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Abstract

This paper deals with the estimation of the median time-to-failure (MTF) due to elec-

tromigration in the power and ground busses of CMOS VLSI circuits. In our previous

work [3, 4], we presented a novel technique for MTF estimation based on a stochastic cur-

rent waveform model. In [6], we argued that including the variance waveform of the current,

in addition to its expected waveform derived in [3, 4], would further improve the accuracy

of the MTF estimate. In this paper, we present a novel technique for deriving the variance

waveform for CMOS circuits. Using this technique, we establish the importance of the vari-

ance waveform by showing that its contribution to the MTF estimate can be in the range

of 100% to 200% relative to that of the expected waveform. The technique has been built

into the probabilistic simulator CREST [3, 4], and has shown good agreement with SPICE,

as well as excellent speedup.
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1 Introduction

Reliability is a major concern in integrated circuit design. As higher levels of integration

are used, metal line width and line separation will continue to decrease, thereby increasing

a chip's susceptibility to failures resulting from line shorts or opens. Thus the importance

of reliability can only increase in the future, and circuits should be designed with reliability

in mind.

While the results to be presented below can be used to study a variety of reliability

problems, we will illustrate their utility by focusing on the problem of Electromigration

(EM). EM is a major reliability problem [1, 2] caused by the transport of atoms in a metal

line due to the electron 
ow. Under persistent current stress, EM can cause deformations

of the metal lines which may result in shorts or open circuits. The failure rate due to EM

depends on the current density in the metal lines and is usually expressed as a median time-

to-failure (MTF). There is a need for CAD tools that can predict the susceptibility of a given

design to EM failures.

In [3, 4] we presented a novel technique for MTF estimation, based on a stochastic current

waveform model. The implementation of this technique in the program CREST (CuRrent

ESTimator) has proven to be very e�ective both in terms of accuracy and speed. We focus on

the power and ground busses, and derive currents for them to be used for MTF estimation.

In the interest of clarity, we will review some of the basic concepts behind this approach.

The reader is referred to [7] for a more detailed description.

The argument presented in [7] is that the correct current waveform to be used for MTF

estimation is one that combines the e�ects of all possible input waveforms. By considering

the set of logical waveforms allowed at the circuit inputs as a probability space [5], the

current in any branch of the bus becomes a stochastic process. CREST derives the expected

(or mean) waveform (not a time-average) of this process, which we call an expected current

waveform, E[i(t)]. This is a waveform whose value at a given time is the weighted average of

all possible current values at that time. CREST uses statistical information about the inputs

to directly derive the expected current waveform. The resulting methodology is what we call

a probabilistic simulation of the circuit. In general, it can be slightly more time consuming
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than a single standard timing simulation run, but it needs to be applied only once, resulting

in signi�cant speedup.

In [6], we derived the exact relationship between the MTF and the statistics of the

stochastic current and showed that a more accurate MTF estimate would be obtained if the

variance waveform, V [i(t)], of the stochastic current is included as well. We also discussed

how the variances of the bus branch currents can be obtained from those of gate currents.

V [i(t)] is a waveform whose value at a given time is the variance of the current values at that

time, V [i(t)] = E
�
(i(t)�E[i(t)])2

�
. It is an indication of the spread of the current values at

every time point around their expected value.

In this paper we present a novel technique for deriving the variances of the individual

gate currents in CMOS circuits. As a result, the requirements for accurate MTF estimation

are complete : we know both how to derive the expected and variance waveforms, and how to

use them to accurately estimate the MTF. Using this technique, we establish the importance

of including the variance waveform in addition to the expected waveform. This is done by

presenting a number of examples where the contribution of the variance waveform to the

MTF estimate is in the range of 100% to 200% relative to that of the expected waveform.

This technique has been built into the probabilistic simulator CREST, and has shown good

agreement with SPICE. The technique is dramatically faster than traditional approaches :

we demonstrate a speedup of over 11000X on a 648-transistor CMOS parallel multiplier

circuit.

This paper is organized as follows. Section 2 reviews some of the speci�cs of the CREST

approach to lay the groundwork for the remaining sections. Section 3 describes the derivation

of the gate current variances. Section 4 discusses implementation issues and shows the results

of several CREST runs, and section 5 summarizes the results and draws some conclusions.

2 Basic Concepts

As explained in [3, 7], the probabilistic simulation approach follows an event-driven sim-

ulation strategy. Probability waveforms, which represent a large number of possible input

logical waveforms, are propagated through the circuit as a sequence of probabilistic events.

