
Early Power Grid Verification Under Circuit Current
Uncertainties∗

Imad A. Ferzli
Department of ECE
University of Toronto

Toronto, Ontario, Canada
ferzli@eecg.utoronto.ca

Farid N. Najm
Department of ECE
University of Toronto

Toronto, Ontario, Canada
f.najm@utoronto.ca

Lars Kruse
Magma Design Automation

Eindhoven, The Netherlands
lars@magma-da.com

ABSTRACT
As power grid safety becomes increasingly important in modern
integrated circuits, so does the need to start power grid verifica-
tion early in the design cycle and incorporate circuit uncertainty
of the early stages into useful power grid information. This work
adopts the framework of capturing circuit uncertainty via con-
straints on circuit currents, and follows a geometric approach
to transform a problem whose solution requires as many linear
programs as there are power grid nodes, to another involving a
user-limited number of solutions of one linear system.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Verification

General Terms
Verification, Algorithms, Design

Keywords
power grid, hyperplane, hypercube, vertex, subset-sum problem

1. INTRODUCTION
Power grid verification must start at design-time. For one

thing, power routing resources must be committed in the early
stages, often prior to the very completion of circuit design. Uncer-
tainty in circuit design is, therefore, part and parcel of the power
grid verification problem, as stated in [1]:“The crux of the prob-
lem in designing a power grid is that there are many unknowns
until the very end of the design cycle. Nevertheless, decisions
about the structure, size and layout of the power grid have to be
made at very early stages when a large part of the chip design has
not even begun.” Although this statement dates back almost ten
years, it still is true today: Existing power grid verification tools
assume a fully designed circuit and are only useful after placement
and routing, or for final signoff. As a matter of practice, many
design groups often start with what they view, based on previ-
ous experience, as “safe”, over-designed grids, but have no way
to estimate the extent of over-design, and no way to tell whether

∗
This research was supported in part by Intel Corp., by Altera Corp.,

and by the SRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’07, August 27–29, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-709-4/07/0008 ...$5.00.

some sections of the grid are in reality susceptible to voltage vi-
olations, because of the lack of a systematic way to incorporate
circuit uncertainties. Therefore, there is a need to prototype the
grid early in the design flow, i.e., estimate its worst-case voltage
drops, while accounting for circuit uncertainty.

A critical aspect of circuit uncertainty for the power grid, that
which is the focus of this work, is the imprecise characterization
of circuit currents. To capture this uncertainty, we work in the
frame of current constraints [2], which specify a feasible space
for currents during circuit operation. Grid verification becomes a
matter of computing the maximum voltage drops on the grid, for
all feasible currents. This is not an easy problem, and previous
work [2] tackled it by solving a linear program (LP) for every node
on the grid. Full grid verification would therefore require as many
LPs as there are nodes, which is not practicable for large grids.
The present work follows starkly different methods, exploiting the
particularities of the power grid at design time and the geometry
of the feasibility space, as described by the current constraints,
to derive an efficient solution.

2. PROBLEM FORMULATION
2.1 Constraint-Based Framework

Consider a power grid with n nodes, m of which having a cur-
rent source tied to them. Assuming, without loss of generality,
that nodes with a current source are numbered 1, . . . , m, we can
write the RC-model for the power grid as:

Cv̇(t) + Gv(t) =

�
i(t)
0

�
=

�
I
0

�
i(t) = Hi(t). (1)

The system equation (1) can be formulated [2] so that n is specif-
ically the number of non-C4 nodes, i.e., nodes that do not cor-
respond to Vdd sites, and v(t) is the n-vector of time varying
voltage drops (difference between Vdd and node voltages). i(t)
is the m-vector of current loads, and H is an (n × m) matrix
whose top (m×m) block is the identity matrix and bottom block
0. Assuming all capacitance is node-to-ground, C is the (n × n)
diagonal capacitance matrix. G is the (n × n) conductance ma-
trix and is a symmetric positive definite M-matrix [3]. For the
purposes of power grid verification and optimization, DC analy-
sis plays an important role in some practical design flows. The
system equation for a DC grid model is analogous to (1), and
given by Gv = Hi. We draw this parallel because the techniques
proposed in this paper apply to both the DC and RC models.

We specify current constraints as linear inequalities [2], and we
distinguish local and global constraints. A local constraint sets a
bound on the maximum value of current drawn by a source. For
example, if ij(t) does not exceed lj , we write 0 ≤ ij(t) ≤ lj . A
similar inequality at every current source implies:

0 ≤ i(t) ≤ IL (2)

where the jth component of IL is lj . Global constraints are upper
bounds on the sum of certain current subsets. They are user-
supplied, and meant to systematically incorporate engineering

116

knowledge of circuit uncertainty. We express them as:

m−1�
j=0

uij ij(t) ≤ gi, i = 0, . . . , c − 1, (3)

where c is the number of global constraints. Let Gi be the ith

global constraint. uij is an indicator variable taking the value of
1 if ij is included in Gi, and 0 otherwise. Together, (2) and (3)
define a feasibility region for circuit currents, denoted by IF . We
want to compute the vector of maximum node voltage drops on
the grid as currents vary inside IF . The exact solution to this
problem is prohibitive and involves solving one LP over �n, for
every node on the grid, i.e., n LPs in total. This work proposes
a different approach, which, short of finding the vector of exact
maximum voltage drops at every node, computes an efficient up-
per bound thereon, in both accuracy and speed.

