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ABSTRACT
Statistical Vt variations lead to large variations of leakage
current, which cause statistical voltage drops on the power
grid that can affect circuit timing. We propose a statistical
analysis technique whereby variances of the leakage currents
are used to estimate the susceptibility to timing violations
due to leakage-induced voltage drops.

1. INTRODUCTION
Managing leakage is among the most eminent challenges

to be hurdled by the integrated circuits industry, with the
advent of deep-submicron technologies in the nanometer
regime. High leakage comes as a price tag on better perfor-
mance and reduced active power, as a result of the need to
scale the MOSFET threshold voltage, (Vth), to accompany
the reduction in supply voltages (Vdd) and oxide thickness.
This is because the decrease of Vth translates as an exponen-
tial increase in subthreshold leakage current, Ioff , reportedly
as high as about 5X per generation [6], with total leakage
current in dense high-performance chips forecast to be about
half the total chip current [13]. In today’s 1.2 V, 0.13 µm
technologies, Vth is about 0.3 V (25% of Vdd). Compare
these figures WIth older 1µm technologies, using a supply
voltage of 5V and having a threshold voltage of about 0.8 V
(16% of Vdd) [26]. Clearly, the scaling trends of threshold
voltage do not keep up with those of supply voltage.

The disparity in scaling the supply and threshold volt-
ages is specially consequential to pursuing agressive designs,
inducing tighter design margins, thus placing process varia-
tions under deep scrutiny. In particular, since the gap be-
tween Vdd and Vth has narrowed, variations in the level of
supply voltage become very significant when it comes to
meeting timing closure. The network that delivers supply
voltage to circuit devices is referred to as the power grid.
The consequences of power grid voltage level variations in
the estimation of a circuit timing vulnerability are being
currently researched [2, 21], and it has been reported in an
industrial survey that 50% of chips would fail to meet their
timing requirements if no power grid verification were done
prior to tapeout [1]. However, modern power grid verifi-
cation tools fail to account for the contribution of leakage
to the voltage drop on the power grid. The present paper
addresses this issue.
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If leakage were uniform or predictable across the chip,
then the contribution of leakage to the supply voltage drop
can be simply accounted for by adding a deterministic leakage-
induced component to the total voltage drop on the power
grid. However, this is not the case and process variations
in Vth and the transistor channel length cause exponentially
larger variations in leakage currents, as a direct consequence
of the exponential dependence of leakage currents on Vth or
channel length [19, 24]. In 0.1 µm technology, it is possible
to get 30 mV standard deviation in Vth [15]. For whole chips,
leakage variations have been measured at almost 20X [14].
These variations are also known to have a significant within-
die, local component [4, 5, 19], so that transistors in close
proximity on the layout can have significant variations in
their leakage currents. This is also referred to as mismatch
and its effect on delay has been studied [8].

We will assume statistical variability of leakage currents,
i.e., that the statistics of leakage currents are available, with
the knowledge that both Monte Carlo and analytical tech-
niques can be used to obtain this information [24]. While
worst-case analysis is necessary when considering power grid
voltage drop due to global, correlated die-to-die variations [4]
in leakage currents, intra-die (or within-die) variations re-
quire statistical analysis in order to avoid overly pessimistic
conclusions. There are no good tools today to estimate this
statistical voltage drop on the power grid due to leakage
current variations.

In this work, we consider leakage currents to be random
and proceed to analyze the grid on that basis. The focus
is placed on within-die variations, which have been receiv-
ing a great deal of attention due to the impact they are
forecast to have in future technologies. In [10], a numerical
Monte Carlo approach was proposed to calculate partially
the second order statistics of the power grid node voltages
in response to within-die leakage current variations. This
approach was extended in [11] to formulate a statistical ver-
ification methodology for the power grid considering leak-
age current variations, on an individual node basis. This
methodology, however, did not consider joint statistics of
the voltage drops on the grid nodes, which would be needed
when simultaneous voltage drop conditions (joint conditions
on a set of nodes) are to be checked against. Joint nodal ver-
ification is essential when checking the supply voltage levels
simultaneously on a critical path. This paper proposes a
way to deal with this situation. The result of this work is
to extract joint statistics of the leakage-induced component



of the supply voltage drop on a critical path that indicates
the vulnerability of a circuit to timing failure due to leakage
currents. These statistics may then be fed to a tool such as
the one presented in [2] when estimating the susceptibility
of a circuit to timing violations.