A probabilistic event embodies a number of possible logical transitions at that time instant.
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Whenever a gate is simulated, the events at its inputs are used to derive an event at its

output, and an expected current pulse, to be added to the global expected current waveform.

This pulse is considered to be a triangular pulse. It starts with a peak value at the time

of transition and decays linearly to zero after a time interval called the time span. The

variance waveform can be derived with little modi�cation to the overall simulation strategy.

Whenever an expected pulse is derived for a gate, a variance pulse will be derived as well.

The next section will describe how this pulse is derived.

Fig. 1 shows a generic CMOS gate structure. The p-block or p-part (n-block or n-part)

of a gate will be used to refer to the p (n)-channel transistor mesh between its output node

and the power supply (ground). A gate will be assumed to have independent inputs. While

this may be true at the primary circuit inputs, it may not be true in general. However, the

general case can be properly handled using the concept of a supergate, as described in [4],

with the independent-inputs-gate-solver used as a subroutine.

We will focus on the charging current component. The output node capacitance is split

into two lumped capacitors Cp to Vdd and Cn to Vss. Similarly, each internal gate node ni has

two capacitances Cin and Cip. The values of these capacitances are derived from the circuit

description and the transistor model parameters. On a low-to-high transition, the currents


owing through Cn and Cp at the output node are ip1 and ip2, respectively, as shown in

the �gure. The corresponding in1 and in2 for a high-to-low transition are also shown. The

currents ip2 and in2 are discharging currents that redistribute locally, and we are interested

in i = ip1 + in1. Of course these currents are associated with the output node only, and the

total gate current itot will be larger than i. However, the output current plays a central role

in the derivation of V [itot(t)].

3 Derivation of the Variance

The variance waveforms for the gate total and output currents will be modeled by triangular

pulses V [itot(t)] and V [i(t)], respectively, with peak values of V [Itot] and V [I]. If an event

occurs at the gate input at time t, then we denote by t� and t+ the instances of time

immediately before and after the event, respectively. Focusing for now on the output current

pulse, its variance waveform starts with a peak of V [I] = V [i(t+)] at time t and decays
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linearly to zero at time t + � . Since V [I] = E[I2] � E[I]2 [5], and since CREST already

derives the expected pulse peak (E[I]), then it will be enough to derive E[I2].

Let ip = ip1 + ip2 and in = in1 + in2. It's easy to verify that ip1 = ip � Cn=(Cp + Cn),

and in1 = in �Cp=(Cp + Cn). Therefore :

E[i2(t)] = E[i2
p
(t)]

�
Cn

Cp + Cn

�2

+ E[i2
n
(t)]

�
Cp

Cp +Cn

�2

The term containing E[ip(t)in(t)] is omitted (it is zero) since at least one of the charging

currents is zero at any given time. In particular, the value at the peak is :

E[I2(t)] = E[I2
p
(t)]�

�
Cn

Cp + Cn

�2

+E[I2
n
(t)]�

�
Cp

Cp + Cn

�2

The values of E[I2
p
] and E[I2

n
] are derived as follows. For E[I2

p
], consider the p-part of

the gate, and let every transistor Tk be represented by a switch of on-conductance gon;k [7].

Based on this switch-network model of the p-block, let Gp(t) be the random conductance

between the output node and Vdd. Gp is a function of the individual transistor random

conductances gk, where gk is 0 if the transistor is o� and gon;k if it is on. If an event occurs

at the gate at time t, then the value of Gp(t+) and the previous state of the output node,

Vo(t�), will determine Ip. Formally, we have E[I2
p
] = E[(Vdd � Vo(t�))2 � G2

p
(t+)], which

becomes :

E[I2
p
] = V 2

dd � E[G2
p
(t+) j Gp(t

�) = 0]� P (Gp(t
�) = 0)

where P (A) is the probability of the event A, and E[A j B] denotes the conditional expected

value [5] of A given B. The formula is correct because if Gp(t�) = 0 (6= 0) then Vo(t�) = 0

(Vdd). Similarly for the n-part of the gate, we get :

E[I2
n
] = V 2

dd � E[G2
n
(t+) j Gn(t

�) = 0]� P (Gn(t
�) = 0)

To derive the conditional expectations, consider a graph representation of the p-block

(or n-block), where every edge in the graph is labeled with E[g2k(t
+) j Gp(t�) = 0],

E[gk(t+) j Gp(t�) = 0], and the gate node probabilities of its corresponding transistors.