2.2 Vector of Upper Bounds
As a matter of notation, we mention that all inequalities in this

paper, when applied on vectors and matrices, and all min/max
operators applied on vectors, are component-wise.

Let A = G + C/Δt. Time-discretizing (1) yields:

v(t) = A−1Hi(t) + A−1(C/Δt)v(t − Δt). (4)

A can be shown to be an M-matrix [2], so thatA−1 ≥ 0, therefore:

v(t) ≤ max
i(t)∈IF

A−1Hi(t) + A−1(C/Δt)vub(t − Δt). (5)

maxA−1Hi(t) is a vector of component-wise maxima: if aj is

the jth row of A−1, then the jth component of maxA−1Hi(t) is
maxajHi(t), i(t) ∈ IF . vub(t − Δt) is a vector of upper bounds
on the maximum voltage drops at (t − Δt).

Although the RC model features dynamic currents and volt-
ages, the description of local and global constraints is static, i.e.,
IL in (2) and gi in (3) do not depend on time and IF is the
same for each time step. Therefore, maxA−1Hi(t), i(t) ∈ IF , is
independent of t, and we will denote it by Va. We have, from (5):

vub(t) = Va + A−1(C/Δt)vub(t − Δt) (6)

is an upper bound on v(t). Denote by v(0) the vector of voltage
drops on the grid at t = 0, i.e., the grid’s initial condition. This
leads to vub(0) = v(0) and vub(Δt) = Va + A−1(C/Δt)v(0).
Since A−1 ≥ 0 and B = A−1C/Δt ≥ 0, writing (6) at time
steps Δt, . . . , kΔt yields:

vub(kΔt) = (I + B + . . . + Bk−1)Va + Bkv(0), (7)

where I denotes the identity matrix. The convergence of vub,
as k → ∞, depends on the convergence of a) the matrix series�∞

k=0 Bk and b) the matrix sequence Bk, as k → ∞.

The series
�∞

k=0 Bk is known to converge [3] if and only if
ρ(B) < 1, where ρ(B) is the magnitude of the largest eigenvalue
of B, under which condition the series limit is (I − B)−1. The
condition that ρ(B) < 1 is also necessary and sufficient for the
convergence of the sequence Bk to 0 [3]. We will now prove that
ρ(B) < 1, and find a limit value for vub(kΔt), independent of
the initial condition v(0), by making use of the fact that B ≥ 0
and of the following theorem [3]:

Theorem 1. Let B be a nonnegative matrix. Then ρ(B) < 1 if
and only if I − B is nonsingular and (I − B)−1 is nonnegative.

A key convergence result is captured in the following claim:

Corollary 1. vub(kΔt) converges to Vu = (I+G−1C/Δt)Va,
as k → ∞, for all Δt > 0.

Proof. B = A−1(A − G) = I − A−1G, I − B = A−1G,
and (I − B)−1 = G−1A = I + G−1C/Δt. A and G being
positive definite, det(A−1G) = det(G)/det(A) �= 0 so I − B
is nonsingular. Since G is an M-matrix, G−1 ≥ 0. Given that
C ≥ 0, we immediately have that (I − B)−1 ≥ 0. Therefore, by
theorem 1, ρ(B) < 1. This implies that Bk converges to 0 and
that

�∞
k=0 Bk converges to (I−B)−1 = I+G−1C/Δt, as k → ∞,

yielding that vub(kΔt) converges to (I + G−1C/Δt)Va.

Computation of this limit is easy, given Va: scale the jth com-
ponent of Va by cj/Δt (cj is the jth component of C), yield-
ing Vs = CVa/Δt, then solve for Vb such that GVb = Vs

(one standard linear system solve). The upper bound is the sum
Vu = Va + Vb. Therefore, Vu can be easily deduced from Va,
given a standard factorization of G.

The problem of finding a vector of upper bounds on the voltage
drop maxima given an RC grid model is thus reduced to finding
Va = maxA−1Hi, i ∈ IF . The problem is similar when a DC
grid model is used: find maxG−1Hi, i ∈ IF , with the excep-
tion that the DC solution yields the exact vector of voltage drop
maxima, not an upper bound thereon.

We digress to mention that, when transient analysis is used,
Va depends on the choice of the time step Δt: since Va is the
upper bound on the voltage drops at t = Δt, the smaller the
time step, the smaller Va. In fact, although the upper bound
converges for any Δt > 0, choosing too small a time step leads to
overestimating the maximum voltage drops in a way that could be
easily avoided. To see why, observe that in the above derivation
of Vu, we are implicitly assuming that currents may change arbi-
trarily in their feasibility region IF within Δt time. This would
allow, for example, that currents switch from 0 to their max-
imum possible values, i.e., their local constraints, or the other
way around, within a single time step. This is clearly not the
case for arbitrarily small Δt. With this in mind, we note that
problems with a larger time step are subsets of problems with a
smaller time step, by virtue of the fact that maximizations need
to be performed at a greater number of time points when smaller
time steps are used. This results in the observation that the
smaller Δt, the larger Vu. Therefore, the upper bound resulting
from unrealistically small Δt is too pessimistic an estimate. On
the other hand, the time step needs to be small enough to cap-
ture the transition times on the grid voltages. Therefore, design
expertise needs to guide the choice of Δt by striking a balance be-
tween the dynamics of the current loads and voltage responses on
the grid, in order to avoid pessimism in the computation of Vu.
An alternative, which could obliviate this question altogether, is
the use of dynamic current constraints, i.e., making IF time-
dependent. This may be more difficult in practice, both from the
user’s standpoint (supplying dynamic constraints) as well as the
tool’s (dealing with them). However, dynamic constraints may
afford greater accuracy in voltage drop estimation. Either way,
dealing with dynamic current constraints is part of our ongoing
research, and this papers considers only static constraints.