2. PROBLEM STATEMENT
Designers may be able to determine a configuration of

supply voltage variations that creates a worst-case effect on
the timing performance of the circuit [2] and in practice set
guidelines on the maximum allowable voltage drop levels on
the power grid (e.g., 10% of Vdd). From the perspective of
IR drop on the grid (due to the grid’s resistive nature), grid
verification tools today account for switching current effects
on the grid, ignoring the leakage component.

The power grid has the property of being a linear sys-
tem (see section 3.1), therefore the grid response, i.e., its
voltage drops due to circuit currents, can be obtained sim-
ply by adding up the grid response to individual current
components. In particular, both active and leakage current
effects ought to be integrated in a comprehensive grid veri-
fication tool, and the grid response to the total current can
be obtained by superposition of individual responses to both
switching and leakage currents (static and dynamic).

Process-induced variations on the leakage component of
the total current are relevant in the context of this work.
It is standard practice to break down these process varia-
tions into die-to-die and within-die components [20, 7]. For
the variations on a given parameter, the die-to-die compo-
nent takes the same value for all instances of that parameter
within a single chip, but differentiates among distinct chips.
The within-die component causes variations within a given
chip, depending on location.

We therefore model the total current as follows:

I = Iactive + Ioff,nom + Ioff,dd + Ioff,wd, (1)

where Iactive refers to the active current, Ioff,nom is the nom-
inal value of leakage current at the design point, Ioff,dd is
the die-to-die component of leakage variations, and Ioff,wd is
the within-die component of these variations. By linearity
of the power grid, we can add the contributions of the four
current components in (1) to get the total voltage drop on
the power grid, as follows:

V = VIactive + VIoff ,nom + VIoff ,dd + VIoff ,wd. (2)

In general, die-to-die variations can be dealt with effi-
ciently using case file analysis. This is also applicable for
examining the response of the power grid due to die-to-die
leakage current variations, since the grid is known to be
monotone [17], i.e., the voltage drops on all nodes increase
by increasing the loading currents. When the current vari-
ations are correlated, this means that all currents may in-
crease simultaneously, so that case file analysis may be per-
formed reflecting realistic situations. This can be done at
the (mean±3σ) corners of die-to-die variations, or at more
agressive points (e.g., the 50th percentile). Therefore, the
analysis of random die-to-die variations can proceed by an-
alyzing a set of deterministic cases.

The considerations are different for within-die variations.
Due to their locality on the die area, the occurrence of worst-
case deviations uniformly across the die is highly unlikely,
and enumerating cases becomes prohibitive. Instead, statis-
tical analysis needs to be performed.

Node 3Node 1 Node 2
Nominal
supply voltage
(Vdd )

Allowable voltage 
ddlevel (e.g. 90% of V )

1,Ioff,nomV

V1,Ioff,dd

V1,Ioff,wd

V1,Iactive

Figure 1: Grid verification on a critical path con-
taining 3 nodes.

Fig. 1 illustrates the situation. Suppose, in this figure,
that nodes 1, 2, and 3 of the power grid provide supply volt-
age connections to circuit elements lying on a critical path
(referred to thereafter as critical nodes), and that for timing
purposes, it was determined that the voltage levels on these
nodes need to be simultaneously greater than 90% of Vdd.
The figure illustrates the voltage drops contributed by active
current, nominal leakage, die-to-die, and within-die leakage
variations. Within-die variations are shown to have a cer-
tain probability distribution, which necessarily precludes the
ability to determine with 100% confidence whether the re-
quired voltage levels are greater than 90% of Vdd. The need
for joint node voltage statistics is clear as we seek statistics
on the simultaneous distributions of the voltage drop at crit-
ical nodes, in order to have the ability to explore the margin
of within-die variations efficiently. The sequel focuses on the
joint statistics of within-die variations of voltage drops.

