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Abstract— Early power estimation, a requirement for design
exploration early in the design phase, must often be done
based on a design specification that is available only at a high
level of abstraction. One way of doing this is to use high-
level estimation of circuit total capacitance and average activity.
This paper addresses these problems and proposes a high-level
area estimation technique based on the complexity of a Boolean
network representation of the design. In addition to the high-level
area estimation, the paper also proposes a high-level activity
estimation methodology that is capable of handling correlated
input streams. High-level power estimates based on the total
capacitance and average activity estimates are also given.

Index Terms— Power estimation, Boolean networks.

The increasing complexity and high-performance require-
ments of modern integrated circuits have naturally led to
very high power consumption. Concern with the power con-
sumption problem is at such a high level that, instead of
speed and density, power profile is fast becoming the major
consideration in high-end microprocessors [1]. Power is no
longer a secondary issue, to be considered only after area/delay
trade-offs are performed. It is very important to be able to
design low-power VLSI circuits that are small, and fast. The
two dimensional design exploration space is a thing of the past,
the designer has to keep in mind that she has three objectives:
low-power, high performance, and small layout area. As a
result, there is an urgent need for high-level power estimation
and optimization.

One may employ two types of modeling approaches for the
power estimation problem: bottom-up and top-down. Bottom-
up techniques attempt to measure the power dissipated by
existing implementations and produce a model based on the
measurements. This “power macro-model” of a block can be
used during high-level power estimation without performing
more expensive, lower-level power estimation on it. Examples
of bottom-up approach are the power factor approximation
(PFA) of [2], the dual bit type (DBT) model of [3], and
the table based approach of [4]. Bottom-up approach is best
suited for library based designs (where the library includes
relatively complex blocks). However, in practice, completely
library based designs are very rare. In every design, there will
be application specific portions that have not been previously
implemented. For those portions, one needs a power model
that works on a high-level description of the design and does
not need a low-level implementation to be available – a top-
down model. This paper proposes one such technique, in
which the power is estimated as the product of an estimate
of total capacitance and an estimate of average switching
activity. Total capacitance estimation requires one to compute
a measure of circuit area, typically gate count.

More specifically, we propose a top-down power estimation
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technique that works at the structural register-transfer level
(RTL), where memory elements (flops or latches) are well
defined, but the combinational logic is specified simply as
Boolean equations. As the number of latches/flops is known
at this level, it is possible to estimate the power consumption
of the memory elements with the help of bottom-up power
macromodels. Therefore, the problem of power estimation at
the structural RTL reduces simply to estimating the power of
the combinational parts, hence the gate count and the activity
of the combinational parts. In this paper, we will employ
an approach similar to the technique introduced in [5] to
estimate the power consumption of the combinational parts
of a design at the structural RTL. In [5], authors introduce a
complexity based area estimation technique, an average capac-
itance estimation technique, and a high-level activity estimator.
In our work, we propose a new area estimation technique,
which is considerably less computationally expensive than the
one introduced in [5], and improve on the activity estimator
by adding the capability to handle spatially correlated input
streams.

The organization of this paper is as follows: In Chapter I
we will introduce the high-level area estimation approach used
in this work. In II, we propose an area estimation technique
that, combined with the capacitance estimation technique of
Chapter IV [5], will let us estimate the total capacitance of
a circuit from a high-level view. In V, we will summarize
the activity estimation technique introduced in [6], and in
Chapter VI we will introduce our improvements on this
method to handle spatially correlated input streams. In VII,
we combine the results of our capacitance estimator and the
activity estimator to come up with high-level power estimates.
We end the paper with some conclusions presented in VIII.

I. BACKGROUND

In this section, we will introduce an overview of the high-
level power estimation methodology. This issue was previously
addressed by Nemani and Najm in [6], [5].

In this work, we restrict ourselves to the static fully comple-
mentary CMOS technology. For a combinational logic circuit
composed of N logic gates, whose output nodes are denoted
xi, i = 1, 2, . . . , N , we can write the average power consumed
by

Pavg =
1
2
V 2

dd

N∑

i=1

CiD(xi) (1)

where Ci is the total capacitance at the node i, and D(xi) is
the transition density [7] of node xi (average number of logic
transitions per second).

At the RT level, combinational logic is described as a
Boolean network whose nodes implement an arbitrary Boolean
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function. No internal details of the circuit are known at his
level. Therefore, approximations to the gate-level power model
are inevitable for deriving a power model at the RT level. The
model proposed under this constraint is

Pavg ∝ Ctot ×Davg (2)

where Davg is a measure of the average node switching
activity and Ctot is total circuit capacitance.

II. AREA ESTIMATION

In this section, we address the problem of estimating the
area (gate count) of a Boolean function from its high-level
description (Boolean equations) only. The area estimate will
then be used to obtain a measure of the circuit total capac-
itance, which will then be multiplied by the average activity
to estimate the power. A preliminary version of the material
in this section was presented at [8].

