
I/O Buffer Placement Methodology for ASICs

Joseph N. Kozhaya
University of Illinois, Urbana

Sani R. Nassif
IBM Austin Research Labs

Farid N. Najm
University of Toronto

Abstract
In modern designs, voltage drop on the power grid is be-
coming a critical concern. One important technique to avoid
severe voltage drops is to spread the highlypower hungry
buffers, such as I/O buffers, around the grid. In this paper,
we study the problem of I/O buffer placement so as to avoid
hot spotswhich are locations on the chip characterized by
high voltage drops. The problem is defined mathematically
and formulated as an ILP problem. Then an efficient greedy
heuristic is proposed as an alternative to the expensive ILP
solution.

1 Introduction
ITRS’99 [1] indicates that modern and future VLSI designs
are characterized by reduced feature size, lower supply volt-
age, and higher currents. Lower supply voltage makes the
voltage variation across the power grids very critical since it
may lead to chip failures. Voltage drops on the power grid
reduce the supply voltage at logic gates and transistor cells
to less than the ideal reference. This leads to reduced noise
margins, higher logic gate delays, and overall slower circuits.
Reduced noise margins may lead to false switching at cer-
tain logic gates and latches. Higher logic gate delays, on the
other hand, may slow down the circuit enough so that tim-
ing requirements can not be met. Consequently, once voltage
drops exceed certain designer-specified thresholds, there is
no guarantee that the circuit will operate properly [2, 3].

In order to avoid hot spots, which are locations on the chip
characterized by severe voltage drops, several approaches are
possible including but not limited to [4]:

1. Making the grid more robust by using a denser grid
structure or wider metal lines.

2. Placing on-chip decoupling capacitors that significantly
suppress high frequency components of the voltage
drop.

3. Movingpower hungrybuffers and modules so that they
are spread all over the chip as opposed to keeping them
densely populated in certain areas thus creatinghot
spots.

The technique of spreading power hungry buffers around
is particularly interesting since it is typically less expensive
than either of the other proposed techniques. Making the grid
more robust involves expensive redesign effort and adding
decaps can be significantly expensive in terms of chip area.

Specifically, I/O buffers are identified as highly power hun-
gry and consequently, the analysis of I/O buffer placement

effects on voltage drop is critical in modern designs. The
electrical problems due to I/O buffer placement are partic-
ularly severe in area-array (also called flip-chip) designs as
discussed in [5]. This is because in area-array designs, the
I/O buffers may be placed anywhere on the die and are not
limited to the periphery. The authors in [5] clearly identify
the severity of electrical problems inarea-arrayASIC de-
signs due to the placement of I/O buffers and the reasons for
such problems.

Thus, in this paper, we study the problem of I/O buffer
placement inarea-arrayASIC designs and propose a place-
ment methodology that avoids severe voltage drops. Note
that the proposed placement technique is not meant to re-
place existing I/O placement techniques but rather comple-
ment those techniques by accounting for potential electrical
problems. Furthermore, although our technique targets only
I/O buffers, it also applies for the electrically sound place-
ment of all power hungry buffers in the design.

2 Problem Definition
The analysis of the effect of buffer placement on the perfor-
mance of power grids requires modeling the grids as well as
the power sources and drains. For purposes ofefficientanal-
ysis, power grids are modeled aslinear RC networks, power
sourcesare modeled as simple constant voltage sources, and
powerdrainsare modeled as independent time-varying cur-
rent sources [3, 6]. On-chip inductance is ignored since in to-
day’s technology, on-chip power grid inductance is too small
to affect the analysis results.

The behavior of such a system can be expressed following
the modified nodal analysis (MNA) [7] formulation as the
following ordinary differential equation:

Gx+Cẋ= u(t) (1)

wherex is a vector of node voltages, and source currents;G
is the conductance matrix;C includes the capacitance terms,
andu(t) includes the contributions from the sources and the
drains.

