
Switching Activity Analysis and
Pre-Layout Activity Prediction for FPGAs

Jason H. Anderson
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada M5S 3G4

janders@eecg.toronto.edu

Farid N. Najm
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada M5S 3G4

f.najm@utoronto.ca

ABSTRACT
It is well-known that dynamic power dissipation in digi-
tal CMOS circuits depends linearly on switching activity.
In this paper, we study switching activity in a commercial
FPGA and propose a novel approach to pre-layout activ-
ity prediction. We examine how switching activity on a net
changes when delays are zero (zero delay activity) versus
when logic delays are considered (logic delay activity) versus
when both logic and routing delays are considered (routed
delay activity). Low-power synthesis and early power esti-
mation are typically done on the basis of zero delay activity
values, with the assumption that such values correlate well
with routed delay activity values. We investigate whether
this assumption is valid for FPGA technologies, where criti-
cal path delay is often dominated by interconnect delay. We
then present an approach for early prediction of routed delay
activity values. Our approach is novel in that it estimates
each net’s routed delay activity using only zero or logic delay
activity values along with structural and functional proper-
ties of a circuit. Results show that in comparison with zero
or logic delay activity values, the predicted activity values
are substantially more representative of routed delay activ-
ity values.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids; C.4 [Performance
of Systems]: Modeling techniques

General Terms
Design, Algorithms

Keywords
Field-programmable gate arrays, FPGAs, power, estima-
tion, low-power design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SLIP’03, April 5–6, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-627-7/03/0004 ...$5.00.

1. INTRODUCTION
Since their introduction in the mid-1980s, the speed and

capacity of field-programmable gate arrays (FPGAs) has
been steadily increasing. Through architectural enhance-
ments, supply voltage reductions and technology scaling, the
power consumed per FPGA logic element has been decreas-
ing with each successive FPGA generation [5]. However,
these power reductions have been more than offset by the
increasing logic density of FPGAs, with the result being that
the power consumed by the largest devices is now measured
in watts. State-of-the-art FPGAs are capable of implement-
ing complex systems having millions of gates and operating
at frequencies in the hundreds of megahertz [1]. To mini-
mize design time for such systems, power estimation tools
are needed to gauge power dissipation early in the design
flow, especially prior to the time consuming layout phase.
Such tools allow design trade-offs to be considered at a high
level of abstraction, reducing design effort and cost.
Several analyses of FPGA power consumption have ap-

peared recently in the literature [12, 5, 10]. These works
have shown that power dissipation in FPGA devices is pre-
dominantly in the programmable interconnection network.
In the Xilinx Virtex-II [1] family for example, it was reported
that between 50-70% of total power is dissipated in the in-
terconnection network, with the remainder being dissipated
in the clocking, logic and I/O blocks [12]. The reason for
the dominance of interconnect in FPGA power consumption
lies in the composition of the interconnect structures, which
consist of pre-fabricated wire segments of various lengths,
with used and unused routing switches attached to each wire
segment.
Currently, the majority of power dissipation in FPGAs is

dynamic power dissipation [12], resulting from the charging
and discharging of parasitic capacitance and characterized
by:

Pavg =
1

2

X

nεnets

Cn · fn · V 2 (1)

where Pavg represents average power consumption, Cn is the
load capacitance of a net n, V is the voltage supply and fn

is the average toggle rate or switching activity of net n. We
can conceive of several different views of switching activity,
depending on how circuit delays are accounted for. First,
activity values can be computed assuming logic and routing
delays are zero (zero delay activity). Second, activity val-
ues can be computed considering logic delays, but not rout-
ing delays (logic delay activity). Third, activity values can