The problem of estimating the total capacitance of a circuit
from only a high-level description is an involved one. The
circuit capacitance depends very heavily on the gate library
and the circuit speed. A given Boolean function can have
many different implementations resulting in different total
capacitance values. Nevertheless, to be able to predict the
power consumption of a circuit at the RT-level, one needs
a measure of the total capacitance of the circuit. In this work,
we use the following approximation based on the work of [5]
for the total capacitance

Ctot = ACg (3)

where Ctot is the total capacitance associated with the Boolean
function, A is the total number of gates (or the gate count
complexity) required for an optimal area implementation of
the Boolean function given a technology-dependent library
and a certain delay specification, and Cg is the average
capacitance associated with a gate in the library under the
given delay conditions. Given a technology library, the most
difficult problem in obtaining a reasonable estimate of the total
capacitance is the estimation of A. We will refer to A as “area
complexity” from here on.

In this work, we propose a method to estimate the area
complexity (gate count) of a design described at a high-level
of abstraction. Specifically, we propose an area estimation
capability, given only the Boolean equations (or any other
high-level description of the design) using only the Boolean
network representation (to be defined later in the chapter)
of the function, and a primitive-independent area complexity
measure extracted from this representation.

Our method of estimating the gate count basically consists
of three steps. First, we build a Boolean network representation
of the given design. Then, we extract the relevant parameters
of this network to compute the area complexity measure. In
the last step, using the area complexity measure computed in
the previous step, we get an estimate for the gate count of the
design in a previously-characterized target gate library and a
synthesis tool, for the given delay constraints. In the following
subsections, we will look into each of these steps in detail.

A. Boolean Networks

Definition 1 (Boolean Network) A Boolean network (BN)
is a directed acyclic graph representing a set of Boolean equa-
tions. Each node in the BN corresponds to a Boolean primitive,
and the edges correspond to the connections between these
primitives [9].

Building a BN corresponding to a design is easy once the set
of primitives to be used as nodes is chosen. It simply involves
translating the given format into a pseudo gate-level format
where each gate corresponds to a Boolean primitive (such as
OR, AND, NOR, NAND, XOR, NOT, etc).

Obviously, one can build many different Boolean networks
for a given set of Boolean equations, using different primitives
as nodes of the network. Thus, the BN not being canonical,
it would not seem to be a good means to asses the com-
putational cost implicit in a Boolean function. Nevertheless,
one would also expect the different BN representations of
the same function to have some invariant properties as they
are representing the same Boolean functionality. This was the
motivation for our work, finding an invariant attribute of a BN
that is representative of the function which can be mapped
easily to an estimate of the final gate count that that function
would require when synthesized to a given gate library.

B. Complexity Measure

There is a lot of work in the literature that addresses the
complexity of Boolean functions [10], [11], [12], [13]. In many
cases, the complexity measure of a Boolean function has been
expressed in terms of the function’s output entropy and an ex-
ponential in the number of nodes. It has also been observed [5]
that many of these measures break down in practice, hence
the need for more practical, efficient, techniques for assessing
complexity and relating it to a gate count estimate.

In our work, a BN is simply a graph. Given any graph, there
are many parameters that can be extracted, such as the number
of nodes, number of edges, average in-degree (fan-in), average
out-degree (fan-out), depth, size of cut-sets, topological order
of the nodes, minimum spanning trees, etc. Therefore, we can
talk about the number of nodes, average fan-in, average fan-
out, or depth of a BN.

Our gate count estimation method is based on an area
complexity measure extracted from a BN that represents the
given design. To be useful, this measure should satisfy two
conditions: (i) It should be invariant among the different BN
representations of the same design. The original design may
be in any of the various formats, and the users might want to
build the BN using any set of primitives that is convenient for
them. These will result in very different BN representations
of the same function. We want our area complexity measure
to be constant for all those representations, at least with some
approximation. (ii) Obviously, the area complexity measure
should have a well-defined relationship with the optimized gate
count of the final circuit in the target gate library. Furthermore,
this “model” should be applicable for different cell libraries,
or different synthesizer/mapper tools.
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C. Area Complexity Measure

We have found that a complexity measure satisfying both
of the conditions in II-B to be

C(B) = n · fin · fout (4)

where C(B) is the area complexity measure extracted from
Boolean network B, n is the number of nodes in B, f in is the
average fan-in (in-degree), and fout is the average fan-out (out-
degree) of the nodes of B. We can re-write this complexity
measure as

C(B) = fin · Eout (5)

where Eout = n · fout is the total number of out-going edges.
We have found that this complexity measure is approxi-

mately invariant for different BNs of the same function. One
reason for this is as follows. Notice that fin for a BN node
represents a rough measure of gate count, or silicon cost
required to implement that node. One can also think of f in

for a BN node as a first-order measure of the “computational
work” being performed at that node. Thus, f in is the average
computational work per node in the BN. On the other hand,
Eout, which is the total number of all out-going edges, is
a measure of the connectedness of the BN. It is, in fact, a
measure of the overall “communication cost” inside the BN.

