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Abstract
A power estimation approach is presented in which
blocks of consecutive vectors are selected at random
from a user-supplied realistic input vector set and the
circuit is simulated for each block starting from an
unknown state. This leads to two (upper and lower)
bounds on the desired power value which can be quite
tight (under 10% difference between the two in many
cases). As a result, the power dissipation is obtained
by simulating only a fraction of the potentially very
large vector set.

1. Introduction
Power dissipation of VLSI circuits is a major concern
of the semiconductor industry. Excessive power dissi-
pation in integrated circuits causes overheating, which
can lead to soft errors or permanent damage. It also
limits battery life in portable equipment. Thus, there
is a need to accurately estimate the power dissipation
of an IC during the design phase.

Several approaches have been proposed for power
estimation [1], especially for estimation at the gate-
level. However, even at the gate-level, the problem is
not yet completely solved. At least two open problems
remain: 1. Accurate and fast estimation of the average
power dissipated by individual gates, typically inside
an optimization loop, and 2. Accurate and fast esti-
mation of the total average power dissipation in large
sequential circuits. The words “accurate” and “fast”
are emphasized in both cases to indicate that existing
techniques are either inaccurate and fast or accurate
and slow. The fact that the first problem is not yet
solved has recently been clearly illustrated in [2]. In
this paper, we will argue and demonstrate that the
second problem is also still open, and we offer a new
method which provides accurate and fast estimation
of the total average power of large sequential circuits.

Since the power is pattern-dependent, the aver-
age power dissipation of a circuit is not well-defined
until a specific vector set is chosen. For combinational
circuits, this may not be very critical, because differ-
ent vector sets may dissipate approximately the same
power, provided they have approximately equal values
of switching activity. Thus, using a set of randomly
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generated vectors (with the right statistics) may be
appropriate for these circuits. However, this does not
hold for sequential circuits, because a real vector set
(as opposed to a randomly generated, artificial vec-
tor set) may contain specific vector sequences that put
the circuit in specific operational modes or sub-spaces
of its large state space and, in different operational
modes, the circuit may dissipate quite different values
of power. All one has to do is think of all the many
different operational modes of a large micro-processor.
Thus, for sequential circuits, the power may be criti-
cally dependent on the specific vector sequences that
occur during typical operation.

Most existing techniques of power estimation con-
sider simply the average switching activity and sig-
nal probability of the input signals and use either
static probability propagation methods [3–6] or dy-
namic Monte Carlo simulation using randomly gen-
erated vectors [7, 8]. In either case, one runs the risk
of taking the circuit into parts of its state space where
it does not belong, i.e., into modes of operation that
are unrealistic and may never be exercised in practice.
When this happens, there is no guarantee that the es-
timated power has any relation to what the circuit will
actually dissipate under typical operation.

To illustrate this problem, we have considered a
number of sequential circuits and constructed two sets
of input vectors for each. Both sets of vectors have
the same switching activity and signal probability for
each input node. However, in one vector set, the in-
put signals were generated at random, without any
correlation between them, and in the other non-zero
correlations were considered, both in space (between
pairs of bits in the same vector) and in time (between
pairs of consecutive vectors). The intention is that
these correlations would mimic to some degree the re-
lationships that typically exist between signals, such
as signals resulting from decoded instructions or gen-
eral control signals. Note that these correlations are
only the simplest kinds of correlation relations, be-
cause they do not model the temporal correlations that
can exist in vector streams over several clock cycles.
We emphasize this point to indicate that proposed ap-
proaches that use correlation coefficients [9] may be
able to handle pairwise correlations between bits in
a vector or between consecutive vectors, but cannot
handle the variety of other input signal relations that
can exist in sequential circuits. Even with just these
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simple correlations applied, big differences are possi-
ble in the resulting power values, as shown in Table I
where Pwr(uc) refers to power dissipated under the
uncorrelated vector set and Pwr(co) is the power due
to the correlated vector set. The error (Err) is mea-
sured as the difference between the two power values,
divided by the power due to the correlated set. Note
that the power in both cases (uncorrelated and corre-
lated inputs) was measured using the same simulator,
so that the errors are due only to the presence of the
additional correlations in one vector set but not in the
other.