Going back to the estimation of Vu, observe that, for a given
Δt, if Va,ub ≥ Va, then (I + G−1C/Δt)Va,ub ≥ Vu, i.e., a
conservative estimate of Va leads to a conservative estimate of
Vu. In what follows, we propose an approach to efficiently com-
pute a conservative estimate of Va = maxA−1Hi, where A is
understood to mean G in case of DC analysis.

3. COMPUTATIONAL STRATEGY
3.1 Finding Va at The Vertices of IF

Every local and global current constraint corresponds to a hy-
perplane, more precisely, to a half-space of a hyperplane, in �m.
The feasibility region IF is thus a convex polytope [4] formed
by the intersection of all these half-spaces. A global constraint
Gi, of the form

�
uij ij ≤ gi, as in (3), defines a hyperplane

HGi
:
�

uij ij = gi, and two half-spaces H−
Gi

:
�

uij ij ≤ gi

(belongs to Gi), and H+
Gi

:
�

uijij > gi (outside of Gi). Note

that, from (2), two hyperplanes are associated with every local
constraint: one for the lower bound of 0, and one for the upper
bound. If we have c global constraints, then IF consists of the
intersection of (2m+c) half-spaces. Of interest are the vertices of
IF . A detailed discussion of hyperplanes, polytopes, and vertices
is beyond the scope of this paper, and we refer the reader to [4]
for a comprehensive discussion. It suffices to say that a vertex
of IF is formed by the intersection of any m of the (2m + c)
hyperplanes, provided this intersection exists and belongs to IF .

Notice that the local constraints alone form a hypercube in
�

m, with 2m vertices at [0/l0, 0/l1, . . . , 0/lm−1]T . The jth local

117

constraint, therefore, can be either “turned ON” in a vertex if its
corresponding entry is lj , or “turned OFF” if 0. Denoting the
local constraint hypercube by K, we can write IF as

IF = K ∩H−
G0

∩H−
G1

. . . ∩H−
Gc−1

. (8)

Let Va(j) be Va’s jth component. Since Va(j) = maxajHi,
i ∈ IF , and because IF is linearly constrained, Va(j) is the
solution of a linear program, therefore must occur at a vertex of
IF [4]. This is true ∀j = 0, . . . , (n − 1). We express this as:

Va = max
i∈V(IF)

A−1Hi (9)

where V(IF) denotes the set of vertices of IF . Therefore, Va can
be computed in two steps: 1) Solve A−1Hi at all vertices of IF
and let S be the set of solution vectors 2) Va(j) is the maximum
value of the jth component of all vectors in S.

Alone, however, this procedure is insufficient, since the number
of vertices in IF may be too large [4]. In what follows, we refer
to solving A−1Hi at a particular vertex i as visiting vertex i.

Our overall strategy is to enlarge IF in a way that requires
visiting a user-limited number of vertices in order to compute
a conservative estimate of Va while limiting the computational
cost. The first such enlargement of IF is by forming the inter-
section of K with each global constraint separately.

3.2 Applying One Global Constraint at A Time
Noting that IF ⊂ K ∩H−

Gi
, ∀i, we can write

Va ≤ min
i=0,...,c−1

max
i∈V(K∩H−

Gi
)

A−1Hi (10)

where the minimum and maximum are component-wise. This
“decoupling” of global constraints reduces our problem to max-
imizing A−1Hi over the polytope K ∩ H−

Gi
, formed by the in-

tersection of a single hyperplane with a hypercube. This poly-
tope includes IF , so maximizing a function over it overestimates
the maximum of that function over IF , with the advantage that
its vertices are fewer and easier to compute than those of IF .
The accuracy trade-off is to the extent of overlap among global
constraints: if no two global constraints share the same current
source, then (10) is an equality. In practice, this is not a problem
at the design planning stage since currents represent high-level
blocks and global constraints are user-supplied, one could formu-
late them with little or no overlap, but this is not a requirement
of our work – global constraints may overlap.

3.3 Vertex Dominance
Not all vertices of K ∩ H−

Gi
need to be visited: this section

shows that it is enough to only visit the vertices which belong to
HGi

, or a subset thereof.

Because A−1 ≥ 0, we can write

i1 ≥ i2 ⇒ A−1Hi1 ≥ A−1Hi2. (11)

In other words, increasing any coordinate (component) of i is
guaranteed to not decrease any component of A−1Hi.

We say that i1 dominates i2 if i1 ≥ i2. Given (11), when
looking for maxA−1Hi, it is sufficient to visit i1, and there is no
need to visit i2. Define the dimension of G〉, denoted by dim(Gi),
as the number of current sources included in Gi. To a vertex
i ∈ �m, we associate a rank r(i) =

�m−1
j=0 i(j), where i(j) is the

jth coordinate of i, i.e., i = [i(0) . . . i(m − 1)]T .