3. JOINT STATISTICS OF POWER GRID
NODE VOLTAGE DROPS

It is helpful to distinguish between two types of leakage in
integrated circuits. A circuit certainly draws leakage current
when it is in standby or sleep mode, what may be referred
to as the standby leakage. The circuit also draws leakage
current when it is active. Indeed, a logic gate draws leak-
age current any time that its supply is “on.” Even inside a
switching window, part of the current drawn from the supply
may be attributed to leakage. The leakage drawn by the cir-
cuit during its active (non-standby) states, may be referred
to as the dynamic leakage. The grid response to standby
leakage may be obtained by a DC analysis of the grid, using
only a resistive model, whereas response to dynamic leakage
requires a transient analysis, using an RC or RLC model
of the grid. Our statistical formulation to follow, directly
applies to standby leakage. Dynamic leakage may be incor-
porated through calculation of the mean voltage drops on a
transient basis, as discussed in section 4.1.

3.1 System Equations
We consider an RC model of the power grid, where each

branch of the grid is represented by a resistor and where
there exists a capacitor from every grid node to ground. In
addition, some nodes have ideal current sources (to ground)
representing the current drawn by the circuit tied to the grid
at that point, and some nodes have ideal voltage sources (to
ground) representing the connections to the external sup-
ply voltage. Let the power grid consist of N + p nodes,
where nodes 1, 2, . . . , N have no voltage sources attached,
and nodes (N + 1), (N + 2), . . . , (N + p) are the nodes with
the voltage sources. Let ck be the capacitance from every
node k to ground. Let ik(t) be the current source connected



to node k, where the direction of positive current is from
the node to ground. We assume that ik(t) ≥ 0 and that
ik(t) is defined for every node k = 1, . . . , N so that nodes
with no current source attached have ik(t) = 0, ∀t. Let i(t)
be the vector of all ik(t) sources, uk(t) be the voltage at
node k, and u(t) be the vector of all uk(t) signals. Applying
Modified Nodal Analysis (MNA) [23] leads to:

Gu(t) + Cu̇(t) = −i(t) + GVdd (3)

where G is an N × N conductance matrix, C is an N × N
diagonal matrix of node capacitances, and Vdd is a constant
vector each entry of which is equal to Vdd. Let vk(t) =
Vdd − uk(t) be the voltage drop at node k, and let v(t) be
the vector of voltage drops, then (3) can be written as:

Gv(t) + Cv̇(t) = i(t) (4)

This is a revised system equation which one can solve di-
rectly for the voltage drop values. Notice that the circuit
described by (4) consists of the original power grid, but with
all the voltage sources set to zero and all the current source
directions reversed. In the following, we will mainly be con-
cerned with this modified power grid and the revised system
of equations (4). In cases when the circuit is in a standby
state, where all the currents are constant, the circuit re-
sponse is obtained using a DC analysis. The DC equivalent
of (4) is readily seen as:

GV = I (5)

3.2 Joint Probability Distribution of Node
Voltages

DC analysis of the power grid leads to an analytical char-
acterization of the probability distribution function of the
node voltage drops under within-die leakage current vari-
ations. DC analysis is automatically true for the case of
standby leakage. Thus, our analysis is exact for standby
leakage. For dynamic leakage, since the leakage current of
a logic gate is constant when it is not switching, then DC
analysis may be acceptable in practice, especially since we
will include some dynamics of the system through the com-
putation of the mean response (section 4.1 below).

The DC representation of the power grid system given
in (5) can be written as follows:

V = G−1I, (6)

where we consider I to be the random vector representing
within-die leakage variations. Correspondingly, V is the vec-
tor of grid voltage drops due to I. From (6), it is clear that
the voltage drop at an arbitrary node i can be expressed as:

Vi = qi1I1 + · · · + qiNIN , (7)

where qij is the (i, j)th entry of G−1. As (7) shows, the volt-
age drop at any node is a linear combination of the leakage
currents loading the grid.

Our purpose is to characterize intra-die variations in leak-
age currents. These are due to intra-die variations in the
transistor threshold voltages, which are in turn modeled as
Gaussian [19], implying lognormal [28] distributions for leak-
age currents [24], by virtue of the exponential relation be-
tween the transistor leakage current and its threshold volt-
age, which can be seen from the following BSIM 3 device
model of leakage current, in terms of physical and electrical

parameters [24]:

Ioff = I0 · exp ((Vgs − Vth)/nVT ) (1 − exp (−Vds/VT )), (8)

where VT is the thermal voltage and I0 is a constant for our
purposes.