If fin is somehow increased (due to the use of a different
set of primitives), then more of the overall computation would
be done inside the BN nodes themselves and there would be
less overall communication that is needed between the nodes.
Hence, as fin is increased (decreased), Eout should decrease
(increase). Our experiments verify this claim, and actually
indicate a very simple relationship between the two:

fin · Eout ≈ constant (6)

We will show that the proposed complexity measure is
invariant for different BN representations of the same circuit
and that it has a well defined relationship with the optimized
gate count of the synthesized circuit. We will also show
that this complexity measure performs better than a simpler
measure such as node count.

To obtain different BNs for the same function, we have
used different sets of primitive Boolean nodes and have built
five different BNs from each of the benchmark circuits, and
extracted the relevant parameters. Using these parameters, we
have computed the area complexity measure as defined in (4).
The results are shown in Table I for a number of ISCAS
and MCNC benchmark circuits.. The primitive sets we have
used consist of inverters and OR gates with various support
set sizes. Under the column headed OR2 are the complexity
measures computed from the BNs consisting of inverters and
2-input OR gates. For column OR3, we have added 3-input
OR gates to the primitive set, and so on. The column heading
“Simple” corresponds to a simple gate library containing an
inverter, a NAND2, a NOR2 and an AND-OR-INVERT gate.
The rightmost two columns display the mean and the standard
deviation of these values. As can be seen from the table,
the area complexity measure for a design is approximately
constant across different BNs built with different Boolean
primitives.

To show that our complexity measure performs better than
the node count, we show a bar chart of the node count for
different BNs, in Figure 1. As can be seen from the figure,
the node counts obtained by using different primitive sets
vary substantially. This makes node count a poor choice as
a complexity measure, because it varies with variations in the
structure of the BN even though the Boolean function itself is
not changing.
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Fig. 1. Node count of BNs for different sets of primitives.

In order to study the relationship between our complexity
measure and the gate count of the optimized circuit, we have
built BNs for a number of benchmark circuits and extracted
the area complexity measure from them. We optimized these
circuits for minimum area using Synopsys Design Compiler
(DC) and mapped the optimized circuits to cell library (the
class library that comes bundled with DC). The correlation
plot in Figure 2 shows a clear relationship with the optimized
gate count of the synthesized circuit. The relationship is a
simple power law of the form

y = m · xn (7)

where m and n are fitting coefficients.
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Fig. 2. Gate count - Synopsys DC, class library.
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TABLE I

COMPLEXITY MEASURE FOR SOME DESIGNS UNDER DIFFERENT SETS OF PRIMITIVES.

Circuit OR2 OR3 OR4 OR5 OR6 Simple Mean σ

C1355 1720 1717.36 1711.54 1707.75 1707.75 1736.7 1716.85 10.94
C1908 2032.54 2011.87 2011.87 2007.27 2007.27 2028.07 2016.48 10.99
C499 1304 1300.69 1293.26 1288.3 1288.3 1296.6 1295.19 6.46
C880 983.24 967.988 954.562 954.562 954.562 1003.28 969.70 20.01
alu2 1870.61 1793.97 1778.65 1794.96 1856.88 1787.79 1813.81 39.35

apex6 1843.42 1797.3 1784.08 1783.07 1778.59 1789.61 1796.01 24.10
example2 927.098 886.186 870.528 857.57 855.232 848.87 874.25 29.10

i5 826 771.176 714.483 712.462 712.462 743.89 746.75 45.34
my adder 674.33 623.482 611.255 611.255 611.255 667.053 633.11 29.59

ttt2 1654.2 1577.93 1499.94 1500.75 1501.62 1484.84 1536.55 66.44

The preceding argument also helps explain why this con-
stant can be used as an area complexity measure. Since
the constant value combines the cost of computation and
communication, it can be viewed as the overall computational
work of the Boolean function, and it can be used as a measure
of its complexity, and ultimately, gate count requirements. The
next section explains how this can be done.

D. Area Complexity Model

The preceding section explained how we can get an area
complexity measure given a high-level (Boolean) description
of a design. All the steps taken to do that were independent of
the target gate library and the synthesis tool that will be used
to synthesize/map this design. The third step in our estimation
process relate this library independent measure to the actual
gate count of the optimal circuit in a given target gate library.

This step of the estimation process can be explained in
two phases. The first phase is the characterization phase.
In this phase, we find the relationship between the area
complexity measure and the actual gate count obtained by
optimizing, synthesizing, and mapping the function to a target
gate library using a synthesizer/mapper. Once the tool and
the target gate library are characterized, we can use this
relationship to estimate the gate count requirements of other
designs without going through the optimization-synthesis-
mapping process. We were able to find a very simple and
well-defined relationship between the complexity measure and
the gate-count requirement for both of the synthesis tools (SIS
and Synopsys Design Compiler) that we experimented with.

The steps involved in the estimation process can be sum-
marized as follows:

1) Characterization of the synthesizer/mapper and the gate
library:

• A number of previously implemented designs are
chosen.

• The BNs corresponding to these designs are built.
• The area complexity measure as defined in (4) is

computed.
• The relationship between the complexity measure

and the gate-count requirement is established (by
regression analysis, or building look-up tables).