Applying Backward Euler (BE) numerical integration
to (1) results in a set of linear equations:

(G+C/h)x(t +h) = u(t +h)+x(t)C/h (2)

which can be written asAx(t +h)= u(t +h)+x(t)C/h, where
A = G+C/h.

The system matrix,A, can be shown to besymmetric. In
fact, the system of linear equations can be reformulated in
such a manner to produce a system matrix,A, which can be

2450-7803-7057-0/01/$10.00 ©2001 IEEE.

shown to be anonsingularM -matrix [9]; thus leading to the
following useful properties:

N

∑
i=1

ai j ≥ 0 (3)

a−1
i j ≥ 0 ∀ i, j (4)

whereN is the dimension of theA matrix anda−1
i j is the entry

at theith row and jth column of the matrixA−1, the inverse
of the system matrixA. Note thatN also denotes the number
of power grid nodes. In all what follows, we assume that the
system is formulated in such a manner to result in a system
matrix,A, which is anonsingularM -matrix [9].

Before going further, we will restrict the problem to a DC
analysis step, for at least two reasons. One reason is that,
in order to be conservative, so that the placement is safe ir-
respective of the timing of the different buffers, it makes a
lot of sense to use a DC value of current for each I/O buffer
equal to the peak current that it can draw, and to solve the
system under this condition. This would seem to be a pru-
dent practical approach. Another reason is that it makes a
lot of sense from a methodology standpoint to first do a fast
DC analysis, using either peak or average current for every
buffer, in order to uncover any gross problems, and then fol-
low that up with more detailed AC analysis to fine tune the
result. Thus, the DC solution is a prudent, conservative, and
practical approach to the problem. In this case, the system
equation becomesAx= u, whereA = G.

Note that the solution of the resulting linear system pro-
vides the voltages at all the grid nodes. However, it is more
useful to represent the system in terms of anN×1 vector of
voltage drops,δ. That is,δ =V−xwhereV is anN×1 vector
whose entries are allVDD; that is,V(i) = VDD ∀ i. Straight-
forward algebraic simplification of the original systemAx= i
results in the following linear system:

Aδ = b ⇔ δ = A−1b (5)
whereA is the original system matrix,δ is the vector of volt-
age drops andb is the vector of current sources. That is, the
ith entry of theb vector,b(i), corresponds to the sum of all
the currents of the drains being supplied by grid nodei. Con-
sequently, it is clear thatb is a vector whose every entry is
given by:

b(i) =
K

∑
k=1

cikIk ∀ i (6)

whereIk is the current associated with bufferBk, andcik, is a
variable which can be either 0 or 1: ifBk is connected to node
ni , thencik = 1; otherwisecik = 0. Thus, the entries of theb
vector are all non-negative:

b(i)≥ 0 ∀ i (7)
Referring to equation (5), we can define the relationship

between the voltage drop at a nodenj and all the entries of
the right hand side vector,b:

δ(j) =
N

∑
i=1

a−1
ji b(i) ∀ j (8)

Similarly, the current drawn at nodeni , b(i) can be expressed
as a function of the voltage drops:

b(i) =
N

∑
j=1

ai j δ(j) ∀ i (9)

Note thatδ(j) ≥ 0 ∀ j sincea−1
ji ≥ 0 ∀ i, j as given by equa-

tion (4) andb(i)≥ 0 ∀ i as given by equation (7).
Hence, equations (5), (8), (9) describe the relationship be-

tween the voltage drops on the power grid and the currents
drawn by the I/O buffers. In the remainder of this section, we
discuss the analysis and propose an algorithm for solving the
above problem.