If the Ij are lognormal, then the qijIj are also lognormal.
Hence, under the assumption of statistical independence of
intra-die leakage variations, the node voltages (7) are each
a summation of independent lognormal random variables
(RVs). Sums of independent lognormal variables have been
extensively studied and characterized in the literature per-
taining to communications, and it was found that such sums
can be accurately captured by another lognormal RV [3].
Therefore, we model the distribution of a node voltage drop
as lognormal. For joint node voltage statistics, we propose
a multivariate lognormal distribution.

Recall that a random variable X is said to be lognormal
if Y = ln (X) is Gaussian. Let µY and σY be the mean
and standard deviation of Y . Then the probability density
function (pdf), fX(.), of X is given by [28]:

fX(x) = exp

�
− [ln (x) − µY ]2

2σ2
Y

�
/
�√

2πσY x
�

, x > 0.

(9)
The multivariate lognormal generalizes the above univari-

ate distribution. A random vector X is multivariate lognor-
mal when its logarithm is jointly normal. Let Y = ln (X),
where [Y]i = ln ([X]i), with [.]i denoting the ith component
of a vector. If k is the dimension of X, then for a k-vector
x > 0, the joint probability density function of X can be
written as [16]:

fX(x) =
exp

�
− 1

2
(ln (x) − µY)T Σ−1

Y (ln (x) − µY)
�

(2π)k/2 |ΣY |1/2 [x]1 · · · [x]k
,

(10)
where µY and ΣY refer to the mean vector and covariance
matrix of the random vector Y, |.| refers to a matrix deter-
minant, (.)T to the transpose operator, and µY to the mean
vector of Y. Denoting by [.]ij the (i, j)th entry in a matrix,
and by cov(.) the covariance between two random variables,
ΣY is defined as [25]:

[ΣY]ij =

�
cov([Y]i, [Y]j) , i �= j

σ2
[Y]i

, i = j

A few observations are in order at this point. First note
that the pdf of a multivariate lognormal is defined only
when the corresponding normal vector has a non-singular
covariance matrix. Second, because of its close association
to the multivariate normal, full statistics of node voltage
drops can be captured by second-order statistics (means and
a covariance matrix). Finally, any k-vector taken from an
n−dimensional lognormal vector (k ≤ n) is (multivariate)
lognormal itself.

Now we can put the above to use in our problem. Let
Vk be the k-vector of critical nodes of the power grid. k is
expected to be much smaller than N , the dimension of the
grid. Vk will be modeled as a lognormal vector. Let Wk =
ln (Vk) and let µWk and ΣWk be respectively the mean vec-
tor and the covariance matrix of Wk. If v = [v1 · · · vk]T > 0,



then the pdf of Vk at v is given by:

fVk(v) =
exp

�
− 1

2
(ln (v) − µWk)T Σ−1

Wk
(ln (v) − µWk)

�
(2π)k/2 |ΣWk |1/2 v1 · · · vk

(11)
Let Viv = Vim − Vi,Iactive − Vi,Ioff ,nom − Vi,Ioff ,dd, where

Vim is the maximum allowable voltage drop at node i and
the other voltage levels on the right-hand side are as defined
in (2) and Fig. 1. The probability of meeting the timing
requirements becomes:

P{Vi,Ioff ,wd ≤ Viv,∀i = 1, . . . , k} =

Vkv�
0

· · ·
V1v�
0

fVk(v)dv1 · · ·dvk (12)

We recognize that the difficulties associated with perform-
ing the above operations are numerical, as multivariate ma-
nipulations are tedious. The first difficulty is to estimate
the parameters of the multivariate lognormal distribtion,
for which we propose a Monte Carlo approach (section 4.2).
Since we expect the number k of critical nodes to be much
smaller than the size N of the grid, and indeed only a few
tens of nodes may need to be considered, the dimensions
are manageable for storing non-sparse covariance matrices,
as well as calculating the determinant and matrix inverse.
The evaluation of the multidimensional integral given in (11)
must be handled with numerical techniques, but is alleviated
by the fact that the integrand is a smooth function and that
the domain of integration is a “hyper-rectangle”. In our
experiments, we performed the multiple integration using
Monte Carlo methods.