2) Gate-count estimation:

• The BN for the new design is built.

• Area complexity measure for the design is com-
puted.

• Using the relationship established in the characteri-
zation step, the actual gate count requirement of the
new design is estimated.

Notice that the characterization step needs to be done
only once for a given tool and a target gate library. The
computational cost of this process depends heavily on the
synthesis tool, synthesis script and the desired coverage (num-
ber and size of benchmark designs). As an example, one
such characterization process involving 16 benchmark circuits
ranging in size from 7 to 2000 gates ran for 2 CPU hours using
Synopsys DC and high-effort script on a SUN UltraSparc 10
Workstation.

E. Delay Constraints

As we have mentioned earlier, the actual implementation
of a Boolean function depends very much on the delay
constraints. Therefore, our high-level area estimator needs to
be able to handle user-defined delay constraints in order to
be considered useful. In this section, we will show that it is
possible to handle user-defined delay constraints (given in the
form of parameterized delay in our area estimation model. For
that, we first need to define what we mean by parameterized
delay.

Definition 2 (parameterized delay, λ) For a given Boolean
function, let tmin be the delay of the minimum-delay gate-level
implementation, and tmax be the delay of the maximum-delay
(i.e., minimum area) implementation. The delay parameter λ
corresponding to an arbitrary delay value td can be computed
as

λ =
(td − tmin)

(tmax − tmin)
× 100 (8)

In other words, λ is the linear measure of the actual delay
constraint relative to minimum (λ = 0) and maximum (λ =
100) delay points.

We will now demonstrate that the area complexity model
holds true at not only the minimum delay point as shown in
Figure 2, but also at other points on the delay-area trade-off
curve. More specifically, we will demonstrate that a similar
relationship can be observed between the area complexity mea-
sure and the actual area complexity (gate count) at minimum
delay (λ = 0) and 50% delay (λ = 50) points as done at the
minimum area (λ = 100) point.
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Figures 3 and 4 show the relationship between the gate
count and the area complexity measure at λ = 0 and λ = 50
respectively. As you can see, the relationship can still be
modeled with a function of form y = m · xn as in (7). The
only difference we have observed for these three cases was
the values taken by the model parameters m and n.
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Fig. 3. Gate count - minimum delay point, Synopsys DC, class library.
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Fig. 4. Gate count - 50% delay point, Synopsys DC, class library.

F. Experimental Results

In this section we will report some experimental results, and
try to show that our model is general enough to be usable for
different design environments.

To show that our model works regardless of the synthesis
tool at hand we have generated a plot similar to Figure 2
using SIS [14]. We have used the script.rugged of SIS
to optimize the benchmark circuits for minimum area, and
mapped them on the same target library (class). Figure 5 shows
that the relationship between the area complexity measure and
the actual area complexity (optimized gate count) can still
be approximated by a function of form (7) even though a
different synthesis tool is used for optimization/mapping of
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Fig. 5. Gate count - SIS, class library.

the benchmarks. The model parameters in this case have of
course changed, m = 0.4911 and n = 0.8352.

Another thing that needs to be checked to verify the usabil-
ity of our model was whether our model worked for different
target gate libraries. To achieve this, we have optimized and
mapped the benchmark circuits using Synopsys DC and the
Odyssey cell library for the TSMC 0.25µ technology. Once
again, we have observed a relationship very similar to what
was obtained by earlier experiments, only with different fitting
parameters.

To test the accuracy of our model, we used a number of
ISCAS and MCNC benchmark circuits. These circuits were
synthesized and mapped on two different target gate libraries
using SIS, and Synopsys Design Compiler.

The set of primitives used for building the BNs were
inverters, and 2-input OR gates (the primitive set labeled OR2
in II-C).

For the characterization step, we randomly chose a number
of benchmark circuits, and built the BN for each of them.
Then we extracted the number of nodes, average fan-in,
and average fan-out from these BNs. We computed the area
complexity measure using (4) with these parameters. We have
then optimized the circuits using the desired tool and the
target library and extracted the gate counts of the optimized
circuits. Performing regression analysis on these data, we
can compute the model parameters m and n, and hence
characterize the tool/library/delay point. We can then estimate
the optimized gate count for other benchmark circuits using
the model obtained by the characterization step and compare
these estimates with the optimized gate counts.

Figure 6 shows the estimated gate count vs. actual gate
count for Synopsys DC and the class library at the minimum
area point. The average error in our estimation is 24.5%.

Figure 7 shows the estimated gate count vs. actual gate
count for SIS and the class library at the minimum area point.
The average error of estimation is 23.3%.

We have also tested the accuracy of our method using the
Odyssey cell library at the minimum area points as synthesized
by Synopsys DC. Once again, we obtained good estimation
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Fig. 6. Gate count - Synopsys DC, class library.
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Fig. 7. Gate count - SIS, class library.

results with an average error of 25.3%.

