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Abstract—Efficient verification of the chip power distribution
network is a critical task in modern chip design. It should be
done early in the design process where adjustments can be
most easily incorporated. As an alternative to simulation based
methods, vectorless verification is a class of techniques that
requires user-specified current constraints (budgets), and checks
if the corresponding worst-case voltage drops at all grid nodes are
below user-specified thresholds. However, obtaining/specifying the
current constraints remains a burdensome task for users. Recent
literature has addressed the constraints generation problem by
proposing the inverse problem: for a given grid, we would like to
generate circuit current constraints which, if adhered to by the
underlying logic, would guarantee grid safety. In this paper, we
adopt the same framework. We develop an efficient algorithm
for constraints generation that targets a key grid quality metric
namely the uniformity of temperature distribution across the die
area.

I. INTRODUCTION

The rising demand for low-voltage integrated circuits (ICs)
design has made the power and ground networks susceptible
to the flow of large switching currents, causing excessive
supply voltage variations that put both circuit performance and
reliability at risk. A well-designed chip power/ground network
should deliver well-regulated voltages at all grid nodes in
order to guarantee correct logic functionality at the intended
design speed. Therefore, efficient verification of power grids
is a necessity in modern chip design. We will use the term
power grid to refer to either the power or ground distribution
networks.

Today, power grid verification is done using simulation-
based methods. These methods determine the voltage drop
at every node by simulating the grid over a large set of
current waveforms in order to cover most typical scenarios
and guarantee power grid integrity. A major drawback of these
methods is that they do not allow early verification as they
rely on the complete knowledge of the circuit design. As an
alternative to simulation-based methods, the authors in [1]
proposed a verification scheme, referred to as a vectorless
approach, that deals with circuit uncertainty in the form of
current constraints or current budgets. This information may
be available at an early stage of the design and thus allows for
early verification of the grid. Under such framework, the grid
is said to be safe if it satisfies the voltage drop requirements at
all grid nodes under all possible transient current waveforms
that satisfy user-specified current constraints. These methods
require the user to obtain/specify the current constraints which
remains a burdensome task and a hurdle to adoption of the
vectorless approach.

Instead of the traditional vectorless approach that expects

the users to provide current constraints that would be used
to check if the grid is safe (what one might call the forward
problem), the authors in [2] proposed the inverse problem:
given a grid and the allowed voltage drop thresholds at all grid
nodes, we would like to generate circuit current constraints
which, if satisfied by the underlying circuitry, would guarantee
grid safety. Furthermore, the authors developed two constraints
generation algorithms targeting key grid quality metrics such
as: the peak power dissipation a grid can safely support and the
uniformity of current distribution across the die area. In [3],
the authors presented a different formulation of the same
algorithms as in [2] achieving a significant speedup along
with a third algorithm that combines the above two design
objectives. However, the proposed algorithms are not scalable
for typical grids. In this paper, we propose a novel algorithm
for targeting the uniformity of current distribution. We then
provide a comparison between the proposed algorithm and the
uniform current distribution approach developed in [2] and [3].

II. POWER GRID MODEL

Consider an RC model of the power grid, where each
branch is represented by a resistor and where there exists a
capacitor from every node to ground. Some nodes have ideal
current sources (to ground) representing the currents drawn by
the logic circuits tied to the grid at these nodes, while other
nodes may be connected to ideal voltage sources representing
the connection to the external voltage supply Vdd. Let the
power grid consist of n non-Vdd nodes out of which m ≤ n
nodes are connected to ideal current sources. Without loss of
generality, suppose that nodes attached to current sources are

numbered 1, . . . ,m, where m ≤ n. Let H = [Im 0]
T

be an
n×m matrix where Im is the m-dimensional identity matrix,
and let is(t) = Hi(t). Nodal Analysis [4] can be used to
construct the system model [1] for the power grid:

Gv(t) + Cv̇(t) = is(t) (1)

where v(t) is the n × 1 vector of time-varying voltage drops
(difference between Vdd and true node voltages); C is the
n×n diagonal non-negative capacitance matrix, which is non-
singular because every node is attached to a capacitor; G is the
n × n conductance matrix, which is known to be symmetric
and irreducibly diagonally dominant M-matrix so that G is
non-singular and G−1 > 0 [2].