Proposition 1. If dim(Gi) = m, then

max
i∈V(K∩H−

Gi
)

A−1Hi = max
i∈V(K∩HGi

)
A−1Hi (12)

Proof. For clarity, we draw on Fig. 1(a) for reference through-
out this proof. For Gi to be meaningful, HGi

must intersect K,

i.e., gi <
�m−1

i=0 li. The vertex with all constraints ON (i3) must

(a) (b)

3: i(0) + i(1) = g in RGΗ

10

9

8i

i

i

i(2)

i(1)

i(0)
0

11
GΗ

3i

4i

5i2i

i

i(1,1) normal to T

i(1)

1l

0 i0

0l i(0)

0 0(l , g-l)

1 1(g-l , l)

: i(0) + i(1) = g GΗ

1

Figure 1: (a) i4 and i5 dominate V(K∩H−
G), (b) V0

G =

{i8, i9}, V1
G = {i10, i11}. V1

G dominates V(K ∩H−
G).

therefore be in K ∩H+
Gi

, so any vertex of (K ∩H−
Gi

) \ HGi
must

have at least one local constraint OFF (i0, i1, and i2).

Define, over V(K ∩ H−
G), the property P: “if any constraint

turned OFF in the vertex were turned ON, the resulting vertex
would move to H+

Gi
” (e.g., i0 does not satisfy P, i1 and i2 do).

Clearly, any vertex of K ∩ H−
G which does not satisfy P is dom-

inated by another vertex of the same polytope which does. Let
i be a vertex in (K ∩ H−

Gi
) \ HGi

satisfying P. Replacing any of

the constraints turned off in i by gi − r(i) yields a point i∗ ∈ HGi

that dominates i, since i∗ ≥ i (i4 dominates i1, i5 dominates i2).
Say i∗ was obtained by replacing i(j) with gi − r(i). To see that

i∗ ∈ V(K∩H−
Gi

), note that i ∈ V(K), thus lies at the intersection

of m local constraints, including the 0 hyperplane for the jth local
constraint. In K ∩ H−

Gi
, i∗ lies at the intersection of the same m

constraints as i, with the only exception of HGi
instead of the jth

local constraint. Thus, i∗ ∈ V(K∩H−
Gi

). Therefore, every vertex

of K∩H−
Gi

is dominated by another vertex of that same polytope

which also happens to be a vertex of K ∩HGi
.

Since dim(Gi) = m, all vertices of K∩HGi
share the same rank gi,

so none dominates another (e.g. i4 and i5 in Fig. 1(a)). Propo-
sition 1 implies that all vertices of V(K ∩HGi

) must be visited.
We now turn to the case where dim(Gi) = m′ < m. We distin-

guish two subsets of V(K∩HGi
): V0(K∩HGi

) and V1
Gi

(K∩HGi
),

which comprise vertices where all currents not included in Gi are
OFF and ON, respectively (see Fig. 1b). We can make a stronger
claim than proposition 1:

Proposition 2. If dim(Gi) = m′ < m, then

max
i∈V(K∩H−

Gi
)

A−1Hi = max
i∈V1(K∩HGi

)
A−1Hi (13)

Proof. Similar to the proof of proposition 1, and noting that
V1(K ∩HGi

) dominates V(K ∩HGi
).

Thus, when dim(Gi) < m, we only need to visit V1(K ∩ HGi
).

Notice that vertices in V0(K∩HGi
) can be thought of as being in

�
m′, since (m − m′) of their coordinates are 0. Thus, computing

the vertices of V1(K ∩ HGi
) follows easily from V0(K ∩ HGi

):

compute the vertices of V0(K ∩HGi
) in �m′, then for each such

vertex, set every coordinate corresponding to a current source not
included in Gi to its local constraint value, yielding the vertices of
V1(K∩HGi

) in �m. In the rest of this paper, we may refer to m as
the dimension of a global constraint and discuss the computation
of vertices of K ∩ HGi

in �m, with the understanding that, if

dim(Gi) = m′ < m, we first compute the vertices of V0(K∩HGi
)

in �m′, then deduce those of V1(K ∩HGi
) in �m.

3.4 Global Constraint Relaxation
Based on the above, our problem reduces to visiting the vertices

at the intersection of a global constraint hyperplane with the local
constraint hypercube. However, the number of these vertices may

118

0
a

b

c
i

j
k

Raised
constraint

hyperplane

Initial global
constraint

Figure 2: Before the raise, a, b, and c are left out
of G and K ∩ HG includes five vertices. The raised
hyperplane leaves only a out, and its three induced
vertices i, j, and k, dominate V(K ∩HG).

be too large and their computation expensive [4]. We seek to find
a small, user-controlled number of current points that dominate
V(K ∩ HGi

), such that visiting these currents could be done as

quickly as the user can afford, while the estimate of max A−1Hi
from these currents would be conservative.