3 Proposed Buffer Placement
Solving the I/O buffer placement problem involves placing
the K given I/O buffers while satisfying the user-specified
drop thresholds denoted by theN× 1 vector,δmax. Thus, a
feasiblesolution requires that:

δ≤ δmax ⇔ δ(j) ≤ δmax(j) ∀ j (10)

3.1 ILP formulation
Consequently, the I/O buffer placement problem can be for-
mulated as an ILP (integer linear programming) problem
where a feasible assignment of thecik variables is needed to
satisfy the following constraints:

N

∑
i=1

cik = 1 ∀k (11)

K

∑
k=1

cikIk−b(i) = 0 ∀ i (12)

N

∑
j=1

ai j δ(j)−b(i) = 0 ∀ i (13)

δ(j) ≤ δmax(j) ∀ j (14)

where N is the number of nodes in the system andK is
the number of I/O buffers as defined earlier. Also,ai j is
the entry of theA matrix at row i and columnj and cik is
the 0-1 variable defined earlier. Note that the constraints
given by equation (13) are nothing but the system equations
Aδ = b⇔Aδ−b= 0. The constraints given by equation (14),
on the other hand, impose the user-specified drop thresholds
at all the nodes in the circuit. Furthermore, the constraints
given by equation (12) define theith entry of the right hand
side vector to be the sum of the currents of the I/O buffers
connected to nodeni . Finally, the constraints given by equa-
tion (11) mathematically force the physical observation that
every I/O buffer can be placed at exactly one node. Thus, if
cjk = 1 which indicates that bufferBk is placed at nodenj ,
thencik = 0 ∀ i 6= j.

Note that we are not necessarily searching for an optimal
solution, but rather for a feasible solution, simply because a
feasible solution suffices to avoidhot spotsand guarantees no
electrical failures. We have used the ILP package, BARON
[10], to solve for a feasible assignment of thecik variables
such that the drop threshold at every grid node is 2.0%. It
is clear from the results shown in Table 3.1 that finding a
feasible solution using ILP suffers from complexity blow-up

246

Table 1: CPU times using ILP solver, BARON.
Problem # buffers, K # nodes, N CPU time
p1 12 210 1.53 sec
p2 25 392 6.59 sec
p3 53 504 15.31 min
p4 74 760 48.06 min

as the size of the problem increases. In order to avoid this, we
propose agreedyheuristic that will be presented in section
3.2 below.

3.2 Greedy algorithm
Notice that theA−1 matrix defines the sensitivity of the so-
lution relative to a change in the placement of I/O buffers.
This information allows us to propose agreedyheuristic,
IOPlace, that attempts to produce anelectrically soundI/O
buffer placement. The basic idea is to place the I/O buffers
one at a time while guaranteeing that the drop thresholds are
satisfied at all the nodes. We define thedrop slackat a node
nj , denoteds(j), to indicate the amount of drop which node
nj can still sustain before its drop threshold constraint is vio-
lated. That is:

s(j) = δmax(j)− δ(j) ∀ j (15)

It is clear that a drop threshold violation at a node is detected
when the slack at that node becomes negative. Define the
current atni to beallowableif the drop at every nodenj due
to that current is less than the drop slack atnj :

δ(j) = a−1
ji b(i)≤ s(j) (16)

Thus, given the drop slack at all the grid nodes, anupper
boundon theallowablecurrent drawn from nodeni can be
computed as follows:

b(i)≤min
j

s(j)
a−1

ji

= UBi (17)

With these definitions and observations, the greedy algo-
rithm, IOPlace, can be summarized as follows:

1. Sort the I/O buffers in decreasing order of their currents.

2. Initialize the drop slack at all the grid nodes to their
specified drop thresholds. That is,s(j) = δmax(j) ∀ j.

3. For every buffer,Bk, let Lk be the list of potential grid
nodes to whichBk can be connected (placed). In general,
Lk is the list of all grid nodes unless otherwise specified
by the user. Then for every nodeni ∈ Lk, compute the
upper boundUBi on the current that can be drawn atni

as given by (17).
4. Letnm be the node with the highest upper bound,UBm≥

UBi ∀ i. Assign bufferBk to nodenm. If Ik ≤UBm, it
is guaranteed that placing bufferBk at nodenm will not
cause any drop threshold violations. Otherwise, viola-
tion may occur at certain nodes.