15

be computed considering complete logic and routing delays
(routed delay activity). Various approaches to computing
switching activity have been proposed in the literature, and
they can generally be classified as either simulation-based
approaches or as probabilistic approaches [9, 14].
When delays are considered, switching activity normally

increases due to the introduction of glitches, which are spuri-
ous logic transitions on a net caused by unequal path delays
to the net’s driving gate. As transitions on gate inputs occur
at different times, the net experiences multiple transitions
before settling to its final value. The extra activity due to
glitching consumes dynamic power, and previous work has
suggested in fact that 20-70% of total power dissipation in
ASICs can be due to glitches [13].
An understanding of how switching activity changes when

delays are considered is important for several reasons. First,
since FPGA power dissipation is dominated by interconnect,
the consequences of glitching on total power consumption
may be more severe in FPGAs versus ASICs. In addition,
due to the presence of programmable switches in the in-
terconnection network, path delays in FPGAs are generally
dominated by interconnect rather than logic delays. FPGA
interconnect delays are variable and often difficult to pre-
dict [6], suggesting that the severity of glitching could con-
ceivably be greater in FPGAs than in ASICs. Another rea-
son to study switching activity is that low-power synthesis
techniques may perform optimizations on the basis of zero
delay switching activity data [7, 3], with the assumption that
such data correlates well with routed delay activity data. It
is unknown whether this assumption is valid for FPGA tech-
nology.
In this paper, we study switching activity in the Xilinx

Virtex-II FPGA. We examine whether zero delay activity
values can be used reliably as estimates of routed delay
activity. To our knowledge, this work represents the first
published study of activity in FPGA technology. High-level
power estimation using (1) requires accurate prediction of
the capacitance and activity of each net. In this paper, we
address the latter problem and present a novel approach
for activity prediction. Our approach estimates the routed
delay activity of a net using the net’s zero or logic delay ac-
tivity, as well as functional and structural properties of the
circuit. The method operates at the pre-layout stage and
thus, we envision that our predictor could be applied in a va-
riety of scenarios, such as early power estimation/planning,
low-power synthesis or whenever routed delays are unknown
or delay-aware activity data is unavailable. We demonstrate
our prediction method by applying it to predict activity val-
ues for Virtex-II. The paper is organized as follows: In Sec-
tion 2 we present our activity analysis. Our approach to
activity prediction is described in Section 3. Conclusions
are offered in Section 4.

2. ACTIVITY ANALYSIS
We use a simulation-based approach to study switching

activity in 14 of the largest MCNC combinational circuits
mapped into Virtex-II FPGAs. The CAD flow we employ to
gather activity data is shown in Figure 1. HDL benchmark
circuits are first synthesized using Synplicity’s Synplify Pro
(ver. 7.0), and then technology mapped, placed and routed

HDL synthesis (Synplify Pro)

Technology mapping

Placement and routing

Zero or logic delay simulation (Synopsys VSS)

X
il

in
x

to
ol

s

HDL circuit

Simulation vectors

Switching activity data

Routed delay simulation (Synopsys VSS)

Switching activity data

Routed design

Mapped design

Figure 1: CAD flow for activity analysis

using Xilinx tools (ver. 4.1i). Each circuit is mapped into
the smallest Virtex-II device able to accommodate it1.
The Synopsys VHDL System Simulator (VSS) is used for

simulation. VSS has built-in capabilities for capturing the
number of logic transitions on each net during a simulation,
as well as the proportion of time each net spends in the high
and low logic states. Simulation with zero or logic delays
can be done after the technology mapping step. Simulation
with routed delays must be done after placement and rout-
ing. In all cases, the VHDL simulation netlist was generated
using the Xilinx tools, ngdanno and ngd2vhdl. The netlist is
comprised of interconnected physical primitives which corre-
spond to hardware resources in the FPGA, such as 4-input
look-up-tables (4-LUTs), flip-flops, and multiplexers. For
the delay-based simulations, an SDF (standard delay for-
mat) file, generated by the Xilinx annotation tool, is pro-
vided to VSS.
Circuits are simulated using 5000 randomly chosen input

vectors. Two different vector sets were generated for each
circuit: one representing high input activity and a second
representing low input activity. In the high (low) activity
vector set, the probability of an individual input toggling
between successive vectors is 50% (25%).