The basic idea is to enlarge the polytope K ∩H−
Gi

by suitably

shifting the hyperplane HGi
in such a way that the shifted hyper-

plane H∗
Gi

satisfies H−
Gi

⊂ H∗−
Gi

. Then, the vertices of K ∩ H∗
Gi

would dominate those of K ∩ HGi
. We refer to this process as

relaxing the global constraint. The question becomes how to re-
lax Gi in such a way that the vertices of K ∩ H∗

Gi
are limited in

number and easy to compute.
We say that a constraint Gi (or its hyperplane HGi

) leaves out

a vertex i of K if i ∈ H+
Gi

, otherwise, we say that the vertex is

in the constraint. The key lies in the fact that we can control
the number of vertices of K ∩ HGi

by controlling the number of
vertices of K left out of Gi, based on the following theorem [4]:

Theorem 2. Consider a polytope D and a hyperplane H. A
point v is a vertex of D ∩H if and only if v is either a vertex of
D lying in H or a point at which an edge (u, w) of D intersects
H, such that u ∈ H− and w ∈ H+.

Since m edges are incident to every vertex of K, theorem 2
implies that, if H∗+

Gi
includes k vertices of K, then the number of

vertices of K ∩H∗
Gi

cannot exceed km.

One way to guarantee that H−
Gi

⊂ H∗−
Gi

is to increase gi to g∗i ,

which amounts to raising HGi
parallel to itself, just enough for

the raised constraint G∗
i or its hyperplane H∗

Gi
to leave out at

most k vertices of K. Then the number of vertices of K ∩ H∗
Gi

cannot exceed km. See Fig. 2. A key feature is that the user
controls the maximum computational cost with the choice of k.
The problem is to find the minimum g∗i necessary and to compute
V(K ∩H∗

Gi
). We refer to this relaxation as a constraint raise.

4. TOP-LEVEL ALGORITHM
Recall that visiting a vertex i means solving the linear sys-

tem Av = Hi. Given a factorization of A, this would require a
forward/backward substitution at each vertex visited. Although
the number of vertices is user-controlled through the choice of
k, it can greatly surpass the number m of current sources. If a
forward/backward substitution, which computes the n-vector of
power grid voltage drops and is O(n2), were applied for each ver-
tex visited, visiting all vertices would become too expensive. This,
however, is unnecessary and the number of forward/backward
substitutions does not need to exceed m: If we choose a basis of
vectors in �m, i.e., m linearly independent m-vectors, we only
need a forward/backward substitution at each of the bases (m
in total). The solution at any other point in �m, particularly
at a vertex, can be constructed from the solution of the bases,
by virtue of system linearity, with the more efficient daxpy opera-
tion[3], which, for vectors x and y and a scalar α, computes αx+y

in O(n). We naturally chose the bases ej, j = 0, . . . , (m − 1), for

which the jth component is 1 and all others 0.
Algorithm 1 describes the overall solution. V∗+

i is the set of
current vertices left out of G∗

i , and of cardinality k. As per sec-

tion 3.3, V∗+
i need only contain vertices where local constraints

not included in Gi are ON. Ii is the set of indices of current
sources included in Gi and lj is the jth local constraint.

Algorithm 1 returns a vector Vub of upper bounds on the
maximum voltage drop on all the grid nodes.

1: Compute bj = A−1Hej, j = 0, . . . , m − 1
2: for i = 0, . . . , c − 1
3: Raise HGi to form H∗

Gi
and V∗+

i

4: Set V∗
i = 0, �Vi =

�
j /∈Ii

ljbj, l̃i =
�

j /∈Ii

lj

5: for all i+ ∈ V∗+
i

6: Vi+ =
�

j∈Ii

i+(j)bj

7: for all j ∈ Ii

8: if r(i+) − i+(j) − �Vi ≤ g∗
i then

9: V∗ = �Vi + Vi+ − (r(i+) − l̃i − g∗
i)bj

10: V∗
i = max(V∗

i ,V∗)
11: Va ≤ min

i=0,...,c−1
V∗

i = Va,ub

12: RC: Vub = (I + G−1C/Δt)Va,ub, DC: Vub = Va,ub

V∗
i is the vector of maximum voltage drops induced by G∗

i .

Let i− be the jth neighbor of a vertex i+ ∈ K ∩ H+
G∗

i
, obtained

by changing i+(j) to 0 if i+(j) = lj . i− may be in G∗
i only if

j ∈ Ii (line 7), and is in G∗
i if the condition on line 8 is met.

In this case, ∃i∗ ∈ V(K ∩ H∗
Gi

) along the edge from i+ to i−.

i∗ shares all the coordinates of i+, except i(j), and is such that
the sum of its coordinates corresponding to currents included in
Ii adds up to g∗i . Therefore, i∗(j) = g∗i − (r(i+) − l̃i − i+(j)).
Letting V∗ denote the voltage drop at i∗, we have that V∗ =�Vi + Vi+ − (i+(j) − i∗(j))bj, which reduces to the expression
on line 9. Notice that daxpies are performed on lines 4 and 6 to

compute �Vi and Vi+ .

4.1 Complexity
In algorithm 1, we pay a one-time-cost O(mn2) to compute

the bhs by m forward/backward substitutions (line 1). Forming
the raise (line 3) can be done in O(km) as we show in section 5,

and the computation of �Vi (line 4) is O(mn). The innermost
for loop (line 7) performs O(n) operations on lines 9 and 10, and
iterates at most m times, once for every neighbor of i+, adding
up to O(mn). Line 6 is also O(mn). The for loop on line 5
iterates k times, and is thus O(kmn). Therefore, the outer for
loop (line 2) is O(ckmn). Crucially, this is linear in all param-
eters, notably the grid size n. Contrast that with the cost of n
LPs on �n. The algorithm of section 5 requires that the local
constraints be sorted, which is a standard O(m log m) operation,
that needs to be done only once in algorithm 1, and does not af-
fect the overall complexity. Finally, algorithm 1 requires storage
of the m n-vectors bj, which can create a memory bottleneck for
large n. However, grid locality [5] enables the “sparsification” of
each bj by observing that bj represents the power grid response
to a single current source excitation, the bulk of which is con-
fined to a relatively small neighborhood surrounding the location
of the excitation. Therefore, only a small fraction of the n entries
of each bh effectively need to be stored.