4. ESTIMATION OF THE DISTRIBUTION
PARAMETERS

4.1 Estimation of The Mean Vector of Voltage
Drops

Since the system (4) is linear, then due to linearity of the
mean (E[·]) operator [22], one can write:

GE [v(t)] + C
d

dt
E [v(t)] = E [i(t)] (13)

Thus, solving the system (4) once, using simply the means
of the within-die leakage current variations as inputs, yields
mean voltage drops at all the nodes obtained from the dy-
namic model of the grid.

4.2 Estimation of The Covariance Matrix of
Voltage Drops

We start by deriving an analytical expression for the co-
variance of the voltage at every node. Under static condi-
tions, the system (13) is simplified to its DC version:

GE [V] = E [I] (14)

We now combine (5) and (14) to yield:

G (V − E [V]) = I − E [I] (15)

Multiplying each side by its transpose and applying the ex-

pected value operator to each side, leads to:

GE
�
(V − E [V]) (V − E [V])T

�
GT =

E
�
(I− E [I]) (I − E [I])T

�
(16)

We recognize the expectations as being simply covariance
matrices [22], so that the above result can be rewritten as:

GΣVGT = ΣI (17)

Since G is symmetric, G = GT . Therefore, (17) becomes:

ΣV = G−1ΣIG
−1 (18)

Under the assumption of statistical independence of leak-
age currents, implying that ΣI is diagonal, it can be seen
from (18) that:

[ΣV]ij =
�
G−1

	
i1

�
G−1

	
j1

[ΣI]11 + · · · +�
G−1	

iN

�
G−1	

jN
[ΣI]NN

= qi1qj1σ
2
I1 + · · · + qiN qjNσ2

IN
, (19)

where qij is as defined in (7) and σ2
Ii

is the variance of the

ith leakage current, that is, the ith diagonal entry of the
covariance matrix of leakage currents.

The solution of (19) requires full knowledge of the inverse
of G, i.e., the inverse of the covariance matrix of the en-
tire power grid, even when only the sub-covariance matrix
corresponding to critical nodes is required. To manage this
problem, we extend the method presented in [10] to handle
covariance matrices.

Observe that (19) is a weighted summation. Let S =
N


i=1

σ2
Ii

, pi = σ2
Ii

/S, and σ
(Vk)
ij = [ΣV]ij , when nodes i and

j on the power grid are critical. Then (19) can be rewritten
as:

σ
(Vk)
ij = S

N�
l=1

pl(qilqjl). (20)

Since

N

k=l pl = 1 and pl ≥ 0, l = 1 · · ·N , then we can
view the pl weights as being probability values associated
with the qilqjl values, so that the summation in (20) becomes
the mean (weighted average) of all the qilqjl values in the
ith and jth rows. If we define an RV qij as being a discrete
RV that takes the values qijl = qilqjl with probabilities pl,
l = 1, 2, . . . , N , then we can write (20) as:

σ
(Vk)
ij = SE[qij] (21)

Let the mean of qij be µij = E[qij] and its variance be vij .
We can now use methods of mean estimation from statistics,
basically Monte Carlo random sampling [27], in order to
estimate the population mean µij using the mean of a much
smaller sample (say, of size n � N) from the population,
i.e., using the sample mean.

Using a weighted random number generator, we generate
according to the probabilities pl a sequence of indices of
columns of G−1 to be included in the sample. From these,
we form the following sample mean for every pair of rows i
and j for which nodes i and j are critical:

q̄ij =
1

n

�
l∈L

qijl (22)



where L is the set of indices included in the random sample.
Note that with a total of k nodes, there will be a total of�

k
2



= k(k − 1)/2 pairwise covariances (off-diagonal entries)

and k variances, for a total of k(k + 1)/2 distinct entries to
be estimated. By symmetry of the covariance matrix, the
remaining k(k − 1)/2 entries can be deduced, but do not
need to be stored.

