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ABSTRACT
Integrated circuit design with sub-100nm technology requires
closer attention to the effect of process variations on circuit
timing. In a previous work, we had developed a method of
statistical timing analysis in which the effect of process vari-
ations on circuit timing is assessed, given a generic logic path
in a target design technology. In this work, we extend that
previous work in an important way, by incorporating into
the analysis the effect of clock skew. The resulting model
captures both die-to-die and within-die process variations,
in both logic and clock paths, it handles within-die correla-
tion using principal component analysis, and it leads to an
expression for the resulting timing yield. Among other uses,
this allows one to compute how much reduction one will see
in the timing yield, for a given clock skew variance.

1. INTRODUCTION
With the scaling of integrated circuit (IC) technology, the

control over process variations is becoming more difficult.
The variations of circuit parameters (channel length, thresh-
old voltage, wire length and width, doping, etc.) between
different dies (chips), and within the same die, have a sig-
nificant effect on circuit timing. In order to account for this
variability, there is a need to model both gate and intercon-
nect delays as statistical quantities and to study the impact
on the timing yield using “statistical timing analysis” [1, 2].

The literature abounds with recent proposals for statisti-
cal timing analysis. As reviewed in our previous work [3],
many of these proposed techniques suffer from a key problem
that they assume the presence of various types of statistical
process data (such as correlations and how they vary with
placement) which is not available today. A key contribution
of [3] was to propose a method for studying the impact of
variations on the timing yield using minimal process data.
Due to lack of space, the reader is referred to [3] for details;
suffice it to say that the method operates by assuming that
a generic logic path in a given technology is available, and
provides an analytical technique for computing the chip tim-
ing yield given the variances of various circuit parameters.
However, absent from [3] was the effect of variations in clock
delay on the timing yield. This paper extends that previ-
ous work in an important direction: we show how one can
take statistical variations in clock skew into account as we
compute the chip timing yield. Previous work on statistical
clock skew aimed to find its distribution [2]. However, to
our knowledge, this is the first work that studies the effect
of statistical clock skew on the chip timing yield.

In section 2, we present a parameter model that handles
die-to-die and within-die variations, as well as spatial corre-
lations using Principal Component Analysis (PCA) [3]. Sec-
tion 3 shows how clock skew can fit in the parameter model,
with slight modifications. The effect of statistical clock skew
is also added to the Setup or Max timing constraint. The
correlation between logic path delay and clock skew is taken
care of by the PCA coefficients. As a result, a timing yield
expression is computed, which takes into account the effects
of logic path delay and clock skew on statistical timing anal-
ysis. In section 4, we conduct different simulations to check
the effects of adding clock skew on the timing yield curve.
We also perform a sweep over the clock skew variance and
plot the different results. These plots show that as the skew
variance increases, timing yield is reduced.

2. PARAMETER MODEL
We will briefly review the parameter model adopted in [3].

For a given circuit element or layout feature i, let its coordi-
nates on the die (i.e., on the chip surface) be (xi, yi) and let
X(i), be a zero-mean Gaussian random variable (RV) that
denotes the variation of a certain parameter of this element
from its nominal (mean) value. Thus, for example, X(i)
may represent channel length variations of transistor i. It
was shown in [3] that path delay can be considered as a pa-
rameter of this model. Correlation between values of X(i)
at different locations on the die may be expressed by means
of an autocorrelation function, but this is not a practical
approach. Instead, it is standard practice [4] to express the
correlation by first breaking up the variations into die-to-die
and within-die components, as follows:

X(i) = Xdd + Xwd(i) (1)

The die-to-die component Xdd is an independent zero-mean
Gaussian RV that takes the same value for all instances of
this element on a given die, irrespective of location. The
within-die component Xwd(i) is a zero-mean Gaussian which
can take different values for different instances of that ele-
ment on the same die. This leads to the following relation-
ship between the variances:

σ2(i) = σ2
dd + σ2

wd(i) (2)

Then, the within-die component is further broken down into
two components, a systematic component and a “random”
component:

Xwd(i) = Xwds(xi, yi) + Xwdr(i) (3)



where, for each i, the random component Xwdr(i) is an in-
dependent zero-mean Gaussian. The systematic component
Xwds(xi, yi) contains an explicit dependence on location be-
cause it is usually taken to represent the extent of correlation
across the die, and correlation is usually dependent on rela-
tive location. For simplicity, we will replace Xwds(xi, yi) by
Xwds(i) keeping in mind that it is dependent on the location
of feature i. A similar relationship follows for the variances:

σ2
wd(i) = σ2

wds(i) + σ2
wdr(i) (4)

One way to express the systematic component of the within-
die variations is to use a principal components analysis [5]
(PCA) and write:

Xwds(i) =

p�
j=1

aijZj (5)

where Zj are independent standard normal RVs (Gaussians
with zero mean and unity variance) and where the coeffi-
cients aij are such that:

σ2
wds(i) =

p�
j=1

a2
ij (6)

The RVs Zj correspond to underlying independent unob-
servable factors. The value of p and the coefficients aij rep-
resent the extent of correlation across the die. For example,
if p = 1, then the within-die spatial correlation coefficient is
1, there is perfect correlation; a single underlying RV Z1 de-
termines the value of the systematic component of Xwd all
over the die. A p > 1 allows for less than perfect correlation.

We will adopt the PCA expansion (5) as our “correlation
model” for the within-die component, as was done in [3],
where the reader can find some discussion of the merits of
this model and of how one may determine the value of p in
practice. Using this parameter model to handle variations,
a parametric yield lower bound is produced in [3]. It is then
shown that path delay DN (i) can be considered a parameter
with its own die-to-die and within-die (systematic and ran-
dom) components. Therefore, a timing yield lower bound
is produced using the parametric yield analysis. However,
as defined in [3], the timing yield only took into account
path delay variations. In other words, it was defined as the
probability that all path delays are less than a margin τ .

In this paper, we extend that previous work by study-
ing the effect of statistical clock skew on the timing yield.
Our analysis is mainly suited for synchronous and clocked
circuits. The next sections will discuss in detail the contri-
bution of process variations induced clock skew to timing
yield.

3. CLOCK SKEW EFFECT

3.1 Clock Skew Model
A Generic Logic Critical Path (GLCP) is defined as a logic

path consisting of N gates. Any GLCP i between two flip-
flops (FF-1 and FF-2) is subject to clock skew S(i) between
these flip-flops (Fig. 1). Assuming that t1(i) and t2(i) are
the clock arrival times at FF-1 and FF-2 respectively, clock
skew S(i) would be defined as follows:

S(i) = t2(i) − t1(i) (7)

Generic Logic Path i

S(i) = t2(i) - t1(i) 
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Figure 1: Generic Logic Critical Path GLCP subject
to Clock Skew

Using the parameter model defined earlier, t1(i) and t2(i)
are statistical timing quantities that we can decompose into
three components: die-to-die, within-die systematic, and
within-die random. As a result, clock skew S(i) will have
the same model, with a slight difference: since the die-to-die
component is the same across the whole die, then it would
drop out from S(i) after the subtraction (7). The final clock
skew model is the following:

S(i) = Swds(i) + Swdr(i) (8)

where Swds(i) is the systematic within-die component, and
Swdr(i) is the random within-die component. Assuming that
designers aim for zero nominal clock skew, both components
have zero mean. The random component Swdr(i) is an inde-
pendent, zero mean, normally distributed random variable
with variance γ2

wdr(i). Whereas the systematic component
Swds(i) is modeled using PCA in the same way defined in
section 2:

Swds(i) =

p�
j=1

sij Zj (9)

where Zj are the same independent standard normal RVs
defined earlier. In this way, correlations between logic path
delay and clock skew are only attributed to systematic spa-
tial correlations modeled using PCA. The coefficients sij are
such that:

γ2
wds(i) =

p�
j=1

s2
ij (10)

where γ2
wds(i) is the systematic clock skew variance. The

total variance of clock skew is the following:

γ2(i) = γ2
wds(i) + γ2

wdr(i) (11)

Having defined the model for clock skew, we will investi-
gate its effects on timing yield.