2.1 Analysis Results and Discussion
Using the flow of Figure 1, we examined how switching

activity changes when delays are considered. Columns 2-
5 of Table 1 compare the total number transitions in the
logic and routed delay simulations of each circuit with the
number of transitions in the zero delay simulation. Columns
2 and 3 (4 and 5) of the table present data for the high (low)
activity vector set simulations. Each table entry represents,
for a given circuit, the percentage increase in the number of
transitions in the circuit’s logic or routed delay simulation
versus the circuit’s zero delay simulation.
From the data in Table 1, we see that there is a signif-

icant increase in activity when delays are considered. For
the high activity vector set, when logic delays are used, the
percentage increase in transition count versus the zero delay
simulation ranges from 5% to 84%, with all but two of the
circuits having an increase larger than 15%. When routing
delays are used, overall circuit delay increases and becomes
more variable, leading to more glitching and higher activity.
In the routed delay simulations, the increase in transition

1We target Virtex-II devices with the -6 speed grade. The
placement and routing tools were run at the highest effort
level.

16

Table 1: Effect of glitching on switching activity

High activity vector setLow activity vector setHigh activity vector set

Circuit

% increase in
transitions for

logic dly sim vs.
zero dly sim

% increase in
transitions for

routed dly sim
vs. zero dly sim

% increase in
transitions for

logic dly sim vs.
zero dly sim

% increase in
transitions for
routed dly sim
vs. zero dly sim

Logic delay net
activity mean

error (std. dev.)

Zero delay net
activity mean

error (std. dev.)

C3540 83.4 137.9 66.5 98.4 25.9 (9.9) 50.8 (17.5)
apex2 17.8 49.6 11.3 26.4 25 (12.5) 37.4 (14.8)
ex5p 49.3 137.1 44.1 92.6 36.8 (13.3) 49 (16.9)
ex1010 33.5 114.4 20.2 60.3 37.5 (16.4) 50.9 (20.6)
spla 5.5 24.5 3.6 12.4 20.6 (14) 25.4 (16.2)
C2670 22.2 58.3 18.5 40.3 31.8 (15) 48.1 (18.8)
pdc 22.3 62.6 13.6 35.6 29.8 (13.1) 41.3 (16.6)
alu4 16.3 64.7 10.2 32.4 30.6 (13) 39.9 (17.1)
seq 17.3 48.7 10.3 24.9 24 (14.3) 34.5 (15.8)
apex4 39.2 98.2 23.6 50.5 30.7 (14.3) 46.5 (19.2)
pair 27.6 42.6 17.3 25.2 18.7 (14.1) 40.4 (15.9)
cps 13.9 54.2 8.3 26.2 28.6 (13.5) 38.2 (16)
dalu 18.8 58.6 13.7 34.6 33.1 (13.2) 48.1 (15.6)
misex3 22.3 63.8 14.4 34.1 27.8 (11.8) 40.1 (17.1)

count versus the zero delay simulations ranges from 24% to
138% and is greater than 40% for 13 of the 14 circuits. Com-
paring the data for the two vector sets, we observe that the
increases in activity are somewhat less drastic when the low
activity vector set is used. Specifically, the activity increases
are about 1/2 to 2/3 of that seen with the high activity vec-
tor set. In the low activity vector set, fewer inputs switch si-
multaneously between successive vectors, which reduces the
potential for logic transitions on multiple (unequal delay)
paths to a net, leading to reduced glitching.
To investigate whether the increase in activity due to

glitching is distributed uniformly amongst the nets of a cir-
cuit, we view the zero and logic delay transition count for a
net as estimates of the net’s routed delay transition count.
We then measure the absolute percentage error in the esti-
mates. For example, the error in a net n’s zero delay activity
estimate is:

error zero(n) = 100 · |transzero(n) − transrouted(n)|
transrouted(n)