Using a finite-difference approximation for the derivative,
such as a Backward Euler numerical integration scheme v̇(t) ≈
(v(t)− v(t−∆t)) /∆t, the grid system model (1) leads to:

v(t) = A−1Bv(t−∆t) +A−1is(t) (2)
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where B = C/∆t is an n × n diagonal matrix with bii > 0,
∀i, and A = G+B. Just like G, A can be shown to be non-
singular with A−1 > 0 [2]. Let M = A−1 > 0 and define the
n×m matrix M ′ = MH > 0.

Finally, we assume that a certain number of grid nodes
d ≤ n are required to satisfy some user-provided voltage drop
threshold specifications, captured in the d × 1 vector Vth ≥
0. These would typically be nodes at the lower metal layers,
where the chip circuitry is connected. Let P be a d×n matrix
consisting of 0 and 1 elements only, specifying (with a 1 entry)
the nodes that are subject to voltage threshold specification.
Note that P ≥ 0 and P has exactly one 1 entry in every row,
otherwise 0s, and that no column of P has more than one 1.

III. PRELIMINARIES

In this section, we will review the terminology and major
theoretical results that were introduced in [2] and are crucial
to our work.

A. Safe Containers

The following definition introduces the notion of a con-
tainer for a vector of current waveforms, which will help us
to express constraints that guarantee grid safety.

Definition 1. (Container) Let t ∈ R, let i(t) ∈ Rm be a
bounded function of time, and let F ⊂ Rm be a closed subset
of Rm. If i(t) ∈ F , ∀t ∈ R, then we say that F contains i(t),
represented by the shorthand i(t) ⊂ F , and we refer to F as
a container of i(t).

Definition 2. (Safe Grid) A grid is said to be safe for a given
i(t), defined ∀t ∈ R, if the resulting Pv(t) ≤ Vth, ∀t ∈ R.

To check if a power grid is safe, one would typically be
interested in the worst-case voltage drop at some grid node k,
at some time point τ ∈ R, over a wide range of possible current
waveforms. Using the above notation, and given a container
F that contains a wide range of current waveforms that are
of interest, we can express this as maxi(t)⊂F (vk(τ)). Clearly,
because F is the same irrespective of time, and applies at all
time points t ∈ R, then this worst-case voltage drop must
be time-invariant, independent of the chosen time point τ .
Therefore, one way to check node safety is to compute the
worst-case voltage drop attained by each component of v(t),
denoted as v∗(F) = emaxi(t)⊂F (v(τ)) where the “emax(·)”
notation denotes element-wise maximization, as in [2]. In [5],
the authors derived an exact expression for the worst-case
voltage drop v∗(F) that requires an infinite sum of emax(·)
operations. Thus, relying on v∗(F) is prohibitively expensive
and so we will use an upper-bound on v∗(F) based on the
following.

Definition 3. For any F ⊂ Rm, define:

v(F)
△

= G−1A emax
I∈F

(M ′I) (3)

where I ∈ Rm is a vector of artificial variables, with units of
current, that is used to carry out the emax(·) operation, with
the convention that emaxI∈F (M ′I) = 0, if F = φ.

In [5], the authors have derived the following upper-bound
on v∗(F):

v∗(F) ≤ v(F) (4)

Furthermore, in [5], the authors investigate the accuracy of this
upper-bound which was found to be quite good (recent tests
show a maximum error of 4mV on a 5K node grid).

Definition 4. (Safe Container) For a given container F , we
say that F is safe if P v(F) ≤ Vth.

Thus, we are interested to discover a container F for which
P v(F) ≤ Vth, so that Pv∗(F) ≤ Vth and the grid is safe. A
safe container F can be expressed as a set of constraints on
the circuit currents that load the grid, thereby providing a set
of linear constraints that are sufficient to guarantee grid safety.

B. Maximal Containers

Let u ∈ Rn and define the sets U , F(u), and S as follows:

U
△

={u ∈ R
n : u ≥ 0, Pu ≤ Vth} (5)

F(u)
△

= {I ∈ R
m : I ≥ 0, M ′I ≤ MGu} (6)

S
△

= {F(u) : u ∈ U} (7)

Because i(t) ≥ 0 is already assumed in our grid model, it is
enough to consider only containers of the form (6), due to the
following necessary and sufficient condition.

Lemma 1. [2] A container J ⊂ Rm
+ is safe if and only if it

is a member of S or a subset of a member of S .