Table I.
DIFFERENCE IN POWER VALUES (in mW) DUE TO PRESENCE

OF CORRELATION IN THE VECTOR SET.

Ckt #input#latch#gatePwr(uc) Pwr(co) Err(%)
s298 3 14 119 0.3152 0.2615 20.54
s349 9 15 161 0.3924 0.3181 23.36
s386 7 6 159 0.4122 0.3591 14.80
s444 3 21 181 0.2085 0.1692 23.25
s526n 3 21 194 0.3375 0.2545 32.58
s641 35 19 379 0.3232 0.2982 8.38
s820 18 5 289 0.4912 0.3998 22.86
s1196 14 18 529 1.4719 1.7009 -13.46
s1488 8 6 653 0.3729 0.1796 107.63
s35932 35 1728 16065 13.8721 12.2942 12.83

It would seem, therefore, that the only truly accu-
rate power estimation method for sequential circuits is
to simulate the circuit for a specific realistic and typ-
ical vector set. We refer to such a vector set as the
power vector set. If one has a power vector set which
is short enough to simulate in its entirety, then this
would certainly be the method of choice. However, in
practice it is very hard (almost impossible) to spec-
ify a power vector set which is both short-enough for
simulation and long-enough to cover all the interesting
operational modes of a large sequential circuit. Micro-
processor designers will usually agree that millions of
vectors may be needed in order to satisfactorily exer-
cise their large designs.

To solve this problem, we propose a method of
power estimation that takes a (potentially very long)
power vector set and provides an estimate of the total
power by simulating only a fraction of the vector set.
The vectors to be simulated are selected by repeatedly
choosing blocks of consecutive vectors at random, un-
til certain accuracy criteria are met. We call this a
block-sampling approach. From the repeated simula-
tions of the blocks, we collect statistics on the mean
upper bound and mean lower bound for the power per
block. Using standard Monte-Carlo mean estimation
techniques, the two means can be estimated with user-
specified accuracy and confidence without having to
simulate all blocks. The net effect is that only a frac-
tion of the total vector set is simulated and accurate
tight bounds on the total power are estimated, yielding
a viable accurate power measure.

2. Problem formulation
Let u1, u2, . . . , um be the primary input nodes of a
sequential logic circuit and let x1, x2, . . . , xn be the
present state lines. For simplicity of presentation, we
have assumed that the circuit contains a single clock
that drives a bank of edge-triggered flip-flops. On the
falling edge of the clock, the flip-flops transfer the val-
ues at their inputs to their outputs. The inputs ui(k)
and the present state values xi(k) determine the next
state values xi(k +1) and the circuit outputs, where k
denotes the clock cycle, so that the circuit implements
a finite state machine (FSM).

Suppose a power vector set is provided which con-
sists of the input vectors U(1), U(2), . . . , U(M), where
U(k) = [u1(k) u2(k) . . . um(k)] is the input vector ap-
plied during cycle k, and M is the total number of vec-
tors. We assume that the initial state vector X(1) is
well-defined, so that there exists a well-defined result-
ing sequence of state vectors X(1), X(2), . . . , X(M),
where X(k) = [x1(k) x2(k) . . . xn(k)]. The initial
state need not be known, it only needs to be well-
defined, i.e., not arbitrary or variable, in order for the
power (due to this vector set) to be well-defined.

The total energy dissipated in the circuit in the
kth cycle, denoted e(k), is a function of X(k − 1),
X(k), U(k − 1), and U(k). For e(1), since X(0) and
U(0) are not defined, we arbitrarily define e(1) = 0.
Over a block of K consecutive input vectors, starting
at cycle i, the average power dissipated is (where K is
a constant, the same for any i):

PK(i) =
1

KT

i+K−1∑

k=i

e(k) (1)

where T is the clock period, and the desired total
power dissipation P (over the whole vector set) is given
by:

P =
1

MT

M∑

k=1

e(k) =
1
M

M∑

i=−K+2

PK(i) (2)