G. Limitations of the Model

The proposed complexity measure has some limitations. For
instance, if a BN contains significant redundant logic, such as
when large parts of the function are redundant and would be
removed if synthesized, then it is clear that a simply structural
complexity measure as we have proposed will over-estimate
the gate count. One point to be made in this regard is that it is
good that the estimation is conservative in this case. Another
point to be made is that we did not encounter this behavior
in any of the test cases that we looked at, and thus we are
inclined to think that this measure has some virtue.

Another point worth making relates to the use of this
complexity measure as a way to predict the requirements of a
soft IP (intellectual property) block. If one is to make available
a synthesizable description of a large design, as soft IP, it
is hardly likely that they will package this IP in a way that
includes large redundant logic portions. Thus, it seems likely
that the proposed complexity measure would be very useful
to the end user in this case.

This work on area estimation can be extended to take the

load characteristics into account at the characterization step.
The methodology employed to do this would presumably be
very similar to the technique employed to characterize the
model for different delay constraints.

In the next subsection, we will look at the area model once
again, and introduce a tuning technique that will make it more
practical.

III. TUNING OF THE AREA MODEL

In this section, we will introduce a tuning technique for the
area model introduced in the previous section. This technique
reduces the characterization overhead of the method substan-
tially, and makes it much more practical to use. The results
presented here can be found also in [15].

One of the most important features of our high-level com-
plexity model is its tunability. That reduces the characteriza-
tion overhead of the method substantially, and makes it much
more practical to use. Tunability of the model ensures that
for any given synthesis tool, we need to perform the compu-
tationally expensive characterization step only once (using a
simple target library and a simple synthesis script), and use
the resulting model for any combination of target libraries and
synthesis scripts with only a minimal effort spent on tuning.
In this report, we will demonstrate the tuning method and
the results obtained by tuning. Our tuning methodology has
similarities to the one used in [16] for RTL power models of
soft macros.

In the previous section, we introduced a high-level area
complexity measure, and a high-level area complexity model
based on this measure. The area complexity model is of the
form

A = m · C(B)n (9)

where A is the estimated gate count of the circuit, C(B) is our
area complexity measure, m and n are the model parameters
that can be obtained by regression analysis. These parameters
model the effect of the synthesis tool, the script, target library,
and delay specifications on the gate count requirements. This
method is very fast once the model parameters m and n are
computed for a given design environment (to be defined in III-
A).

A. Background and Definitions

Definition 3 (technology) The target gate library that the
circuit is mapped on after optimizations.

Definition 4 (synthesis script) The settings of the synthesis
tools used to optimize the circuit.

Definition 5 (delay point) The target synthesis point on the
delay/area trade-off curve.

Definition 6 (design environment) A specific synthesis
script, a specific, and a specific gate library.

For the rest of the section, we will refer to Synopsys Design
Compiler simply as DC, and gate count requirements of the
optimized circuit as area.
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B. Tuning Methodology

The most computationally expensive step in the area estima-
tion methodology introduced in II, is the up-front characteri-
zation of the design environment. Although it is a task which
is performed only once for a given design environment, it has
to be repeated when a component of the design environment
changes. It would be much more practical if it were possible
to build the model only once, and somehow “tune” it when
the design environment changes, instead of building it from
scratch.

In [16], [17], authors show that the relative change in power
consumption resulting from a change in technology and/or
synthesis script is almost benchmark-independent. As a first
step in our tuning approach, we have tried to verify this
observation for the gate counts of the benchmark circuits.
To do this, we have mapped a set of MCNC benchmark
circuits [18] in different design environments. While changing
the design environment, we have kept the synthesis tool
unchanged (DC). Once we got the area for all the benchmark
circuits in different design environments, we tried to find out
if there is any correlation between them.

For our experiments on the effect of changes in the target
library, we used a large number of different target libraries
to map all the benchmark circuits using the default synthesis
script of DC at the minimum area point. The result of one
such experiment is shown in Figure 8. As can be seen from
these plots, the relative change in area caused by a change
in technology is indeed almost benchmark independent. That
means, we can use a constant scale factor to get the area in
one technology based on the area in a different one. This is
very promising, since it means we will not have to characterize
the changes in design environment resulting from technology
changes fully if we can approximate the area model with a
linear one.
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Fig. 8. Gate Count in Class lib. vs Gate Count in and or lib.

For our second set of experiments, we synthesized the
benchmark circuits once again, this time using more aggressive
optimization settings (Boolean structuring, and high mapping
effort in DC). Then, we investigated the correlation between
the area obtained this way and the area obtained using default

optimization settings (timing based structuring, medium map-
ping effort) for different technologies. The result of one of the
experiments can be seen in Figure 9.
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Fig. 9. Gate Count in Class lib. for different synthesis scripts.

Once again, it can be seen that the relative change in
area resulting from a change in synthesis script is almost
benchmark independent. This result, combined with the result
obtained above about technology changes shows that we can
handle and change in technology and/or synthesis script by
just tuning if we can find a linear area complexity model.