The details of how these quantities can be derived for every transistor can be found in [7].

Then perform a graph reduction operation [7], which, simply stated, involves a number of

series/parallel combinations and node eliminations that reduce the graph to a single edge,
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whose labels are the required statistics E[G2
p
(t+) j Gp(t

�) = 0] and E[Gp(t
+) j Gp(t

�) = 0].

Similarly for the n-block.

Having found the peak V [I] = E[I2] � E[I]2 for the output current, the time span �

will be found by �rst solving for the area under the V [i(t)] pulse. Notice that, if i(t) is a

triangular pulse of height I and area q, then :

Z
1

0

i2(t)dt =
2

3
Iq

In this case, q is equal to the charge delivered to (or from) the output node capacitors. From

this it follows that :

Z
1

0

E[i2(t)]dt =
2

3
E[Iq]; and

Z
1

0

E[i(t)]2dt =
2

3
E[I]E[q]:

The second equation follows since E[i(t)] is a triangular pulse of height E[I] and area E[q].

Therefore, the variance pulse has an area :

V [I]� �

2
=

Z
1

0

V [i(t)]dt =
2

3

�
E[Iq]� E[I]E[q]

�
:

The value of E[q] is available from equation (5) of [3], and the value of E[Iq] can be written

as :

E[Iq] = E[(Ip1 + In1)� (qp1 + qn1)]:

where Ip1 (In1) is the peak of ip1(t) (in1(t)), and qp1 (qn1) is the charge delivered by ip1(t)

(in1(t)). Since qp1 (qn1) is equal to VddCn (VddCp) if ip1(t) (in1(t)) is non-zero, and is

otherwise zero, then :

E[Iq] =
VddC2

n

Cp +Cn

E[Ip] +
VddC

2
p

Cp + Cn

E[In]:

The time span of the gate output current variance pulse is, therefore :

� =
4

3

�
E[Iq]� E[I]E[q]

V [I]

�
:

If itot(t) is the total gate current, then :

Z
1

0

V [itot]dt =
2

3

�
E[Itotqtot]� E[Itot]E[qtot]

�
:

where E[qtot] is available as equation (7) in [3]. Unfortunately, E[Itotqtot] does not have

a simple expression as was found for E[Iq] above. We have chosen to use a conservative
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estimate based on the following assumption : whenever a node in the p-block (n-block) is

charged to Vdd (Vss), then every other node in the p-block (n-block) is also charged to Vdd

(Vss). This assumption is true for simple gates, and overestimates the current-charge product

in more complex cases. Based on this assumption, one can show [7] that :

E[Itotqtot] �
E[qp;tot]

E[qp]

QpCnE[Ip]

Cp +Cn

+
E[qn;tot]

E[qn]

QnCpE[In]

Cp + Cn

;

where E[qp] and E[qn] are available as equations (9) & (10) in [3], E[qp;tot] and E[qn;tot] are,

respectively, the �rst and second summations in equation (7) in [3], and

Qp =
X

i2P block

VddCin; Qn =
X

i2N block

VddCip:

As was assumed for the expected current pulse [3, 7], we let the time span of the gate

total current variance pulse be equal to that derived for the gate output current, therefore :

V [Itot] =

�
E[Itotqtot]� E[Itot]E[qtot]

E[Iq]� E[I]E[q]

�
� V [I]:

4 Implementation and Results

The variance calculation technique outlined above has been implemented in CREST. We

present below the results of CREST runs on a variety of circuits, showing both waveform

comparisons and timing performance.

We start out with a simple example, a 2-input CMOS NAND gate. The variance wave-

form comparison between CREST and SPICE is shown in Fig. 2. The SPICE waveform is

derived by running SPICE on the NAND gate for all possible logical transitions at its in-

puts, deriving the expected current waveform by doing a time-point averaging of the results,

and then using that to �nd the variance as the time-point average of (i� E[i])2. Since the

object of this research is to handle very large chips, and since electromigration models for

ac waveforms are still controversial, it makes little sense to shoot for perfect accuracy in the

current waveforms. It is more important to be able to derive in a very short time a waveform

that matches the peak and general shape of the SPICE waveform.