The importance of the above lemma is two-fold: 1) F(u)
is safe for any u ∈ U and 2) all interesting safe containers J
may be found as either specific F(u) for some u ∈ U , or as
subsets of such F(u). Note that, if J ⊆ F(u), for some u ∈ U ,
with J ≠ F(u), then clearly F(u) is a better choice than
J . Choosing J would be unnecessarily limiting, while F(u)
would allow more flexibility in the circuit loading currents.
Therefore, it is enough to consider only containers of the form
F(u) with u ∈ U .

Going further, if F(u1) ⊆ F(u2) with F(u1) ̸= F(u2),
then clearly F(u2) is a better choice than F(u1). Thus, in a
sense, the “larger” the container, the better. Therefore, we are
interested in safe containers that are not fully contained in any
other safe container. We refer to such containers as maximal.

IV. ALGORITHMS

In this section, we present an algorithm that targets the
uniformity of current distribution across the die area. This
algorithm will lead us to find a specific safe maximal container.
An algorithm that targets the same design objective was
developed in [2] and [3]. As we will see in Section V, our
proposed algorithm achieves a significant runtime advantage
over [2] and [3].

A. Uniform Current Distribution

The design team may be interested in a grid that safely
supports a uniform current distribution across the die, so
as to allow a placement that provides a uniform tempera-
ture distribution. We can generate constraints that allow that
objective by searching for a safe maximal container F(u)
that contains the hypercube in current space that has the
largest volume, or the largest edge length L. We will develop
a method (10) which, when applied to the simple grid in
Fig. 1, generates the container F(ul) shown in Fig. 1, where
ul = [27 43 36 38]T (units of mV ). The method proposed
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in [2] and [3] generates the container F(us) shown in Fig. 1,
where us = [26 43 36 37]T (units of mV ). Notice that both
containers allow similar current distribution between i1(t) and
i2(t) and thus provide similar features for the design team.

Let C(L) ⊂ Rm denote the hypercube with edge length
L, i.e. C(L) = {I : 0 ≤ I ≤ L1m}, where 1m is an m × 1
vector whose every entry is 1. We are interested in a non-empty
F(u) such that C(L) ⊆ F(u). Let η = M ′1m ≥ 0, because
M ′ ≥ 0. In the following lemma, we will derive a necessary
and sufficient algebraic condition for which C(L) ⊆ F(u) -
this will be useful to solve (8).

Lemma 2. For any L ≥ 0 and u ∈ Rn, C(L) ⊆ F(u) if and
only if Lη ≤ MGu.

Proof: To prove the “if direction,” let I ∈ C(L), i.e. 0 ≤
I ≤ L1m, so that 0 ≤ M ′I ≤ LM ′1m = Lη, due to M ′ > 0.
Therefore, we have M ′I ≤ Lη ≤ MGu and I ≥ 0, so that
I ∈ F(u). Conversely, let I = L1m and notice that I ∈ C(L),
so that I ∈ F(u). Therefore, M ′I = LM ′1m = Lη ≤ MGu,
and the proof is complete.

For any u ∈ U , we define l(u) to be the largest L ≥ 0 for
which C(L) ⊆ F(u), or equivalently, for which Lη ≤ MGu
is satisfied, so that:

l(u)
△

= max
C(L)⊆F(u)

(L) = max
0≤Lη≤MGu

(L) (8)

and we define L∗ to be the largest l(u) achievable over all
possible u ∈ U , i.e.:

L∗ △

= max
u∈U

(l(u)) (9)

Let ul be a vector at which the above maximization attains
its maximum. In other words, ul ∈ U is such that l(ul) = L∗

and C(L∗) ⊆ F(ul). In general, ul may not be unique. We
can express the combined (8) and (9) as the following linear
program (LP):

L∗ = Maximize L

subject to
Lη ≤ MGu, Pu ≤ Vth,

L ≥ 0, u ≥ 0
(10)

Let T be the feasible region of the LP (10):

T
△

= {(L, u) : L ≥ 0, u ≥ 0, Lη ≤ MGu,Pu ≤ Vth} (11)

so that, from the above, we have:

L∗ = max
(L,u)∈T

(L) (12)

Notice that, (0, 0) ∈ T so that T is not empty and L∗ and
ul are well-defined. Also, for every (L, u) ∈ T , we have
Lη ≤ MGu and L ≥ 0. Because η ≥ 0, it follows that
0 ≤ Lη ≤ MGu so that u is feasible [2] meaning that the
container F(ul) = {I ∈ Rm : I ≥ 0,M ′I ≤ MGul} ≠ φ.
Therefore, F(ul) provides the desired current constraints:

i(t) ≥ 0, ∀t ∈ R

M ′i(t) ≤ MGul, ∀t ∈ R

It can be shown that F(ul) is maximal1.