5. MINIMUM RAISE COMPUTATION
For simplicity of presentation, we assume without loss of gen-

erality, that dim(G) = m, and that K and i are a hypercube and
a vertex in �m. If dim(G) = m′ < m, we would be implicitly

working in �m′
(see the discussion at the end of section 3.3).

119

Observe that if G leaves out a vertex i of K, then it must leave
out all vertices of rank greater than r(i). Clearly, the vertex
i0 = [l0 l1 . . . lm−1]T , with all local constraints ON, is the rank-
wise largest vertex of K. Let us denote the vertex with the jth

largest rank, after r(i0), by ij. We say that j is the order of ij (0
is the order of i0). If we knew the sequence R = {i1, . . . , ik}, we
could set g∗ to r(ik), which would be the minimum value for which
k vertices (i0, . . . , ik−1) are left out of the raised global constraint.
For this to hold, no vertex outside of R can have a strictly larger
rank than any vertex in R. If, furthermore, r(ik) = r(ik−1),
then in order to ensure that k is an upper bound on the number
of vertices left out of G, we must find the largest k′ < k for which
r(ik′) < r(ik′−1), and let g∗ = r(ik′).

Since i(j) is either 0 or lj , we can uniquely identify i by the set
of local constraints that are ON in i. The problem becomes to
find which constraints to turn ON to obtain k combinations with
maximal total sum. This likens our problem to the Subset Sum
Problem (SSP) family of knapsacks [6]: we can view a vertex i for
which lj is ON as a packing of the knapsack that includes item
lj , and we want to find the k packings with maximal total value.
But contrary to a usual SSP, we specifically seek k packings of
maximal value. It is possible to tackle this problem naively by
applying iteratively some of the known SSP algorithms. However,
the resemblance to SSP motivates the use of dynamic program-
ming to tailor a specific algorithm for the problem at hand, as
discussed in this section.

Our algorithm assumes the local constraints are sorted in as-
cending order, i.e., li ≤ lj if i < j. We use an m-column table T,
each entry which represents a unique vertex of K. Conceptually,
entries of T fall into two groups: non-empty entries and empty
entries. T is formed so that i1, . . . , ik are represented by non-
empty entries. A non-empty entry is defined as an entry which
is “bound to” a vertex of K (for convenience, we will also say
that the vertex is bound to the non-empty entry). When a vertex
is bound to an entry, we say the entry is filled. There will be a
1-to-1 correspondence between a non-empty entry and a vertex
of K. In the description below, we rely extensively on this 1-to-
1 correspondence, and refer to an entry of T and the vertex to
which it is bound interchangeably, e.g., the rank of a non-empty
entry refers to the rank of the vertex to which it is bound.

We say that a non-empty entry of T is ordered if the order of
the vertex to which it is bound is known. We denote this order
by Φ(Ti,j), and we let Φ−1(x) be the table entry bound to the
vertex of order x. At any given point in the algorithm, the set
of non-empty but unordered entries in T forms the frontier of
T, denoted F . We denote by F+ the non-empty entries which
are not on F , i.e., the set of ordered vertices, and by F− the
remaining vertices of K, which correspond to empty entries in T.
Our aim is to have k entries in F+. Let Ti,j (i, j ≥ 0) denote the

(i, j)th entry of T, and T:,j be T’s jth column.
We impose the following key condition: Ti,j can be bound to

a vertex i of K if and only if i(j) = 0 and i(j′) = lj′ , ∀j′ > j. A
vertex i which can be bound to any entry in T:,j is said to belong

to T:,j , denoted by i ∈ T:,j . Therefore, 2j vertices belong to T:,j .

We say that T:,j is complete if its 2j entries are in F+.
Recall that a vertex i is completely determined by the set of

current constraints that are turned ON in i. Denoting this set
by L(i), we can write i = ∪j∈L(i){lj}. Suppose i1 ∈ T:,j1 and
consider the unique vertex i2 ∈ T:,j2 , j2 < j1, such that i1 =
i2 \ {lj1}. In this case, we say that i1 is paired with i2 and
write i2 = Π(i1). If i1 is bound to Ti1,j1 and i2 is bound to
Ti2,j2 , we similarly write Ti2,j2 = Π(Ti1,j1). Observe that a
vertex is completely specified by the column to which it belongs
and the vertex with which it is paired. It will be convenient,
for notational purposes, to define T0, a conceptual table entry
of order 0, bound to i0: it does not have a row or column, but
pairing an entry in T:,j with T0 forms the vertex ∪j′ �=j{lj′}. Let
T−to−V(.) be an operator which takes a table entry and returns
the vertex to which it is bound. It can be defined recursively as
T−to−V(Ti,j) = T−to−V(Π(Ti,j)) \ {lj}.