We also compute the sample standard deviation of qij,
sij ≥ 0 given by:

s2
ij =

1

n − 1

�
l∈L

(qijl − q̄ij)
2 =

n

�

l∈L

q2
ijl

�
−
�


l∈L
qijl

�2

n(n − 1)

(23)
Note that s2

ij is an estimator of vij . Now q̄ij itself, being a
sample mean, can be considered as an RV, with mean µij

(since the sample mean is an unbiased estimator of the mean
of a random variable [28]) and variance s2

ij/n (for large n).
Then, we have that:

σ̂
(Vk)
ij = Sq̄ij (24)

is an unbiased estimator of σ
(Vk)
ij (i.e. E[σ̂

(Vk)
ij ] = SE[q̄ij ] =

σ
(Vk)
ij ), with variance S2s2

ij/n. Furthermore, by the central
limit theorem [28], q̄ij will be approximately normally dis-
tributed, so that the RV:

σ
(Vk)
ij − σ̂

(Vk)
ij

Ssij√
n

is normal with 0 mean and unit variance [27], for large n.
Fig. 2 illustrates the sampling process for estimating the co-
variance between nodes 1 and 3. The convergence of the
sample mean is directly related to the sample standard de-
viation.

We can use tables of the standard normal to establish how
large n should be in order for the sample standard deviation
of q̄ij to be small enough for it to be a viable estimator
of µij , with a certain confidence, and up to a predefined
tolerance [27]. For example, if it is desired to have ( 1 − α )×
100% confidence (where α is a small positive number, 0 <
α < 1) that the following is true:

|q̄ij − µij | < ε, (25)

then it is known from sampling theory [27] that n should be
larger than n0 where:

n0 =
�zα/2sij

ε

�2

(26)

where zα/2 is such that the area to the right of it under the
pdf of the standard normal curve is equal to α/2. Thus, for
instance, for 90% confidence, α = 0.05 and zα/2 = 1.96; for
99% confidence, α = 0.01 and zα/2 = 2.575. In practice,
one samples until n is larger than 30 or 50 or so, then starts
to use (26) to monitor convergence. Observe that tables are
not needed to compute zα/2, a task that can be done by
software (e.g., using the erf() function) and that zα/2 needs
to be evaluated only once.

Next, we need to choose a meaningful bound ε for use
in (26). We opted to relate the value of the error in the
estimation of the covariance matrix entries to the reference
voltage Vdd, as we did for the variance estimation in [10].
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Figure 2: Estimating the covariance between nodes
1 and 3 on the power grid.
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Let δ be a small positive number, 0 < δ < 1. We define our
error bound as follows:����

�
σ

(Vk)
ij −

�
Sq̄ij

���� ≤ δVdd (27)

In other words, we want to find ε, to be used in (26), as a
function of δ in order for the following to be true:

|q̄ij − µij | < ε =⇒
����Sq̄ij −

�
Sµij

��� < δVdd (28)

To simplify the notation, let x = µij and x0 = q̄ij . Also,
let y =

√
µij =

√
x and y0 =

√
q̄ij =

√
x0, and let γ =

δVdd/
√

S. Notice that γ > 0. We want to find ε in terms of
δ so that:

|x − x0| < ε =⇒ |y − y0| < γ (29)

There are two cases to consider, according to whether y0 is
small or not, as shown in Fig. 3. When y0 is small, small
enough so that y0 − γ < 0, then (since y > 0 in all cases)
in order to guarantee that |y − y0| < γ, it is sufficient to
impose an upper bound on y in the simple form y − y0 < γ.
This is achieved by imposing an upper bound on x in the
simple form x−x0 < ε1, where ε1 is the corresponding upper
bound on (x − x0), as shown in Fig. 3(a). Let ∆x = x − x0

and ∆y = y − y0. Since y2 = x, then ∆(y2) = ∆x, and
since ∆(y2) = (y0 +∆y)2−y2

0 = (∆y)2 +2y0∆y, then ∆x =
((∆y)2 + 2y0∆y). For ∆y = γ, ε1 = ∆x = (γ2 + 2y0γ) > 0.
In order to guarantee (29), in this case, we need to set ε =
ε1 = (2y0γ + γ2).

When y0 is not so small, i.e., when y0 − γ > 0, then we
need to consider both upper bounds and lower bounds, as
shown in Fig. 3(b). If ε2 is the lower bound on (x − x0),
as shown in the figure, then we may compute ε2 by setting
∆y = −γ, which leads to ∆x = (γ2 − 2y0γ) < 0, and we
set ε2 = −∆x = (2y0γ − γ2) > 0. Since ε2 < ε1, as is
obvious from the expressions found for each, then, in order



to guarantee (29) in this case, we need to set ε = ε2 =
(2y0γ − γ2).