Another single-gate comparison is shown in Fig. 3 for a CMOS complex gate. The

comparisons for two larger circuits are shown in Fig. 4 (for an XOR circuit) and Fig. 5 (for

a 54-MOSFET 2-bit ripple adder circuit).
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Our �nal example is a much bigger and more complex circuit; it is a 648-MOSFET 4-bit

parallel multiplier. This circuit is too big to make the 28 required SPICE simulations. We

will, therefore, show two di�erent CREST runs to demonstrate that the variance computation

works well even when the heuristics introduced for handling large circuits in [4] are used.

In Fig. 6 we compare a full accuracy CREST run and a heuristic CREST run in which

all internal nodes of the multiplier were assumed independent. The excellent agreement

rea�rms the conclusion made in [4] that as a circuit becomes larger, the correlation between

its internal nodes may be safely neglected.

We next examine the importance of the variance waveform for MTF estimation. As

shown in [6], the expected and variance waveforms combine to provide a Je� dc current

density value to represent the ac current waveform for MTF estimation. We have measured

this variance contribution as the increase in Je� due to the variance waveform, divided by

Je� using only the expected waveform. This has been tabulated in Table 1 as a percentage

for all the examples presented above. It clearly establishes the importance of the variance

waveform in addition to the expected waveform.

Finally, we illustrate the speed performance of CREST with the variance estimation built

in. Table 1 shows the speed comparisons between CREST and SPICE for all the examples

presented above. The speedup becomes much better for larger circuits (1529X for the adder

and 11595X for the multiplier). In fact, the speedup should grow exponentially, because an

exponential number of deterministic simulation runs are replaced by a single probabilistic

simulation run. We point out the case of the multiplier circuit (the largest circuit in the

table) with the heuristic CREST run (last row in Table 1); considering the excellent waveform

comparison in Fig. 6 along with the dramatic speedup of 11595X in Table 1, this establishes

the feasibility of solving large VLSI chips.

5 Summary and Conclusions

We have discussed the problem of estimating the median time-to-failure (MTF) due to

electromigration in the power and ground busses of CMOS VLSI circuits. In our previous

work [3, 4, 6], we had presented a novel technique for MTF estimation based on a stochastic

current waveform model. In this paper we have reviewed this technique, and veri�ed that
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Table 1. Execution time comparisons. Time is
in CPU seconds on a VAX-11/780; size refers to
the number of transistors.

Variance

Circuit Size SPICE CREST Contribution Speedup

Nand 4 41.75 0.90 110% 46X

Complex 6 244.15 1.09 185% 224X

Xor 16 456.00 3.13 236% 146X

Adder 54 32620.42 21.33 107% 1529X

Multiplier 648 697530.88* 1871.99 219% 373X

Multiplier 648 697530.88* 60.16y 200% 11595X

*Estimated (28 times the cost of a typical logical SPICE run).
yHeuristic CREST run, all others are full accuracy CREST.

including the variance waveform of the current, in addition to the expected waveform derived

in [3, 4], further improves the accuracy of MTF estimation. This was done by showing that

the variance contribution to the MTF estimate can be in the range of 100% to 200% relative

to that of the expected current waveform. We have described a novel technique for deriving

the variance waveform, and its implementation in the probabilistic simulator CREST. The

results of several CREST runs have been presented, and they show good waveform agreement

with SPICE, as well as excellent speedups over traditional approaches - a speedup of over

11000X was demonstrated on a 648-transistor circuit.

This work proves that the expected and variance waveforms of the stochastic current

model are : (1) essential to derive an accurate MTF value, and (2) can be e�ciently derived

using the probabilistic simulation approach. The main advantage of this approach is the

ability to handle large circuits by replacing an exponential number of deterministic simulation

runs with a single probabilistic simulation run. Without such a technique, analyzing the

reliability of large circuits would seem to be an impossibility. The reader is referred to [7]

for a more detailed description of the probabilistic simulation approach.
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Figure Captions

Figure 1: A generic CMOS gate structure.

Figure 2: CREST variance pulse result for a 2-
input CMOS nand gate, compared to SPICE.

Figure 3: Variance results for a 3-input complex
CMOS gate (inset).

Figure 4: Variance results for a 16-MOSFET
exclusive-or (xor) CMOS circuit.

Figure 5: Variance results for a 54-MOSFET 2-
bit ripple adder CMOS circuit.

Figure 6: Variance results for a 648-MOSFET
4-bit parallel multiplier CMOS circuit.
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