Another thing that can change in the design environment is
the delay specifications of the circuit. To test the effect of this
on the gate count requirements, we fixed the technology and
the optimization settings (except for the delay specifications),
and synthesized the benchmark circuits at various delay points.
Here, we used the parameterized delay introduced in II-E. The
results can be seen in Figure 10. The correlation is almost
linear, suggesting that we can tune the model for changes in
delay point.
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Fig. 10. Gate Count in Class lib for different delay points.

By performing these experiments, we have shown that a
linear scale factor can be used to get an estimate for the
area of a circuit implemented in a certain design environment
based on its area in a different design environment. In our
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experiments with the model, we have also observed that the
parameter n in (9) is very insensitive to the changes in the
design environment. This is a very important observation, as
it allows us to fix n for a given synthesis tool based on a full
characterization step with some design environment, and use
a linear model with a modified complexity measure for other
design environments using the same synthesis tool. Suppose
we have observed that the value of n for a synthesis tool is
N0. Then, we can rewrite (9) as

A = m · CN (B) (10)

where CN (B) = C(B)N0 is the “modified complexity mea-
sure.” This model has the advantage of being linear. That
means, we can tune this model for any change in design
environment by just computing the scale factor of the change
and multiplying the parameter m with this factor.

C. Experimental Results

To test our tuning method, we chose a “base” design
environment and fully characterized the model (9) for this
environment. Then, we used this model and the tuning method
described in III-B to estimate the area of the benchmarks in
different design environments.

As our “base” environment, we chose the and or library, the
default synthesis script of DC, and the minimum area point
(set max area = 0). The model parameters for this particular
case was found to be m = 1.01246 and n = 0.809293.

After the full characterization step, we fixed the value of
n to be 0.81, and tuned the model for different environments
using scale factors computed in the way described above. One
such estimation result can be seen in Figure 11.
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As can be seen from the figures, the tuning method gives
quite acceptable results without going through the expensive
characterization phase again and again for every change in the
design environment.

IV. CAPACITANCE ESTIMATION

In order to estimate the power, one needs to estimate the
average node capacitance in a circuit, Cg, in addition to the

area complexity introduced in II and III. In this chapter
we present our approach for estimating the average node
capacitance. Our approach for estimating the average node
capacitance is very similar to the approach presented in [19].

Let Ctot be the total circuit capacitance of an optimal area
implementation. Then,

Cg =
Ctot

A (11)

where A is the number of gates in the optimal area implemen-
tation. This quantity depends on the target gate library and on
the fan-out structure of the circuit. One can try to estimate C g

by averaging the intrinsic output capacitance of the gates in
the target library. This estimate can be made more accurate
by weighing the average according to the usage frequency of
the gates in a typical design. If one has access to several prior
designs which can be used to obtain this data from, the task of
estimating the average capacitance becomes much easier. To
make the estimate even more accurate, one needs to consider
the fan-out structure of the circuit and add the capacitance due
to the fan-out branches to the output capacitance of the logic
gate. This is the method used in [19], and we use the same
method. To do that, we use a number of area optimal circuit
implementations in the target library, and obtain the total
capacitance. Then, we can use (11) to get the average node
capacitance for individual circuits, and perform an average on
these numbers to obtain an estimate of Cg for the library at
the minimum area point. The same approach can be employed
at different points on the area-delay trade-off curve to obtain
the average node capacitance at those points.

V. ACTIVITY ESTIMATION

Our high-level activity estimator is based on the estimator
introduced in [6]. The work of [6] assumes that the inputs to
the RTL block do not have any correlations. In this work, we
will propose a modification to this technique that lets it handle
correlated input sequences. In the first part of this section, we
will summarize the technique of [6], and in the latter parts,
we will introduce our modifications.

A. Original Activity Estimator

The problem of estimating the switching activity at the RT
level is complicated again by the fact that, there is no gate-
level implementation associated with the Boolean function,
and hence no notion of “internal nodes” is present. At the RT-
level, the best one can do is to run a zero-delay simulation
of the Boolean function based-on the user-specified input
statistics to obtain the switching activity at the outputs of the
combinational block. This, along with very limited structural
information, such as the number of inputs and outputs, and
user-specified delay constraints, constitutes all the information
available to us for deriving an estimate of D.

In [6], [19], authors make two important observations that
makes the task of predicting the activity at RT-level possible.
First of these observations is about the dependence of average
activity on the delay constraints, and the second one is about
the quadratic decay of the density at any cross section with
increasing depth.
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As there are many realizations of a Boolean function with
different values of area and delay, it is natural to expect D to
vary across the different implementations of a Boolean func-
tion with different delay constraints. However, if one can show
that the variation is not significant, this will make the task of
deriving an estimator relatively easy, as the implementation
details will not have to be taken into account. In [6], authors
run a number of experiments that compare the amount of vari-
ation in D across different implementations of the benchmark
circuits from the ISCAS 89 [20] and MCNC [18] benchmark
suites. Results of this experiments show a maximum absolute
deviation of ±0.05 for an overwhelming majority of the
circuits. That means it is possible to use the estimated value
of D as a nominal measure of average switching activity for
all implementations of a Boolean function.