Notice that the condition y0 > γ translates to q̄ij >
δ2V 2

dd/S. In summary, then:

ε =

�
δVdd

S

�
2
�

Sq̄ij + δVdd



if q̄ij < δ2V 2

dd/S,
δVdd

S

�
2
�

Sq̄ij − δVdd



if q̄ij > δ2V 2

dd/S.
(30)

Notice also that, in either case, ε > δ2V 2
dd/S. Plugging (30)

into (26) leads to:

n0 =

�
zα/2sijS/δVdd

δVdd ± 2
�

Sq̄ij

�2

(31)

where the + or − sign depends on whether q̄ij is smaller
or larger than δ2V 2

dd/S, respectively. To summarize, if it is

desired to estimate
�

σ
(Vk)
ij to within ±δVdd, with (1−α)×

100% confidence, then n must be larger than the threshold
given by (31). This provides a useful trade-off between ac-
curacy and speed, as more samples would be required for
smaller δ.

4.3 Estimation of The Parameters of The Log-
normal Distribution

The previous two subsections dealt with estimating the
mean and covariance matrix of the vector of voltage drops
due to leakage variations. In the terminology of subsec-
tion 3.2, these refer to the mean, µVk , and covariance ma-
trix, ΣVk , of Vk, whereas the parameters to be used in
the expression of the probability distribution function given
in (11) are µWk and ΣWk , the mean vector and covariance
matrix of the associated k-dimensional normal vector. We
show how to obtain these parameters for the lognormal.

Suppose Vi and Vj (i, j < k) are random voltage drops,
taken from a joint k-dimensional lognormal distribution with
parameters µWk = [µ1 · · ·µk]T and [ΣWk ]ij = σij . Here, we

define σ
(Vk)
ij = [ΣVk ]ij . Observe that at this point, we have

estimated µVk and ΣVk , but the Wk parameters are yet to
be determined.

The following holds for the multivariate lognormal distri-
bution [16]:

E[Vi] = eµi+
1
2 σii , (32)

E[V 2
i ] = e2µi+2σii , (33)

so that:

σ
(Vk)
ii = E[V 2

i ] − (E[Vi])
2

= e2µi+2σii −
�
eµi+

1
2 σii

�2

= e2µi+σii (eσii − 1)

= (E[Vi])
2 (eσii − 1) . (34)

The only unknowns in (34) are the diagonal entries σii of
ΣWk , which can thus be solved one by one. Then we plug
these solved values into (32), and solve for the entries of
µWk .

We also have for the multi-lognormal distribution:

σ
(Vk)
ij = eµi+µj+ 1

2 (σii+σjj)(eσij − 1). (35)

The only unknowns left at this stage are the σij (i �= j),
and these can again be found from (35). Hence, we have
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Figure 4: Correlation plot of the estimated versus
exact entries of a full covariance matrix for a grid
containing 300 nodes.

obtained the entries of µWk and ΣWk from the mean and
covariance matrix of the node voltage drops.

The following sums up the procedure for obtaining µWk

and ΣWk given µVk and ΣVk :