Notice that for the last K − 1 blocks, for which i +
K − 1 > M , one should use e(k) = 0 in (1) for all
k = M + 1, . . . , M + K − 1. The same applies to the
first K−1 blocks, e(k) = 0 for k = −K+2, . . . , 0. This
is required in order for the average power per block
to be equal to the average power per cycle, leading
to (2). If we now consider a probability experiment in
which a block of vectors is chosen at random from the
power vector set so that all blocks are equi-probable,
then the average power per block becomes a random
variable, denoted PK, which takes values in the set
{PK(−K+2), PK(1), PK(2), . . . , PK(M)}. We will use
bold font to denote random quantities. From (2), it
becomes clear that the total power is the following
mean or expected value:

P = E[PK] (3)
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where E[·] denotes the expected value operator. If
P u

K(i) and P l
K(i) are upper and lower bounds on PK(i),

respectively, then we can also talk about the random
variables Pu

K (random upper bound value) and Pl
K

(random lower bound value), and it also becomes clear
that:

E[Pl
K] ≤ P ≤ E[Pu

K] (4)

In the next section, we propose a practical method for
estimating the two bounds in (4).

3. Proposed approach
If it were possible to obtain sample values of PK(i) for
a sufficient number of values i, it would then be possi-
ble to estimate P based on (3) to any desired accuracy
(with some specified confidence) using traditional sta-
tistical methods of mean-estimation. However, since
the FSM state at the start of a block is unknown, this
cannot be done. Instead, our approach is based on
equation (4) and involves using mean estimation tech-
niques to find two bounds on the unknown power value.

Briefly stated, we make N random choices for the
block start index i (let these constitute a set of indices
I) from which we compute by simulation N sample
values of each of the random variables Pu

K and Pl
K.

We then compute the two means:

E[Pu
K] ≈ 1

N

∑

i∈I

P u
K(i) and E[Pl

K] ≈ 1
N

∑

i∈I

P l
K(i)

(5)
which we can use as bounds on the desired power value
P , based on (4). It remains to describe how to perform
the simulation in order to obtain P u

K(i) and P l
K(i), and

how to choose values for K and N . These topics are
covered below.

3.1 Block simulation

The simulation of a block of vectors is complicated by
the fact that the state of the FSM at the beginning of
that block is not known. Therefore, we set the FSM to
an all-X state (all state bits are in the unknown state)
and perform 3-valued gate-level simulation, with the
values (0, 1, X). During the simulation of the block, we
compute two bounds on the power due to that block.
The upper (lower) bound is found by assuming that ev-
ery signal transition containing an X value actually oc-
curs with the X replaced by either a 0 or a 1, whichever
leads to the larger (smaller) power dissipation for that
transition. For instance, if the output of a gate makes
a X → 1 transition, then it is assumed to be a 0 → 1
transition for purposes of computing the upper bound
and a 1 → 1 transition for purposes of computing the
lower bound. For purposes of continuing the simula-
tion, the transition is kept as X → 1. Other cases are
treated similarly. In this way, the true (unknown) sig-
nals in the circuit are guaranteed to be sub-sets of the
simulated signals, and the true power for that block
is guaranteed to be between the two resulting bounds
P u

K(i) and P l
K(i).

The reason that this method can be useful in prac-
tice is that in many cases, many of the X values be-
come definite 0 or 1 values during three-valued sim-
ulation (more on this in section 4). In fact, we have
found that sufficiently many X values become known
that the two bounds resulting from the simulation of
one vector block can be very close, close enough to
constitute a viable measure of power.

Note that any kind of simulator may be used - the
measured power will be as accurate as the simulation
model. Since we are computing the total power of the
circuit (and not the powers of individual gates), we
find that a logic simulator with a good timing model
is sufficient. In our implementation, every gate has
a scalable delay value, depending on the output load-
ing capacitance due to its drain capacitance and the
MOSFET gate capacitance of the logic gates on the
fanout branches. Our simulator is event-driven, so
that the estimated power includes the power due to
glitches (i.e., hazards). Let nl

k(i) and nu
k(i) be lower

and upper bounds on the number of logic transitions
made by node i in clock cycle k, respectively. These
are computed during the simulation by simply consid-
ering that signal transitions involving an X value can
be interpreted in multiple ways as explained above, in-
cluding one way representing the most power per tran-
sition and another way representing the least. Thus,
for example, upon observing a 0 → X transition at
node i, we would increment nu