(2)

where transrouted(n) and transzero(n) represent the num-
ber of transitions on net n in the routed and zero delay
simulations, respectively.
Error analysis results (for the high activity vector set) are

given in columns 6 and 7 of Table 1, which shows the av-
erage and standard deviation of net error for each circuit.
Note that for this analysis, we ignored the error on nets
that transitioned on fewer than 5% of the simulation vec-
tors (experienced fewer than 250 transitions) as we did not
consider the error data for such low activity nets to be sta-
tistically significant. In Table 1, we see that the mean error
in the logic delay activity values falls in the 18-38% range.
The mean error in zero delay activity ranges from 35-50%
for all but one of the circuits. We also observe that cou-
pled with these large mean errors are large error deviations,
ranging from 10-16% for the logic delay case and 15-20%
for the zero delay case. This leads us to conclude that zero
delay and logic delay activity values do not necessarily cor-
relate strongly with routed delay activity values. Although
not shown here, we also computed error data for the low
activity vector set simulations. We observed smaller errors

Table 2: Effect of glitching on activity in timing-
constrained designs

Circuit

% increase in
transitions for

routed dly sim
vs. zero dly sim

C3540 118.4
alu4 50.6
spla 22.6

for this vector set, with the mean and deviation of error for
each circuit being about 1/2 to 2/3 of that observed for the
high activity vector set.
To reduce path delays in circuits, designers typically spec-

ify timing constraints to the synthesis and layout tools. To
investigate the effect of constraints on activity, we supplied
pad-to-pad delay constraints to the placement and routing
tools for three circuits and re-simulated the circuits to de-
termine new transition counts. The results of this experi-
ment (for the high activity vector set) are given in Table 2.
Comparing the data in Table 2 with that in Table 1, we ob-
serve that the transition count increase in the constrained
circuits (from the zero to routed delay simulation) is smaller
than the transition count increase in the unconstrained cir-
cuits. Reducing delays through constraints does indeed re-
duce glitching; however, in these circuits, the reduction is
not that substantial.
A potential source of inaccuracy in any CAD research re-

lates to the choice of benchmark circuits. It is well-known
that glitching can be reduced by balancing delay paths or re-
ducing combinational depth [11]. We believe that the depths
of the MCNC circuits are generally larger than the depths of
modern industrial circuits, which are typically subjected to
delay optimizations such as pipelining and re-timing. Such
optimizations also reduce glitching severity, and for this rea-
son, it is conceivable that modern circuits may experience
less glitching than the MCNC circuits. On the other hand,

17

LUT0 LUT1

i0 i1 i2 i3 i4

o1o0

LUT127

i127

o127

i0
i1
i2

primary inputs

primary outputs

Figure 2: Circuit with regularity

the size of modern circuits is up to two orders of magnitude
larger than the MCNC circuits. Larger circuits may possess
longer interconnect delays, which increase opportunities for
glitching.

3. ACTIVITY PREDICTION
The results in Section 2 showed that switching activity

increases substantially when delays are brought into the pic-
ture. In this section, we present our approach to pre-layout
routed delay activity prediction. Prior to this however, we
gauge the difficulty of the prediction problem.

3.1 Problem Difficulty
In an effort to understand the difficulty of generating accu-

rate pre-layout activity estimates, we performed an activity
analysis on the circuit shown in Figure 2. The circuit is
highly regular from the structural and functionality view-
point and consists of 128 inputs driving 128 4-input look-
up-tables (LUTs), which in turn drive 128 outputs. 4-input
LUTs are small memories capable of implementing any logic
function having ≤ 4 inputs; most commercial FPGAs use
4-input LUTs in their logic blocks [1]. Each LUT in the
circuit is programmed to implement a 4-input logical AND
function.
We mapped the circuit in Figure 2 into the Virtex-II

FPGA and simulated it with both the high and low activ-
ity vector sets. We then examined the percentage increase
in activity on the LUT output signals in the routed delay
simulation versus the zero delay simulation. Note that the
circuit’s regularity implies that variability in the activity
change on the LUT output signals is largely a result of vari-
able path delays that are known only after layout is com-
plete. The results of the analysis are shown in Figure 3.
The figure shows the percentage increase in activity on each
LUT output signal for both simulation vector sets (128 data
points are shown for each vector set – one for each LUT
output signal). Observe that despite the circuit’s regularity,
the variability in the activity increase on the LUT output
nets is considerable due to the wide variety of routing re-
sources (and delay paths) in the FPGA routing fabric and
the different delays associated with the four input-to-output
paths through a LUT2. For the low activity vector set, the
activity increase for most nets is in the range of 0 to 40%;
for the high activity vector set, the increase ranges from 0
to 100%.
Real circuits are likely to be much less regular than the

circuit of Figure 2, and we therefore conclude that it will

2LUT input pins are logically equivalent. The selection of
a LUT input pin for a particular LUT fanin signal is made
by the router.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

