively and the percent-

age of safe working modes underW(αp) andW(αw) are 1.04% and

84.75%, respectively. The results show that P (αp)  P (αw) and

ω(αp)� ω(αw). Therefore, each approach provides a distinct trade-

off for the design team.

VII. CONCLUSION

Analysis and verification of active PDNs is crucial to ensure

voltage integrity. With active devices, most traditional techniques are

ill-equipped to verify the PDN. We propose a framework to generate

block-level circuit current constraints as well as an implicit binary

decision diagram that helps identify the safe working modes. Subject

to user-guidance, we then propose two design objectives that exploit

the trade-off between how many blocks are ON simultaneously and

how big the power budgets of individual blocks are.
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