k(i) (due to the 0 → 1
possibility) and not increment nl

k(i) (due to the 0 → 0
possibility). From this, the total energy dissipated in
clock k is bounded by el(k) ≤ e(k) ≤ eu(k), where the
energy bounds are computed as follows:

el(k) =
1
2

∑

i

V 2
ddCin

l
k(i) (6)

eu(k) =
1
2

∑

i

V 2
ddCin

u
k(i) (7)

respectively, where Ci is the node capacitance and the
summations are taken over all gate/latch output nodes
in the circuit. The reason for the 1/2 coefficient is that,
on average, half the transitions will be low-to-high and
the other half will be high-to-low. From this, the block
upper/lower bound values P u

K(i) and P l
K(i) are com-

puted in a way similar to equation (1), as follows:

P l
K(i) =

1
KT

i+K−1∑

k=i

el(k) (8)

P u
K(i) =

1
KT

i+K−1∑

k=i

eu(k) (9)
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3.2 Choice of block size

The choice of block size, K, can affect the tightness of
the bounds in (4). This is because the larger the block
is, the more probable it can be that more X values
will be converted to definite 0 or 1 values during the
simulation. On the other hand, K should not be too
large because beyond some point there will typically
be very little or no reduction in the number of X val-
ues. In the development leading to equation (2), it was
made clear that K should be a constant (the same for
all blocks). However, during the simulation of a block
of vectors, if it is found that PK(i) has already been
estimated with sufficient accuracy before all K vectors
have been simulated, there would clearly be no reason
to continue the simulation of that block. Therefore, we
use a dynamic scheme in which we may simulate only
K′ < K vectors from a block, with K being the hard
limit on the number of simulation vectors per block.
In our implementation, this hard limit was chosen em-
pirically, by looking at a large number of simulations,
and we found that a value of K = 500 is appropriate.
Typical plots are shown in Figs. 1 and 2. In practice,
say for a micro-processor design, the value of K would
probably have to depend on the instruction set and
on the number of instructions that may be required to
constitute meaningful processing tasks.
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Figure 1. Upper and lower power bounds under a
correlated vector set for circuit s1423 (74 latches and
657 gates).

As for the choice of K′, we use the following
heuristic approach to determine when to stop the sim-
ulation within a block. For every simulation cycle,
we compute the latest value of the slope of the power
waveform - this is a waveform which is obtained by tak-
ing the average at every time point of the two power
bound waveforms. When this slope becomes small (rel-
ative to a built-in threshold), then we check the tight-
ness of the bounds. The tightness is defined as the dif-
ference between the two block power bounds divided
by their average. It can be shown that if the bounds
on the power of every block satisfy a given tightness
specification, then the two bounds on the total power
in equation (4) also satisfy the same tightness. If the

tightness is less than a user-specified value, then we
stop the simulation of that block. Otherwise, if the
tightness is not small enough but does not change for
a number (in our implementation, 10) of consecutive
clock cycles, then we also stop.
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Figure 2. Upper and lower power bounds under a
correlated vector set for circuit s35932 (1728 latches
and 16,065 gates).

3.3 Choice of sample size

The choice of sample size, N , affects the quality of
the approximations in (5). It should be clear that
the larger N is, the better the approximation; but
how much should N be for a certain desired error-
tolerance? This is the classical problem of mean-
estimation in statistics. We will briefly review the
mean-estimation procedure with reference to an ar-
bitrary random variable x whose mean E[x] is to be
estimated from N sample values x1, . . . , xN , using:

E[x] ≈ µN =
x1 + · · ·+ xN

N
(10)

which is what is done in (5).
In order for the results below to be true, the values

x1, . . . , xn should be observed values of independent,
identically distributed random variables. To guaran-
tee this, in our work, the start of a block is chosen
completely at random every time, independently of all
prior block positions, using a uniform random num-
ber generator that gives a value between −K + 2 and
M . With this, the value µN is a sample of a random
variable, called the sample mean [10], whose mean is
equal to E[x] and whose variance is equal to σ2/N ,
where σ2 is the variance of x. Furthermore, based
on the Central Limit Theorem [10], the distribution of
the sample mean approaches the normal distribution
for large N . The minimum number of samples, N , to
satisfy near-normality is typically about 30 [11]. With
(1 − α) confidence, it then follows that [11]:

−zα/2 ≤ µN − E[x]
σ/

√
N

≤ zα/2 (11)

where 0 < α < 1 and where zα/2 is defined so that the
area to its right under the standard normal distribu-
tion curve is equal to α/2. The value of zα/2 for a given
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α can be easily found using standard statistical tables.
It is also known [11] that for such large sample sizes (N
larger than about 30), one may use an approximation
by which sN/

√
N is used as a replacement to σ/

√
N ,

where sN is the standard deviation of the observed N
data values x1, . . . , xN , measured as follows:

s2
N =

1
N − 1

N∑

i=1

(xi − µN)2 (12)

Therefore, with confidence (1 − α), we have:

|µN − E[x]|
µN

≤ zα/2sN

µN

√
N

(13)

If ε1 is a small positive number, and if N is large
enough to achieve:

sN

µN

√
N

≤ ε1
zα/2

(14)

then ε1 places an upper bound on the relative error of
the sample, with (1 − α) confidence:

|µN − E[x]|
µN

≤ zα/2sN

µN

√
N

≤ ε1 (15)

This may also be expressed as the relative deviation
from the mean E[x]:

|µN − E[x]|
E[x]

≤ ε1
1 − ε1

= ε (16)

Here, ε > 0 is defined as the user-specified error toler-
ance, and α (or 1−α) is the user-specified confidence.
Thus equation (14) provides a stopping criterion that
determines when to stop sampling in order to yield
the accuracy specified in (16) with confidence (1−α).
Notice that the required number of samples N is not
known a priori, but is determined only when (14) is
first met. In our work, in computing (5), we impose a
minimum sample size of 30, for the reasons explained
above, so that we start checking if (14) is satisfied only
after N is larger than or equal to 30.

The above discussion is applicable for estimating
both the mean upper and lower bounds on the power
dissipation, E[Pu

K] and E[Pl
K]. Since the number of

iterations required to estimate E[Pu
K] may be differ-

ent from that required for E[Pl
K], we continue the

sampling until condition (14) has been met for both
means.

4. Experimental results
The technique proposed above has been implemented
and tested on a number of ISCAS-89 sequential bench-
mark circuits [12], after mapping them to a gate li-
brary with delay and capacitance values typical of

0.5µ CMOS technology. According to [13], almost
all circuits that are functionally initializable are also
logically initializable (with 3-valued logic simulation).
Since practical circuits will always be functionally ini-
tializable, we have restricted our results to the subset
of the ISCAS-89 circuits that are known to be logi-
cally initializable. Other than this, no special consid-
erations were used in picking the circuits below. Only
two circuits were shown in [13] to be functionally but
not logically initializable and, on these two circuits,
our method does not work very well. While more cir-
cuits may need to be tested, this may mean that the
method is best suited to circuits that are known to be
logically initializable.

Since no input vector sets are available for these
benchmarks, we have tried to mimic the correlations
that exist in real vector sets by generating a long cor-
related vector set consisting of 100,000 vectors. The
correlation coefficients were changed arbitrarily every
100 vectors. Thus, the statistical properties of the vec-
tors vary widely depending on where they are in the
100,000 vector stream. For each circuit, we first es-
timated the power due to the whole 100,000 vectors
by simulation, and then used our block sampling ap-
proach to estimate the power, with 5% error-tolerance
(ε = 0.05) and 95% confidence (α = 0.05).

Table II.
PERFORMANCE UNDER CORRELATED INPUT VECTORS.

EXECUTION TIME WAS MEASURED ON A SUN SPARC 5.