for i = 1 : k
[ΣWk ]ii = ln

�
[ΣVk

]ii

[µVk
]2i

+ 1
�

[µWk ]i = ln ([µVk ]i) − 1
2
[ΣWk ]ii

end for

for all i, j ≤ k, i �= j

[ΣWk ]ij = ln

�
[ΣVk

]ij

e
[µWk

]i+[µWk
]j+ 1

2 ([ΣWk
]ii+[ΣWk

]jj)
+ 1

�
end for

5. EXPERIMENTAL RESULTS
The proposed method has been implemented and tested

on a number of test-case grids. Not having access to power
grids from industrial designs, and because we need a large
number of grids to test our approach under different con-
ditions, we have opted to generate a number of grids our-
selves. The grid generation process is automatic, and em-
ploys a random number generator, as well as user-specified
technology and topology parameters. Starting with a square
uniform grid of a given size, we proceed to randomly delete
a user-specified percentage of nodes, thus rendering the grid
structurally non-uniform. Typical geometric and physical
grid characteristics (e.g. grid dimensions) as well as charac-
teristics of the fabrication process (e.g. sheet resistance of a
particular level of metallization) are given by the user, lead-
ing to an initial value of the conductance of every branch.
When a node is deleted, the conductances of the remain-
ing surrounding edges (branches) are increased by a ran-
dom amount around a user-specified percentage of their ini-
tial values. The rationale behind this is to allow the non-
uniform grid to be loaded with currents comparable to its
uniform predecessor while exhibiting comparable IR-drops.
The number of Vdd (C4) sites and leakage current sources are
supplied by the user; the C4s and current sources are then
distributed at random over the grid nodes. This implemen-
tation was done by writing C programs, and factorization of
the grid system was carried out by LU, using routines from
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Figure 5: Graphical check of the goodness-of-fit of
the voltage drop data against a lognormal distribu-
tion.
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Figure 6: Joint pdf of the voltage drop of two nodes
on a power grid of 10,000 nodes

Sparse 1.3 [18].
Fig. 4 plots the entries of the covariance matrix estimated

by our column sampling method, versus the exact covariance
matrix entries, obtained by full solution of (18). As can be
seen from this figure, the estimated (co)variances match well
with the exact ones.

Fig. 5 corroborates the fact that voltage drops are well
modeled by a lognormal distribution. If indeed voltage drops
are lognormally distributed, then their logarithms are nor-
mal. We checked this conclusion empirically by generating
several grids and collecting voltage drop data, then verifying
graphically the goodness-of-fit of their logarithms on nor-
mal scores plots [28]. It is clear that voltage drops showed
good fits, except for certain outliers, validating the choice
of lognormal distributions to model the voltage drops on
the power grid, induced by independent, within-die leakage
current variations.

Fig. 6 plots the joint bivariate pdf of two randomly se-
lected nodes of a grid of 10,000, after estimating its lognor-
mal parameters. It can be observed from this figure that the
probability distribution has very high density in a relatively
small area in the voltage drop domain, and vanishes rapidly
outside this area.

Table 1 illustrates results where a number of nodes critical
nodes were randomly selected to be critical, and the proba-
bility of timing violations was calculated using our method.
In this table, we compare the proposed column-sampling
approach for the estimation of the covariance matrix of crit-
ical nodes (“Sampling”), with the result of calculating the
entries of this matrix by full solution of (18) (“Solution”).
The numerical integration was performed using Monte Carlo
techniques [9]. The basic implementation is to estimate the
average of the integrand over the domain of integration via
random sampling. For numerical integrations in multiple
dimensions, Monte Carlo methods are often the only vi-
able alternative. However, when the integrand is strongly
concentrated in a relatively small “area” of the domain of
integration, with vast differences among values inside and
outside that “area” of concentration, sampling the integrand
over the entire domain of integration in order to estimate its
average may be unwieldy. We were able to obtain converg-
ing values for integrals of up to ten dimensions, as shown in
table 1, where we often had to break down the domain of
integration into multiple smaller subsets. As can be seen,
the overall accuracy is satisfactory, while the speedup was
up to 130X.

We implemented our technique for grids with a larger
number of critical nodes to obtain the mean and covariance
matrix of the voltage drop distribution, as shown in table 2.
As can be seen, the statistical distributions of grids of up to
78,000 nodes were obtained in less than two minutes. We
note that having a large number of critical nodes on the grid
is not a typical situation in practice. Short clock periods and
a small number of logic levels, characteristic of high-speed
circuits, effectively limit the number of such nodes to be
considered simultaneously. Furthermore, it will be possible
to eliminate neighboring nodes from consideration in a crit-
ical path as these nodes display essentially the same voltage
levels at all times and constitute practically electrically iden-
tical points. In case the number of critical nodes remains
high, then more advanced integration methods can be used
to calculate the probability of timing violations [12].

6. CONCLUSION
As the impact of process variations and leakage current

increases, the power grid may suffer high voltage drops caus-
ing failure to meet timing requirements and jeopardizing the
design functionality. This work focused on the impact of
leakage current variations on the power grid and proposed
a statistical model for the grid voltage drops that must be
used to account for leakage variations, in order to check the
susceptibility of a circuit to timing violations.
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