A combinational circuit can always be levelized so that its
gates are tagged with level values that represent their distance
from the primary inputs. The largest level number K used in
levelizing a circuit is called the circuit depth. Every circuit
node is generated at some unique level and used at possibly
several other levels. For every i = 0, 1, 2, . . . , K , define the
set of nodes in cross-section i, Si, as the set of all nodes that
are generated at levels less than or equal to i and used at levels
greater than i.

Definition 7 (D(i)) Based on the notion of cross-section,
D(i) is defined to be the sum of node densities in the set S i,
called the cumulative density at cross-section i or, simply, the
density at cross-section i. Thus D(K) is the sum of densities
of the primary output nodes denoted by Do. Likewise, D(0)
is the sum of densities of the primary input nodes denoted by
Di.

Authors of [6] go on to derive an average activity model
Boolean functions:

D ≈ 2/3
n + m

(Di + 2Do) (12)

where Di and Do are the cumulative densities at the input and
the output nodes respectively, n is the number of input nodes
and m is the number of output nodes.

In spite of all the approximations made in the derivation
of (12), it is shown in [19] that the resulting expression works
quite well for a broad range of circuits. This expression is
essentially the high-level activity estimator for [19], [5], and
it is also the starting point for our high-level activity model.

B. Limitations of the Original Activity Model

The activity model of V-A works quite well for a broad
range of circuits as long as the input vector stream is spatially
uncorrelated. In our experiments, we have observed an average
estimation error of 25% using this activity model with input
streams with low spatial correlation. However, the model
become much less accurate as the spatial correlation at the
inputs increased, resulting in an estimation error of as much
as 40%.

To understand why this is happening, one has to go back to
the assumptions of [6], and specifically the assumption that the
cumulative density varies quadratically with depth. quadratic
dependence of cross-section activity on depth. This assumption

is made as a result of gate-level simulations with spatially
uncorrelated input streams. We ran a number of experiments
to see if this observation holds true in the case of spatially-
correlated inputs. As a result of these experiments, we have
found out that although the quadratic model approximates the
cross-section activity quite well in the case of uncorrelated
inputs, it breaks down for highly correlated input streams.

Since spatial correlation is highly probable at the inputs of
an RTL block, the high-level activity estimator needs to be
improved to take this into account. In the next section, we
will propose a technique to modify the activity model of [6]
to take the input spatial correlations into account.

VI. ACTIVITY ESTIMATION FOR CORRELATED INPUTS

Before going into the details of our activity estimator, we
will refer to [21] for the definitions of spatial and temporal
correlations.

A. Temporal correlation

A signal x is said to be temporally correlated if an event
(occurrence of certain logic state) at a given time is correlated
to an event at some past time. In this work, we will concentrate
only on correlations across one clock edge. For temporally
correlated primary inputs, temporal correlation parameter for
the ith input, TCi, is defined as

TCi = P {
xt

i ∧ xt−1
i = 1

}
(13)

where t−1 and t are consecutive clock cycles and where P{·}
denotes probability. Temporal correlation coefficient (γ i) for
ith input is defined as [22]

γi =
P {

xt
i ∧ xt−1

i = 1
} − P (xi)2

P (xi)(1 − P (xi))
(14)

where P (xi) is the probability at an input node xi, and the
only quantity which is unknown in (14) is P {

xt
i ∧ xt−1

i = 1
}

.
Therefore it is possible to estimate γi if TCi can be de-
termined. In [21], authors show that TC i can actually be
determined from the knowledge of P (x i) and D(xi), and
hence temporal correlation at the primary inputs is taken care
by P (xi) and D(xi) without a need to introduce an additional
parameter to represent it. The relationship between TC i, P (xi)
and D(xi) is given by

TCi = P (xi) − D(xi)
2

(15)

B. Spatial correlation

A signal x is said to be spatially correlated to another
signal y if their events are correlated. In this work, we
will concentrate only on pairwise correlations. Once again,
referring to [21], we can define SCij , the spatial correlation
between the ith and jth inputs as

SCij = P {xi ∧ xj = 1} (16)

i.e., the probability of the inputs being high simultaneously.
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This definition of SCij as a measure of spatial correlation
follows from the definition of the correlation coefficient as
introduced in [22]

ρij =
P {xi ∧ xj = 1} − P (xi)P (xj)√

P (xi)P (xj)(1 − P (xi))(1 − P (xj))
(17)

From the definition given in (16), it is clear that SC ij is
sufficient to capture ρij .