Algorithm 2 describes the procedure. The key idea is that as
we go south on any given column of T, the ranks (orders) of the
vertices bound to table entries are non-increasing (increasing).

Algorithm 2 minimum raise computation

1: Set F+ = F = ∅, F− = T
2: for j = 0, . . . , m − 1
3: Set Π(T0,j) = T0

4: Set F = F ∪ T0,j , F− = F− \ T0,j

5: Set needs pairing(j) = false
6: while |F+| = t < k
7: Let Ti∗,j∗ be the leftmost entry of maximal rank in F
8: Set i(t+1) = i∗, j(t+1) = j∗, it+1 = T−to−V(Ti∗,j∗)
9: Set F+ = F+ ∪ Ti∗,j∗ , F = F \ Ti∗,j∗

10: if T:,j∗ is not complete then
11: if j∗ ≥ j(t) andneeds pairing(j(t)) == false then

12: Set needs pairing(j(t)) = true

13: Set needs pairing at row(j(t)) = i(t)

14: for j = j∗ + 1, . . . , m − 1
15: if needs pairing(j) == true then
16: Set i = needs pairing at row(j)
17: Set jump to(Ti,j) = t + 1
18: Set needs pairing(j) = false
19: Set jump to(Ti∗,j∗) = t + 2
20: Let Ti1,j1 = Φ−1 (Φ(Π(Ti∗,j∗)) + 1)
21: if j1 ≥ j∗ then
22: Set t′ = jump to(Ti1,j1), let Ti1,j1 = T

i(t
′),j(t

′)
23: Fill Ti∗+1,j∗ such that Π(Ti∗+1,j∗) = Ti1,j1

24: Set F = F ∪ Ti∗+1,j∗ , F− = F− \ Ti∗+1,j∗

25: return R = {i1, . . . , ik}

Initialization occurs on lines 1–5, where row 0 in every column
is initialized with the vertex of largest rank that belongs to that
column, obtained by a pairing with T0 (line 3). F is set to row
0 of T (line 4). The algorithm works by ensuring that an un-
ordered vertex of maximal rank must exist on F at any given
stage. Iteratively, the loop starting on line 6 picks the table entry
Ti∗,j∗ bound to such a vertex (line 7) and outputs the vertex it+1

(line 8), then moves Ti∗,j∗ from F to F+ (line 9). Lines 10–24
result in a shift of the frontier by 1 row south on T:,j∗ (line 24),
by binding a suitably chosen vertex to Ti∗+1,j (line 23).

Key features of the algorithm are that F comprises the south-
most non-empty and non-ordered entries in each non-complete
column, and that F shifts in each iteration by a single entry
south on the column T:,j∗ to which the most-recently-ordered
vertex, Ti∗,j∗ , belongs (unless T:,j∗ is complete). The vertex to
be bound to Ti∗+1,j∗ is selected so that it must be a vertex of
maximal rank among the unbound vertices belonging to T:,j∗ .
Lines 10–22 satisfy this purpose. We can summarize their basic
idea as follows: Recall that an entry is always paired with another
from a lower-indexed column. We first attempt to pair Ti∗+1,j∗
with the vertex of order equal to the order of the vertex with
which Ti,j∗ is paired, plus 1 (line 20). a) If this vertex is bound
to an entry in columns 0, . . . , (j∗ − 1), then the pairing is suc-
cessful and Ti∗+1,j∗ is filled with this pairing (lines 20 and 23).
b) Otherwise, Ti∗+1,j∗ is to be paired with the entry in columns
0, . . . , (j∗ − 1), bound to the vertex of smallest order with which
no other entry in T:,j∗ is paired. The entry with which Ti∗+1,j∗
is to be paired is stored in the field jump to (lines 21–22), which,
alongside needs pairing and needs pairing at row, perform book-
keeping to retrieve efficiently the entry with which to form the
pairing in case b).

Due to space restrictions, we omit a detailed proof of correct-
ness for algorithm 2. For complexity analysis, we note that the
initialization (lines 1–5) is O(m). For each iteration of the while
loop (line 6), we have: 1) Line 7 is O(m), since every column
includes at most 1 entry in F , 2) Line 8 is O(m), since we output
i1, . . . , ik sequentially, a vertex is always output after that with
which it is paired, so that the application of T−to−V is O(m),
3) The inner for loop (line 14) is O(m), and 4) Everything else is
O(1). This results in an asymptotic runtime complexity O(km).

120

0 250 500 750 1000

k

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

N
or

m
al

iz
ed

 m
ax

im
um

 v
ol

ta
ge

 d
ro

p
at

 a
 n

od
e

Exact maximum voltage drop after 5 time steps

Figure 3: Estimation of the maximum voltage drop
at a given node with increasing k.

Grid size Analysis Runtime Runtime Average
(#nodes) type (sequential (proposed overesti-

LPs) method) mation(%)
900 TR 2.5 min. 1 sec. 1.1

3,800 TR 45 min. 15 sec. 0.4
28,000 DC 16 sec./node 2.3 min. 0.25

(est. 5 days) (est.)
48,500 DC 20 sec./node 6.5 min. 0.30

(est. 11 days) (est.)
261,000 TR – 1.1 hr. –
590,000 TR – 3.0 hr. –

Table 1: Accuracy and speed comparisons of the
proposed approach with sequential linear programs.