%
 in

cr
ea

se
 in

 a
ct

iv
ity

LUT output signal

high activity vector set simulation
low activity vector set simulation

%
 in

cr
ea

se
 in

 a
ct

iv
ity

(z

er
o

de
la

y
si

m
. t

o
ro

ut
ed

 d
el

ay
 s

im
.)

Figure 3: Activity change in regular circuit

be difficult to achieve a high degree of accuracy in activ-
ity prediction at the pre-layout stage. Nevertheless, in the
next section, we offer a prediction approach which produces
activity values that, in comparison with zero or logic de-
lay activity values, are superior estimates of routed delay
activity.

3.2 Prediction Approach
Before describing our activity prediction approach, we re-

view some terminology related to the graph representation
of digital circuits. The combinational part of a logic cir-
cuit can be represented as a Boolean network, which is a di-
rected acyclic graph (DAG) in which each node represents a
single-output logic function and edges between nodes repre-
sent input/output dependencies between the corresponding
logic functions. A primary input node is a node with an
in-degree of 0; a primary output node has an out-degree of
0. Our prediction approach accepts a technology mapped
(Virtex-II) FPGA circuit as input. At this level of abstrac-
tion, internal DAG nodes correspond to the LUTs and other
logic elements in the target FPGA device. For a node y in a
circuit DAG, let inputs(y) represent the set of nodes that are
fanins of y. A node w is said to be a predecessor of a node y
if there exists a directed path in the circuit DAG from w to
y. The depth of a node is the length of the longest path from
any primary input to the node. In this section, we refer to
a node and the net driven by the node interchangeably; for
example, a node y drives net y.
In FPGA technology, path depth (# of LUTs) is fre-

quently used as a predictor of path delay at the pre-layout
stage [2, 4]. The reason for this is that, unlike in ASIC tech-
nologies such as standard cell, the logic blocks in FPGAs
are uniform and have equal drive capability. Furthermore,
the programmable routing switches in an FPGA’s routing
fabric are typically buffered, making connection delay rela-
tively independent of fanout. Consequently, without access
to more accurate delay information extracted from physical
layout, depth is viewed as a reasonable estimate of delay. We
leverage this property in our activity prediction approach,
which incorporates delay estimation into a simple model of
net glitching severity.
Our approach to activity prediction is analogous to the

generate and propagate notion that defines how carry signal
values are assigned in arithmetic circuits. In such circuits,
the carry value for a particular bit may either be generated

18

by the bit, or it may be propagated from a lower-order bit.
For activity prediction, consider a node y with logic func-
tion y = f(x1, x2, ..., xn). Similar to carry signal operation,
glitches on y’s output may come from two sources: they may
be propagated from one of y’s inputs, x1, x2, ..., xn, or they
may be generated by y itself. We define a prediction func-
tion that quantifies the severity of glitching on y’s output as
follows:

predict(y) = α · gen(y) + β · prop(y) + φ (3)

where α, β and φ are scalar coefficients, and gen(y) and
prop(y) represent the amount of glitching generated by y
and the amount of glitching propagated from y’s inputs,
respectively. In the next section, we will establish an em-
pirical relationship between the value of (3) for a net and
the change in the net’s activity due to glitching when delays
are accounted for. Note that we compute prediction values
for the nodes of a circuit in a specific order, from primary
inputs to primary outputs.
Prior to defining the generate term of (3), we introduce

a few parameters. Let PL(y) represent the set of different
path lengths from a primary input to node y. This param-
eter can be computed easily during a input-to-output DAG
traversal by maintaining a set of path lengths for each node.
When a node is traversed, its path length set is populated
by taking the union of incremented path lengths of each of
its immediate fanin nodes. More formally:

PL(y) =
[

xi ε inputs(y)

{p+ 1 | p ε PL(xi)} (4)

Observe that a given node may have a larger set of path
lengths than any of its immediate fanins. Consider the ex-
ample shown in Figure 4, in which a node y has two fanin
nodes, a and b. The set of path lengths for each node is
shown adjacent to the node. We see that node y has three
path lengths, whereas its fanins have only two path lengths.
Thus, we say that one path length is introduced at y. The
number of path lengths introduced at node y is defined as:

IPL(y) = min
xi ε inputs(y)

{|PL(y)| − |PL(xi)|} (5)

We are now ready to define the generate term of (3):

gen(y) = IPL(y) + γ · depth(y) (6)

where γ is a scalar coefficient. The rationale for incorporat-
ing the number of path lengths to a node into our prediction
function is that variable path lengths to a node generally
correlate with variable (unequal) path delays to the node,
leading to glitching at the node’s output. The second term
of (6) reflects the fact that glitching severity typically in-
creases with combinational depth. Thus, a node with shal-
low depth is likely to experience less glitching than a deep
node, even if the number of path lengths to the two nodes
is similar.
The propagate term of (3) borrows ideas from the concept

of transition density [8] and uses the notions of Boolean dif-
ference and static probability, which we briefly review here.
The Boolean difference of a function, y = f(x1, x2, ..., xn),
with respect to one of its inputs, xi, is defined as:

∂y

∂xi
= fxi ⊕ fxi (7)

where fxi (fxi) is the Boolean function obtained by set-
ting xi = 1 (xi = 0) in f(x1, x2, ..., xn), and ⊕ denotes the

y

a b {4,5}{5,6}

{5,6,7}

set of path lengths

Figure 4: Finding the set of path lengths for y

0

100

200

300

400

500

600

700

50 100 150 200 250 300 350 400

%
 in

cr
. i

n
ac

tiv
ity

 (
ze

ro
 d

el
ay

 s
im

. t
o

ro
ut

ed
 d

el
ay

 s
im

.)

Predict function value

%
 in

cr
ea

se
 in

 a
ct

iv
ity

(z

er
o

de
la

y
si

m
. t

o
ro

ut
ed

 d
el

ay
 s

im
.)

Figure 5: Prediction function value versus activity
increase

exclusive-OR operation. When the Boolean difference func-
tion, ∂y

∂xi
, is 1, a transition on xi will cause a transition on

y.
The static probability of a signal is defined to be the frac-

tion of time that the signal is in the logic 1 state. Thus, the
static probability of a Boolean difference function, P (∂y

∂xi
),

represents the probability that a transition on xi will cause
a transition on y. Clearly, the ability of glitches on an input
signal, xi, to propagate to y depends on P (∂y

∂xi
). Further-

more, we expect that the influence of a node input on the
node’s output will depend partly on the input’s switching
activity. The propagate function is therefore defined as:

prop(y) =

P
xi ε inputs(y) P (

∂y
∂xi
) · transzero(xi) · predict(xi)

P
xi ε inputs(y) P (

∂y
∂xi
) · transzero(xi)

(8)
The P (∂y

∂xi
) · transzero(xi) in the numerator can be viewed

as a weight quantifying the influence of glitching on xi to
glitching on y. The denominator of (8) normalizes the values
computed by the propagate function so they are relatively
independent of the transition counts and probabilities in-
volved. Note that transzero in (8) can be replaced with
translogic if logic delay activity data is available.