3.2 Timing constraint with clock skew effect
In general, for a circuit to satisfy Setup time or Max tim-

ing constraint (neglecting clock skew), the delay of all the
paths should satisfy the following:

DN (i) ≤ τ , ∀ i (12)



where DN (i) is the delay RV for GLCP i, and τ is a deter-
ministic quantity that bounds the delay. In [3], DN (i) was
modeled in the following way, using the parameter model:

DN (i) = DNdd + DNwds(i) + DNwdr (i) (13)

The right hand side is the die-to-die, within-die systematic,
and within-die random components respectively, with vari-
ances σdd, σwds(i), and σwdr(i).

However, adding clock skew model from (8) to the above
equation would result in the following timing constraint:

DN (i) ≤ τ + S(i) , ∀ i (14)

This is the main problem that we are trying to solve:
Studying the effect of statistical clock skew on the timing
constraint, and hence on the timing yield computed in [3].

3.3 Yield analysis
We will apply the timing yield analysis used in [3] with

slight modifications to find the general expression for timing
yield considering both logic path delay and clock skew. An
expression for timing yield was derived in [3]:

Y (τ ) = P {DN (i) ≤ τ , ∀ i } (15)

Let us define Yt(τ ) to be the total yield with added clock
skew. Then we can write:

Yt(τ ) = P {DN (i) ≤ τ + S(i) , ∀ i }
= P {DN (i) − S(i) ≤ τ , ∀ i } (16)

Replacing DN (i) and S(i) by their expressions leads to the
following:

Yt(τ ) = P {DNdd + A(i) + B(i) ≤ τ , ∀ i } (17)

where:

A(i) = DNwds (i) − Swds(i) (18)

=

p�
j=1

(aij − sij)Zj (19)

B(i) = DNwdr (i) − Swdr(i) (20)

=
�

σ2
wdr(i) + γ2

wdr(i) Zr(i) (21)

where (21) is the result of subtracting two independent RVs,
DNwdr (i) and Swdr(i), with variances σ2

wdr(i) and γ2
wdr(i) re-

spectively, and Zr(i) are independent standard normal RVs.
Expression (17) of the yield is very similar to the one

found in [3] with slight modifications; the die-to-die part
is the same, since skew has no die-to-die component. The
systematic within-die part is:

p�
j=1

(aij − sij)Zj instead of

p�
j=1

aij Zj (22)

the random within-die is:�
σ2

wdr(i) + γ2
wdr(i) Zr(i) instead of σwdr(i)Zr(i) (23)

To simplify notations, let

σr(i) =
�

σ2
wdr(i) + γ2

wdr(i) (24)

be the total random standard deviation of the combined
{DNwdr (i) - Swdr(i)} quantity. As to the combined system-
atic within-die quantity {DNwds(i)−Swds(i)}, it needs more

work. The key point in [3] is the step that allowed to move
from an expression dependent on all aij coefficients to one
dependent only on the sum of a2

ij , which is the variance.
We will do the same here, by applying Cauchy’s inequality
twice. But first, recall from probability theory that if two
RVs are such that Z1 ≤ Z2, then P{Z1 ≤ a} ≥ P{Z2 ≤ a}.
Now taking the systematic part (19) and applying Cauchy’s
inequality, we can write:

p�
j=1

(aij − sij)Zj ≤
�����

p�
j=1

(aij − sij) Zj

����� (25)

≤
���� p�

j=1

(aij − sij)2

���� p�
j=1

Z2
j (26)

=

���� p�
j=1

a2
ij +

p�
j=1

s2
ij − 2

p�
j=1

aij sij

���� p�
j=1

Z2
j (27)

The transition from (25) to (26) is a direct application of
Cauchy’s Inequality. Equation (27) results from expanding
the terms of (26).