5. Update the slack at all the grid nodes:

s(j) = s(j)−a−1
jmIk ∀ j (18)

Table 2: CPU times for I/O placement.K is the number of
buffers andN is the number of nodes.

Design K N # Violations CPU time
C1 616 4602 0 3.79 min
C2 588 3325 0 3.04 min

6. If s(j) < 0, report drop threshold violation at nodenj .
Flag nodenj so that it is ignored when placing the re-
maining buffers.

7. Continue at step 3, with the next buffer.

Either because the problem has no feasible solution, or be-
cause of the greedy nature of the algorithm, it is possible that
the algorithm fails to satisfy the drop thresholds at all the grid
nodes. In case a violation at a node is detected, it is reported
to the user so that afterwards, he/she can attempt to fix the
problem manually. Note that if the algorithm reports no vio-
lations, then this means that the resulting proposed placement
does satisfy the drop thresholds atall the nodes.

It remains to discuss the complexity of the proposed tech-
nique. Following the same notation, assume the input to the
problem is a power grid ofN nodes andK buffers that should
be placed. The matrix inversion is done by first performing
an LU-factorization and then applying a forward-backward
solve in order to obtain every row of the inverse matrix,
as needed. The LU is approximatelyO(N1.5) for a sparse
matrix, and each forward-backward solve is approximately
O(N1.1) for a sparse matrix.

As for the algorithm itself, for every I/O bufferBk (K
times), the algorithm goes through the list of nodes inLk (N
nodes), and for each of these nodes, it computes the upper
bound on theallowablecurrent by going through all the grid
nodes (N nodes). Therefore, this algorithm hasO(KN2) com-
plexity. However, note that ifa−1

ji ≈ 0, then there is no need
to consider nodenj when searching for the upper bound on
theallowablecurrent at nodeni . In other words, there is no
need to consider the effect of nodenj which isnot sensitive
or slightly sensitiveto nodeni . Thus, we need only consider
a nodenj ∈ SENi whereSENi = {nj | a−1

ji > ε} is the sen-
sitivity list associated with nodeni andε is a small positive
constant,ε ≈ 0. Furthermore, inreal power grids,SENi typ-
ically consists of those nodes which aregeometrically close
to ni ; that is,SENi consists of asmall number of nodes. In
order to make use of this observation, we modify the above
algorithm so that it computes the upper bound onni by going
through the nodesnj ∈SENi only. Since the number of nodes
in SENi is small and can be upper bounded by a constant,
then the complexity of the modified algorithm is reduced to
O(KN) instead ofO(KN2).

4 Experimental Results
The greedy algorithm for I/O buffer placement is imple-
mented and integrated with a power grid linear simulator
written in C++. All experimental results reported in this sec-
tion are obtained by testing the proposed methodology on a

247

0 250 500 750 1000 1250 1500
0

50

100

150

200

250

300

Number of violations

F
re

qu
en

cy
 o

f n
um

be
r

of
 v

io
la

tio
ns

Figure 1: Number of violations over 1000 random I/O place-
ment trials.

400 MHz ULTRA 2 Sun workstation with SunOS 5.7 operat-
ing system.

The practicality and efficiency of the proposed methodol-
ogy are illustrated by testing it for the I/O buffer placement of
two real industrial ASIC designs. We will refer to these de-
signs asC1 andC2. CircuitC1 is a 0.18µCMOS design while
C2 is a 0.13µCMOS design. Both designs have a supply volt-
age of 1.8 V. Given the power grid, the technique requires as
input the currents associated with the different I/O buffers and
the drop thresholds at the different nodes of the grid.

Different current measures can be used for the analysis de-
pending on the application of interest. For instance, while
peak current is a good representative measure for IR drop,
average current is a better measure for electromigration anal-
ysis. Any current measure of interest can be obtained by
simulating the I/O buffer undernominal loads andrealistic
switching factors. In all our experiments, we use the peak
current drawn by an I/O buffer as our current measure. As
for the drop thresholds at the different grid nodes, they are
randomly assigned to vary between 1.0% and 5.0% unless
otherwise specified.