In terms of memory footprint, notice that we only need to store
non-empty entries, k of which are ordered (i1, . . . , ik) and up to
m unordered (on F). This results in space requirement O(k+m).

6. EXPERIMENTAL RESULTS
To test our method, we wrote a C++ tool that generates power

grids from user specifications, including grid dimensions, metal
layers (M1 – M9), pitch and width per layer, and C4 and current
source distribution. A global constraint is specified by the spatial
region and metal layers it includes. All the reported results are
on grids with seven global constraints covering the entirety of the
grid area, and runtimes follow the application of all seven global
constraints. Minimum spacing and sheet and via resistances were
specified according to a 90 nm technology. All results were ob-
tained on a Sun Fire X2200 M2 server, with two dual core, 64-bit,
2.6-GHz, AMD Opteron processors, and with 8 GB of memory.

Fig 3 shows, for a given node on a 650-node grid with 121
currents sources, the progress of voltage drop estimation with in-
creasing k. The value at k = 0 corresponds to the voltage drop
when all currents are set to their local constraints, i.e., when
global constraints are ignored. All estimates of voltage drop are
normalized to this value. The horizontal line corresponds to the
value of the exact maximum voltage drop at the node after 5 time
steps, computed from a linear program of size 650 × 5, as in [2],
and amounts to 90% of the value when global constraints are ig-
nored. We note that taking more time steps will only increase this
number [2]. After k = 1000, our estimate is about 93.5%. There-
fore, the overestimation due to not considering global constraints
has been reduced by (at least) 65%.

Table 1 compares results of the proposed method with the exe-
cution of n LPs sequentially, one LP per node, for transient (TR)
and DC analysis. The number of current sources ranged between
120 and 240, and k was set to 3000. For transient analysis, col-
umn 3 refers to the time it took to compute Vu (upper bounds
on node voltage drops), which is essentially the cost of comput-

ing Va by n LPs (see the corollary of theorem 1). Since the full
vector Va is needed for the computation of Vu, solving all n
LPs was necessary, thus limiting the size of grids on which this
comparison could be made. Accuracy estimates were obtained on
larger grids through DC analysis, where we could test our method
on a node-by-node basis, without the need for all n LP solutions.
For this purpose, we chose 20 random nodes on the grid, solved
the 20 corresponding LPs, and estimated runtime (column 3) and
accuracy (column 5) based on these 20 nodes, indicated by “est”.
Given the impractical runtimes of sequential LPs if the full-grid
solution were needed, our method simply makes checking a power
grid under uncertain, constraint-specified currents, a feasible and
practical proposition. The last two rows of the table show larger
grids, where even a single LP is too expensive to run, precluding
accuracy estimation, but illustrating the ability of our technique
to handle efficiently larger problems.

7. CONCLUSION
As power grid safety becomes increasingly important in modern

integrated circuits, so does the need to start power grid verifica-
tion early in the design cycle and incorporate circuit uncertainty
at the early stages into useful power grid information. In this
work, we adopt the framework of capturing circuit uncertainty via
constraints on currents and maximizing node voltage drops over
the constraint space. We propose a geometric approach to trans-
form a problem whose solution requires as many linear programs
as there are nodes, to another involving a user-limited number
of solutions of a single linear system. The key is to determine,
in the current space, and from the geometry of the optimization
problem, a limited number of points at which to solve the power
grid system, and to derive, from these solutions, conservative es-
timates of the power grid voltage drops.

This approach made the problem of prototyping the full power
grid under uncertain currents practicable and scalable. Prior art
simply couldn’t handle large grids of more than a few hundred or
thousand nodes, suffering too prohibitive runtimes for any larger
systems. This work achieves runtime improvement manyfold, do-
ing in seconds what required hours, and completing the proto-
typing of grids of about half a million nodes in a couple of hours.
This comes at the expense of some accuracy loss. However, our
approach is designed so that all non-accurate estimates are guar-
anteed conservative, and our results showed that inaccuracy was
relatively small, rarely exceeding 1% on average.

Acknowledgment
The authors thank Dr. Ulrich Pferschy from the University of
Graz, Austria, and Rami Beidas and Hratch Mangassarian from
the University of Toronto for their helpful comments on the algo-
rithm in section 5.

8. REFERENCES
[1] A. Dharchoudhury, R. Panda, D. Blaauw, R. Vaidyanathan,

B. Tutuianu, and D. Bearden. Design and analysis of power
distribution networks in PowerPCTM microprocessors. In
ACM/IEEE Design Automation Conference, pages 738–743,
San Francisco, CA, June 15-19 1998.

[2] M. Nizam, F. N. Najm, and A. Devgan. Power grid voltage
integrity verification. In ACM/IEEE International
Symposium on Low Power Electronics and Design, pages
239–244, San Diego, CA, August 8-10 2005.

[3] Y. Saad. Iterative Methods for Sparse Linear Systems.
SIAM, Philadelphia, PA, 2nd edition, 2003.

[4] R. Horst, P. P. Pardalos, and N. V. Thoai. Introduction to
Global Optimization. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2nd edition, 2000.

[5] E. Chiprout. Fast flip-chip power grid analysis via locality
and grid shells. In IEEE/ACM International Conference on
Computer-Aided Design, pages 485–488, San Jose, CA,
November 7-11 2004.

[6] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
problems. Springer-Verlag, Berlin, Germany, 2004.

121