The importance of the following lemma is two-fold. First, it
simplifies the LP (10) into (18) achieving a significant speedup.
Second, it shows that, after solving for ul, the resulting F(ul)
can be represented using only m rows of M ′I ≤ MGul, based
on a lemma proved in [3].

1The proof is omitted due to lack of space.
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Fig. 1: (Left Figure) An example of a power grid with 4 nodes, 3
current sources, and Vth = [88 45 36 83]T (units of mV ). (Right
Figure) An example of F(us) and F(ul).

Lemma 3. Let u∗ = L∗G−1H1m, then u∗ ∈ U and l(u∗) =
L∗.

Proof: Recall that η ≥ 0 and L∗ ≥ 0, so that L∗η ≥ 0.
Moreover, because C(L∗) ⊆ F(ul), we have:

0 ≤ L∗η = L∗MH1m ≤ MGul (13)

where we used the fact that η = M ′1m = MH1m and the
final step due to Lemma 2. Notice that G−1A = G−1(G +
B) = In+G−1B ≥ 0, because In ≥ 0, G−1 ≥ 0, and B ≥ 0.
Multiplying (13) with G−1A ≥ 0, we get:

0 ≤ L∗G−1H1m ≤ ul (14)

Therefore, we have 0 ≤ u∗ = L∗G−1H1m ≤ ul, so that
Pu∗ ≤ Pul ≤ Vth, because P ≥ 0 and the final step is due
to ul ∈ U . It follows that u∗ ∈ U . Moreover, we have that
MGu∗ = L∗MH1m = L∗η, from which C(L∗) ⊆ F(u∗),
due to Lemma 2, so that l(u∗) = L∗, due to (8), and the proof
is complete.

Recall that ul is defined to be any vector u ∈ U such
that l(u) = L∗. Therefore, using Lemma 3, we can let ul =
L∗G−1H1m. Define the set T ′ as follows:

T ′ △

= {(L, u) : L ≥ 0, u ≥ 0, Pu ≤ Vth, u = LG−1H1m}
(15)

Notice that, for any (L, u) ∈ T ′, we have u = LG−1H1m,
so that MGu = LM ′1m = Lη which, combined with L ≥ 0,
u ≥ 0, and Pu ≤ Vth, gives (L, u) ∈ T . Therefore, we have
T ′ ⊆ T . Also, because (L∗, ul) ∈ T ′, then L∗ = max

(L,u)∈T ′

(L),

which can be found using the LP:

L∗ = Maximize L

subject to
u = LG−1H1m, Pu ≤ Vth,

L ≥ 0, u ≥ 0
(16)

Let G =

[

G1

G2

]

, where G1 and G2 are m×n and (n−m)×n

matrices, respectively. Recall that H = [Im 0]T , so that for
every (L, u) ∈ T ′, we have:

Gu =

[

G1u
G2u

]

= LH1m = L

[

1m

0

]

(17)

from which, G1u = L1m and G2u = 0. Using (17), we can
rewrite (16) as:

L∗ = Maximize L

subject to
G1u = L1m, G2u = 0,
Pu ≤ Vth, L, u ≥ 0

(18)
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TABLE I: Comparison of the two approaches

Power Grid
Uniform Current Distribution: Uniform Current Distribution:

Sphere Approach (from [2] and [3]) Cube Approach

Name Nodes
Current

P (us) in mW ρ(us) in µA
Total

P (ul) in mW l(ul) in µA
Total

Sources Time Time
G1 312K 19K 35.23 2.03 22.67 min 36.80 1.89 50 sec
G2 449K 28K 50.10 1.61 46.47 min 41.60 1.48 1.7 min
G3 1M 63K 116.19 1.94 3.66 hrs 114.10 1.81 4.6 min
G4 1.7M 111K 205.21 1.84 13.93 hrs 184.40 1.64 10.9 min
G5 2.4M 151K 269.76 1.48 25.27 hrs 207.30 1.37 22.5 min
G6 2.7M 174K 319.34 2.03 33.45 hrs 336.40 1.93 21.2 min

where 1m is an m × 1 vector whose every entry is 1. The
LP in (18) has a remarkable simplification over (10) for two
reasons: 1) In−MB = In−M(A−G) = MG which means
that MG is a dense matrix, because In and B are diagonal
matrices and M is a dense matrix, so that the constraints
of (10) are dense whereas the constraints of (18) are sparse,
and 2) it does not require the computation of η = M ′1m

which, because M ′ ≥ 0, requires an LU-factorization of A
and a forward/backward substitution.