In order to quantify the size of the problem being solved,
we use the two input parameters, the number of I/O buffers
to be placed,K, and the number of power grid nodes,N. As a
first experiment, we apply the proposed methodology to place
the I/O buffers in each of the given two designs. Table 3.2
shows the CPU run times required by the proposed algorithm
to generate a feasible solution (including the time to invert
the matrix). The first column indicates the design name. The
second and third columns give the number of buffers,K, and
the number of nodes,N, respectively. Column 4, reports the
number of nodes where the drop thresholds are not satisfied.
If a feasible placement is found, then this number is 0. The
last column reports the execution time in CPU minutes.

Table 3.2 shows that, indeed, the proposed algorithmef-
ficiently finds an I/O placement that satisfies all the user-
specified thresholds. In order to verify the results of the al-
gorithm, the I/O buffers are placed according to the proposed
solution returned by the algorithm. Then, a circuit simulator
is used to simulate the power grid with the given placement
of the I/O buffers and the number of drop threshold violations
is recorded. In both cases, the algorithm returned a feasible

solution with 0 violations.
A question that comes up at this point is whether any ran-

dom placement may find a feasible solution. To answer this
question, our second experiment consists of trying 1000 dif-
ferent random placements of the I/O buffers in an attempt to
find a feasible solution. This experiment is applied on design
C2 which consists of 3325 grid nodes and 588 I/O buffers. For
a clear comparison between the proposed algorithm and the
random placements, a tight drop threshold of 1.0% is spec-
ified at all the grid nodes. The proposed algorithm finds a
feasible placement in 3.1 CPU minutes while all the 1000
random attempts fail to provide a feasible solution. The his-
togram in Figure 1 shows the distribution for the number of
violations over all the 1000 trials. It is clear from this his-
togram that the minimum number of violations over all 1000
trials is larger than 750 nodes. That is, at least 750 nodes out
of the total 3325 nodes of the grid suffer from drop violations
if random placement is attempted. Thus, random placements
may fail to find a feasible solution even if one exists.

5 Conclusion
In this paper, we have motivated and discussed the need for
anelectrically soundI/O placement methodology. By proper
modeling of the power grids, source, and drains, the problem
is defined mathematically and formulated as an ILP problem.
To avoid the complexity of an ILP solution, a greedy heuristic
is proposed and tested on tworeal ASIC designs with good
results.

References

[1] The 1999 International Technology Roadmap for Semi-
conductors. Semiconductor Industry Association, 1999.

[2] A. Dharchoudhury et. al. Design and analysis of power
distribution networks inPowerPCTM microprocessors.
35th Design Automation Conference, 1998.

[3] S. R. Nassif and J. N. Kozhaya. Fast power grid simula-
tion. 37th Design Automation Conference, 2000.

[4] K. L. Shepard and V. Narayanan. Noise in deep submi-
cron digital design. IEEE/ACM International Conference
on Computer Aided Design, San Jose, CA, 1996.

[5] P. H. Buffet et. al. Methodology for I/O cell placement
and checking in ASIC designs using area-array power
grid. IEEE Custom Integrated Circuits Conf., 2000.

[6] H. H. Chen and J. S. Neely. Interconnect and circuit mod-
eling techniques for full-chip power noise analysis. IEEE
Transactions on Components and Packaging II, 1998

[7] L. T. Pillage, R. A. Rohrer, and C. Visweswariah.Elec-
tronic and System Simulation Methods. McGraw-Hill,
1995.

[8] G. H. Golub and C. F. Van Loan.Matrix Computations.
The Johns Hopkins University Press, 1996.

[9] A. Berman and R. J. Plemmons.Nonnegative Matrices in
the Mathematical Sciences. Academic Press, NY 1996.

[10] N. V. Sahinidis.BARON: Branch and Reduce Optimiza-
tion Navigator. User’s manual, University of Illinois,
June 2000. http://archimedes.scs.uiuc.edu

248