3.3 Prediction Results and Discussion
To evaluate our prediction approach, we divided our bench-

mark circuits into two sets, a characterization set and a test
set, each containing 7 circuits. We use the characterization
circuits to derive a model relating the activity increase on
a net due to glitching to the predict function (3). We em-
ployed multiple linear regression analysis to select values for
parameters α, β, γ and φ in (3) and (6). This tunes the
parameters of our model to a particular FPGA device and
CAD flow. In practice, such model characterization would

19

Table 3: Error in predicted activity values

Circuit

Predicted net
activity mean

error (std. dev.)
(from logic dly

activity)

Predicted net
activity mean

error (std. dev.)
(from zero dly

activity)
alu4 14.4 (11.8) 17.8 (13.4)
seq 21.5 (17) 29.6 (26.1)
apex4 17.5 (18.1) 23 (22.1)
pair 23.5 (16.6) 21.5 (18.8)
cps 15.8 (13.5) 20.0 (15.7)
dalu 15.5 (13) 18.7 (13.1)
misex3 14 (12.2) 17.9 (13.5)

be done by an FPGA vendor to produce an activity pre-
diction model for use by designers in the field. Following
characterization, we apply the model to predict the activity
increase on nets in the test circuit set. In these experiments,
to apply our model we use static probability and toggle data
extracted from a zero or logic delay simulation (see below).
However, such data need not be derived from simulation; it
can be computed efficiently using probabilistic approaches,
such as those described in [15]. Thus, simulation is not a
requirement for the use of our prediction model.
We begin by plotting the increase in activity on a net in

the routed delay case (relative to its activity in the zero
delay case) versus the value produced by our predict func-
tion for that net. The results for the characterization cir-
cuits, using the high activity vector set simulation data, are
shown in Figure 5. Each point in the figure represents a
single net in one of our benchmarks. Figure 5 shows that
generally, increasing amounts of glitching correlate with in-
creasing prediction function values. The figure also shows
there to be a range of activity increases for each prediction
function value. This is expected and in line with our analy-
sis of the difficulty of the prediction problem in Section 3.1.
Figure 5 also shows a quadratic line of best fit, which has
the equation: y = −0.004x2 + 2.4x− 93.7.
To apply our prediction method, we first compute the

value of (3) for a net in one of the test circuits. We then
use this value as the argument in the equation of the best fit
line in Figure 5 (derived from the characterization circuits),
yielding a predicted percentage increase in activity for the
net versus the net’s zero delay activity. We use the predicted
percentage increase to predict the routed delay activity for
the net. A similar process is used to develop and apply a
model that predicts routed delay activity values from logic
rather than zero delay activity values.
We evaluate our approach numerically by computing the

percentage error in predicted activity values (relative to
routed delay activity values) using (2). The error data for
the test circuits is shown in Table 3. The table gives the
average absolute percentage error across all nets for each
circuit; error deviations are shown in parentheses. Column
2 of the table shows the error results for a model that pre-
dicts routed delay activity from logic delay activity; column
3 gives results for a model that predicts routed delay ac-
tivity from zero delay activity. In Section 2.1, we saw that
logic delay activities are “closer” to routed delay activities
than are zero delay activities. Table 3 confirms that using
logic delay activities as the basis of a prediction model yields

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-100 -50 0 50 100

%
 o

f a
ll

ne
ts

% error

logic delay activity
predicted activity

(a) logic delay activity and prediction errors

(b) zero delay activity and prediction errors

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-100 -50 0 50 100

%
 o

f a
ll

ne
ts

% error

zero delay activity
predicted activity

Figure 6: Error histograms

smaller error values. The error data for each circuit in the
table can be compared with the error data in columns 6
and 7 of Table 1. Observe that the average error of the
predicted activities is significantly less than the error of the
zero or logic delay activities; the error is reduced by a factor
of 2 for many of the circuits. The only exception to this is
the logic delay activity-based predicted values for the circuit
pair, which exhibit slightly worse error.
Figure 6 shows histograms of true rather than absolute

error data for all of the test circuits. The figure shows the
percentage of nets (in all test circuits) having an error in
a specific range. Part (a) of the figure shows the error in
logic delay activity values and (logic delay activity-based)
predicted values; part (b) gives the analogous data for zero
delay activity values. We see that, as expected, the errors
in the zero and logic delay activity values are largely one-
sided (under estimation), whereas the errors in the predicted
activity values are centered around zero. The use of zero
or logic delay activity values in power estimation will lead
to significant underestimates of circuit power. Conversely,
since our approach underpredicts activity for some nets and
overpredicts for others, we expect that the use of the pre-
dicted activity values will produce average power estimates
much closer to actual circuit power. Eliminating the one-
sided bias in error is one of the key advantages of our pre-
diction method, making it attractive for use in applications
such as early power estimation.
The prediction results presented above were based on the

simulation data for the high activity vector set. We regener-

20

ated Figure 5 for the low activity vector set data and found
the shape to be similar, though shifted lower on the y-axis
due to the less severe glitching associated with lower input
activity. Thus, we expect that our prediction method can be
applied effectively for a range of input switching activities.
A direction for future work is to augment our prediction
approach to automatically account for various amounts of
primary input switching activity.