Ckt LB UB Power Tight(%)#cycleTime(s)
s298 0.2928 0.3120 0.3024 6.3517 3685 18.90
s349 0.2949 0.3109 0.3029 5.2906 5540 34.67
s386 0.2883 0.3030 0.2957 4.9689 2492 24.22
s444 0.1867 0.2026 0.1946 8.1650 6178 42.10
s526n 0.2820 0.2977 0.2898 5.4316 3779 29.38
s641 0.2827 0.2972 0.2899 4.9803 2824 58.86
s820 0.3013 0.3203 0.3108 6.1218 4799 98.85
s1196 1.1151 1.1635 1.1393 4.2502 118 4.90
s1488 0.3772 0.4056 0.3914 7.2549 13085 438.95
s3593212.339512.963112.6513 4.9293 2726 3728.69

Table II shows the tightness of the power bounds
and the speed of convergence. For some details of these
circuits (gate count, etc.), the reader is referred to Ta-
ble I. The table lists the power upper (UB) and lower
(LB) bounds in mW, and the average of the two un-
der the “Power” column (also in mW). The tightness
of the bounds was measured as the difference between
them divided by their average, expressed as a percent-
age. The values illustrate that the bounds can be quite
tight in most cases. The table also lists the total num-
ber of cycles (i.e., vectors) that were required for con-
vergence and the CPU time required.

The power estimated by our block sampling ap-
proach (average of the two bounds) was compared to
that computed by simulation of the whole 100,000 vec-
tor set, and the results are shown in Table III. It is clear
that the errors are very small and that all are below the
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specified 5% error tolerance. Table III also includes a
column named “Compaction.” This is the ratio of the
number of vectors simulated by the block sampling
method, to the total number of vectors (100,000) in
the power vector set. In many cases, it turns out to be
enough to simulate only around 5% of the total vector
set. In some cases, this ratio is larger, up to 13% in one
case. Thus, the net effect is that the power is estimated
by simulating only a small fraction of the total vector
set. This feature is essential for simulation of large se-
quential circuits. Effectively, an implicit compaction of
the vector set has been achieved. The adjective “im-
plicit” denotes the fact that this was done on the fly,
during the simulation, rather than up-front. We feel
that this is the correct way of performing compaction,
mainly because, as seen in Tables II and III, the num-
ber of vectors required for convergence depends very
much on the special characteristics of the circuit and is
not determined simply by signal statistics or by circuit
size. Sometimes smaller circuits require more cycles to
converge.

Table III.
SHOWS THE ERROR BETWEEN SIMULATION OF ALL 100,000

CORRELATED VECTORS AND USING THE BLOCK SAMPLING

(BS) SCHEME.

Ckt Power(AV) Power(BS) err(%) Compaction
s298 0.298088 0.302420 -1.4 0.03685
s349 0.296436 0.302960 -2.2 0.0554
s386 0.293828 0.295707 -0.6 0.02492
s444 0.188459 0.194680 -3.3 0.06178
s526n 0.285039 0.289894 -1.77 0.03779
s641 0.288030 0.289987 -4.1 0.02824
s820 0.304192 0.310878 -2.2 0.04799
s1196 1.151242 1.139382 1.0 0.00118
s1488 0.387748 0.391459 -3.5 0.13085
s35932 12.454792 12.651351 -1.6 0.02726

5. Conclusion
We have proposed a simulation-based method for es-
timating the power dissipation of sequential circuits.
The method works by sampling blocks of consecutive
vectors from a user-supplied (potentially very long)
power vector set. Since the state of the circuit at the
beginning of each block is unknown, we put the circuit
in an all-X state and simulate it for one block using
three-valued logic simulation. The simulator includes
delay information, so that it does capture glitching
activity. During the simulation of each block, we com-
pute an upper bound and a lower bound on the power
due to that block, which we found can be very tight.
The blocks are selected at random from anywhere in
the power vector set, and the process is repeated un-
til, using statistical methods of mean estimation, the
upper and lower bounds on the power have been de-
termined with sufficient (user-specified) accuracy and
confidence.

A major advantage of the method is that the
state of the sequential circuit is always guaranteed to
be valid - the FSM never goes outside its valid state
space. Thus, the estimated power corresponds to re-
alistic typical circuit operation. Another advantage of
the method is that only a fraction of the vectors in the
(potentially huge) power vector set need to be simu-
lated. For the 100,000 vector sets that we considered,
this fraction varied between 0.1% and 13%.
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