Let w =

[

w(1)

w(2)

]

= MGul, where w(1) and w(2) are

m× 1 and (n−m)× 1 vectors, respectively. Also, let M ′ =
[

M1

M2

]

, where M1 and M2 are m × m and (n − m) × m

matrices, respectively. Because ul = LG−1H1m, then Gul =
LH1m ≥ 0. Hence, it can be shown that M1I ≤ w(1) ⇐⇒
M ′I ≤ w [3], i.e. r′jI ≤ rjGul is redundant, ∀j ∈ {m +
1, . . . , n}, where r′j and rj denote the jth rows of M ′ and
M , respectively. This being said, the container F(ul) can be
expressed as F(ul) = {I ∈ Rm : I ≥ 0, r′jI ≤ rjGul, ∀j ∈
{1, . . . ,m}} which provides the desired current constraints:

i(t) ≥ 0, ∀t ∈ R

r′ji(t) ≤ rjGul, ∀j ∈ {1, . . . ,m}, ∀t ∈ R

V. RESULTS

The above algorithm (18) and the algorithm presented
in [2] and [3] targeting uniform current distribution have been
implemented using C++. The maximizations were performed
using the Mosek optimization package [6]. We conducted tests
on a set of power grids with a 1.1 V supply voltage that
were generated based on user specifications, including grid
dimensions, metal layers, pitch and width per layer, and C4 and
current source distributions, consistent with 65nm technology.
All results were obtained using a 3.4 GHz Linux machine with
32 GB of RAM.

The CPU time for solving (18) is given in column 9 of
Table I. Furthermore, we include the CPU time for solving
the uniform current distribution algorithm presented in [3] in
column 6 of Table I. The LP (18) achieves 57X speedup on
average compared to the uniform current distribution approach
presented in [3].

In Table I, we present the results of the two approaches
in columns 4, 5, 7, and 8. We compare both approaches
based on the peak power dissipation and the uniformity of
current distribution allowed under the resulting containers
F(us) and F(ul), where F(us) is the container resulting
from the approach presented in [2] and [3]. Denote by

P (u)
△

= Vdd × max
I∈F(u)

(

∑m
j=1 Ij

)

the peak power dissipation

allowed under F(u). We computed the peak power dissipation
achievable under both containers, which are P (us) and P (ul).

For instance, on a 449K node grid, the peak power dissipation
achievable under F(us) and F(ul) is 50.1 mW and 46.47 mW,
respectively. Also, we computed the maximum radius of the
hypersphere that has its part in the first quadrant in Rm

inscribed in F(us) and the largest current edge for which
the hypercube is contained in F(ul), which are ρ(us) and
l(ul). Note that ρ(us) and l(ul) represent the uniformity of the
current distribution across the die area that each container can
allow. For example, on a 449K node grid, the maximum radius
hypersphere that has its part in the first quadrant inscribed
in F(us) and largest current edge for which the hypercube
in the first quadrant is contained in F(ul) is 1.61 µA and
1.48 µA, respectively. The results show that P (us) ≈ P (ul)
and ρ(us) ≈ l(ul) on all grids. Thus, both F(us) and F(ul)
provide similar features. Therefore, the the uniform current
distribution approach presented in this paper is superior as it
achieves a huge speedup compared to that presented in [3].

VI. CONCLUSION

Efficient and early verification of the power grid is a
critical step in modern chip design. Typical methods for
power grid verification include simulation-based and vector-
less approaches, both of which have serious shortcomings.
Recent literature has addressed the problem of generating
circuit current constraints that ensure power grid safety. We
adopted the same framework and developed a new constraints
generation algorithm that target a key quality metric of the
grid: the uniformity of the power spread across the die. We
then compare our approach with that presented in [2] and [3].
Both approaches provide similar current distribution features.
On the other hand, the approach presented in this paper has a
huge runtime advantage (∼ 57X speedup).
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