Applying Cauchy’s inequality a second time in the last
part of the above equation result in:

−2

p�
j=1

aij sij ≤ 2

�����
p�

j=1

aij sij

����� ≤ 2

���� p�
j=1

a2
ij

���� p�
j=1

s2
ij

= 2 σwds(i) γwds(i)

(28)

Combining (25) to (28) leads to:

p�
j=1

(aij − sij)Zj ≤ (29)

�
σ2

wds(i) + γ2
wds(i) + 2σwds(i) γwds(i)

���� p�
j=1

Z2
j

(30)

=

�
(σwds(i) + γwds(j))

2

���� p�
j=1

Z2
j (31)

= (σwds(i) + σswds(i))

���� p�
j=1

Z2
j (32)

Substituting (29) and (24) in (17), and using the observation
from probability theory, leads to the following lower bound
on the total yield:

Yt(τ ) ≥

P

�
DNdd + (σwds(i) + γwds(i))

���� p�
j=1

Z2
j +

σr(i)Zr(i) ≤ τ, ∀ i

	
(33)

The above expression is the yield lower bound for p >
1. However, if p = 1, then there’s no need for Cauchy’s
inequality, and the yield expression would be equal to the
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Figure 2: Timing Yield, γ = 0.1σ
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Figure 3: Timing Yield, γ = 0.3σ

following:

Yt(τ ) =

P {DNdd + (σwds(i) − γwds(i))Z1 + σr(i)Zr(i) ≤ τ, ∀ i }
(34)

These yield expressions are very similar to those found
in [3], only differing in the values of systematic and random
standard deviations. Instead of σwds(i), we have (σwds(i) +
γwds(i)) for p > 1 and (σwds(i) − γwds(i)) for p = 1. And

instead of σwdr(i), we have σr(i) =



σ2
wdr(i) + γ2

wdr(i).
Therefore, we can compute the total yield using the same
algorithms derived in [3] after replacing the systematic and
the random standard deviations by their new values above.

4. RESULTS
As an illustration, we will consider that all logic path delay

standard deviations (die-to-die, systematic within-die, and
random within-die) are equal to a constant σ, (i.e σdd =
σwds(i) = σwdr(i) = σ, ∀ i), and all clock skew standard
deviations are equal to a constant γ, that is γwds(i) = γwdr(i)
= γ, ∀i. We will plot the yield curves under statistical clock
skew using the different analyses presented in [3]. We will
also sweep the value of γ to investigate how skew variance
affect the yield.

Assuming that γ = 0.1σ, Fig. 2 compares yield curves
with and without clock skew, for p = 1, 2, 4, 6. Solid lines
represent yield curves as computed in [3], for n = 1e3, and
dotted lines represent yield curves with clock skew. As it
was expected, adding clock skew has degraded the yield for
p > 1. Moreover, as p increases, the effect of clock skew
on the yield curve also increases. This is also due to the
Cauchy lower bound. For p = 1, the yield curve plotted is
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Figure 4: Yield asymptote, γ = 0.1σ
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Figure 5: Yield asymptote, γ = 0.3σ

not a lower bound but rather the exact timing yield, since
we did not use Cauchy’s Inequality for p = 1. Clock skew
also degrades performance for p = 1. This shows better
when its variance γ increases to 0.3σ as seen in Fig. 3. How-
ever it is worth noting that for small γ, clock skew degrades
in parts and enhances in other parts. This is explained if
we look at (14). When clock skew S(i) is negative, it is
less likely for the path delay to meet the constraint! Yield
will decrease. However, when S(i) is positive, we have more
margin, and yield will increase. However as the skew vari-
ance increases, the skew will generally degrade the yield. In
Figs. 2 and 3, the plots are computed using the n dependent
equations from [3], where a value for n is needed to compute
the yield.

Figs. 4 and 5 show same effects of clock skew on the yield
curves as before, using however the lower bound analysis
(asymptote). These plots result from equations derived in [3]
as n goes to infinity, and do not require the value of n.
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