4. CONCLUSIONS
In this paper, we studied switching activity in FPGA tech-

nology and showed that activity increases considerably when
delays are accounted for versus when delays are zero. We
demonstrated the difficulty of predicting routed delay ac-
tivity values at the pre-layout stage and proposed a novel
approach for pre-layout activity prediction. Our method es-
timates routed delay activity values using zero or logic delay
activities as well as a circuit’s structural properties and func-
tionality. The key advantages of our prediction approach are
its simplicity and its ability to eliminate the one-sided bias
in error associated with the use of zero or logic delay activity
values. We believe that the proposed approach will be use-
ful in low-power synthesis systems or early power estimators,
when routed delay activity data is unavailable.

5. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the financial support

of the Natural Sciences and Engineering Research Council
of Canada.

6. REFERENCES
[1] Virtex II Platform FPGA Data Sheet. Xilinx, Inc.,

San Jose, CA, 2002.

[2] J. Cong and Y. Ding. Flowmap: An optimal
technology mapping algorithm for delay optimization
in lookup-table based FPGA designs. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems, pages 1–12, January 1994.

[3] A. H. Farrahi and M. Sarrafzadeh. FPGA technology
mapping for power minimization. In Proc. Int.
Workshop on Field-Programmable Logic and
Applications, pages 167–174, 1994.

[4] R.J Francis, J. Rose, and Z. Vranesic. Technology
mapping for lookup table-based FPGAs for
performance. In IEEE Int. Conf. on Computer-Aided
Design, pages 568–571, 1991.

[5] V. George and J. M. Rabaey. Low-Energy FPGAs:
Architecture and Design. Kluwer Academic Publishers,
Boston, MA, 2001.

[6] M. Hutton, A. Leaver, and K. Adibsamii.
Timing-driven placement for hierarchical
programmable logic devices. In ACM Int. Symp. on
FPGAs, pages 3–11, 2001.

[7] H. Li, W-K. Mak, and Srinivas Katkoori. LUT-based
FPGA technology mapping for power minimization
with optimal depth. In IEEE Computer Society
Workshop on VLSI, pages 123–128, 2001.

[8] F. Najm. Transition density: A new measure of
activity in digital circuits. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems, 12:310–323, February 1993.

[9] F. Najm. A survey of power estimation techniques in
VLSI circuits. IEEE Trans. on VLSI Systems,
2(4):446–455, December 1994.

[10] K. Poon, A. Yan, and S. J. E. Wilton. A flexible
power model for FPGAs. In Int. Conf. on
Field-Programmable Logic and Applications, pages
312–321, La Grande Motte, France, 2002.

[11] J. Rabaey and M. Pedram. Low Power Design
Methodologies. Kluwer Academic Publishers, Boston,
MA, 1996.

[12] L. Shang, A. Kaviani, and K. Bathala. Dynamic power
consumption of the Virtex-II FPGA family. In ACM
Int. Symposium on FPGAs, pages 157–164, 2002.

[13] A. Shen and et. al. On average power dissipation and
random pattern testability of CMOS combinational
logic networks. In IEEE Int. Conf. on
Computer-Aided Design, pages 402–407, 1992.

[14] H. Soeleman, K. Roy, and T.-L. Chou. Estimating
circuit activity in combinational CMOS digital
circuits. IEEE Design and Test of Computers, pages
112–119, April-June 2000.

[15] G. Yeap. Practical Low Power Digital VLSI Design.
Kluwer Academic Publishers, Boston, MA, 1998.

21