Instead of considering all the pairwise correlation coeffi-
cients, it is possible to define SCin (average spatial correla-
tion coefficient, i.e., average of all SCij terms). This parameter
can be calculated as

SCin =
2

n(n − 1)

n∑

i=1

n∑

j=i+1

P {xi = 1, xj = 1} (18)

where n is the number of primary inputs.
In [21], authors go on to find upper and lower bounds for

SCin as
nP 2

in − Pin

(n − 1)
≤ SCin ≤ Pin (19)

where Pin is the average signal probability for primary inputs.
For our work, we will use a parameterized measure of

spatial correlation instead of directly using SCin.
Definition 8 (parameterized spatial-correlation coeffi-

cient, λsc) For a given Pin, let SCmin be the lower bound of
the average spatial correlation coefficient SCin and SCmax

be the upper bound. The spatial correlation parameter corre-
sponding to an arbitrary spatial correlation value SC can be
computed as

λsc =
(SC − SCmin)

(SCmax − SCmin)
(20)

We observed that the parameter, λsc, captures the effect of
spatial correlation on switching activity closely.

C. Modified activity model

In V-A, we introduced a high-level activity model. During
our experiments with correlated inputs, we observed that this
model can be modified to capture the switching activity with
input vector streams with spatial correlation. Our proposed
high-level activity estimator is

Dsc = D/S(λsc, P
∗
out,A) (21)

where D = (2/3)(Di+2Do)/(n+m) is the activity estimated
by the original model, S(·) is the “correction factor”, λsc

is the parameterized spatial-correlation coefficient, P ∗
out is

the average signal probability of the primary outputs for
completely random inputs, and A is the gate count of the
minimum area implementation of the Boolean function (or an
estimate of it).

To determine the form of S(·), we ran a number of exper-
iments on a number of MCNC [18] benchmark circuits. We
generated a very large number of input vector streams with
varying statistics, and ran zero-delay gate-level simulations on
minimum area gate-level implementations of these circuits to
obtain simulated average activity numbers. Then, we used (12)

to estimate the average activity for the same circuits, and sim-
ply divided the activity numbers obtained from the simulation
by the estimated activity numbers to obtain the correction
factor. Figure 12 show the results of one such experiment.
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Fig. 12. Correction factor for C1355.

During these experiments, we have discovered that the
correction factor, S(·) is not a constant factor across different
circuits.

D. Determining the form of S(·)
There are two alternatives for studying the variation in the

form of S(·) across different circuits. One can use actual
benchmark circuits to run the experiments explained in VI-C
to study the variations, and try to come up with a technique.
We have found this approach to be of limited use, as there are
only a limited number of standard benchmark circuits to work
on. The second alternative approach, which is also our choice,
is to use randomly generated Boolean functions [19] to study
the variations, and then find a mapping between RGBFs and
real functions.

Definition 9 (randomly generated Boolean function
(RGBF)) An RGBF is a Boolean function selected by ran-
domly assigning each point in the Boolean space to either the
on-set or off-set of the function.

The advantage of using RGBFs for studying (and charac-
terizing) the form of S(·) is obvious: one can generate a very
large number of different RGBFs to work on. However, to
be of practical use, the characterization performed on these
functions should be applicable to real Boolean functions.
In [19], [5], authors show that RGBFs and real Boolean
functions behave similarly in terms of area complexity. We
will show later in this chapter that the same is true for the form
of the “correction factor” for the high-level activity model.

The first step in analyzing the variations in S(·) is to
generate a large number of RGBFs. These RGBFs would have
number of primary inputs in a certain range (depending on
the sizes of the target circuits), and output probabilities (to
be defined later) that span the entire range from 0 to 1. The
second step, then, is to synthesize these functions (we used
Synopsys Design Compiler for this task) to obtain a minimum
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area gate-level implementation. Once the circuits are available,
one can run a large number of experiments similar to the one
introduced in VI-C to generate the correction factors. Figure 13
shows the results of experiments run on RGBFs of input size
11.
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Fig. 13. Correction factor for RGBF with n=11.

It is obvious from the results presented that the correction
factor S(·) is a function of spatial correlation (λsc), output
probability and the input support size of the RGBF (which,
combined with the output probability determines the area of
the gate-level implementation).

Definition 10 (output probability, P ∗
out) The average

signal probability at the primary outputs of a Boolean function
for a completely random (Pin = 0.5, Din = 0.5) input stream.

To capture the values of the correction factor, we employed
a look-up table (LUT) based approach. The look-up table
proposed is a three-dimensional look-up table indexed by P ∗

out,
A and λsc. The reason A is used instead of n (number of
primary inputs) as an index to the table is that, A covers a
larger parameter space than n. If we were to choose n as an
index, we would be forced to generate data for the entire range
of n (which can be very large). In our case, by generating
data for only 6 ≤ n ≤ 13 we were able to span a range of
8 ≤ A ≤ 1594.

E. Table look-up algorithm

Obviously, one cannot include every combination of P ∗
out−

A values in the look-up table. Therefore, one needs a table
look-up algorithm which performs interpolation of data points
as needed. We have found an algorithm that works with
reasonable accuracy to be:

• Obtain P ∗
out for the Boolean function at hand

• Choose the column indexed by the numerically closest
P ∗

out value in the LUT
• Choose the two closest A points in this column to the

gate count estimate of the Boolean function
• Use linear interpolation on the values of S according to

the relative position of the circuit A between these two
data points

F. Polynomial approximation to the LUT

In VI-D, we mentioned that we chose to employ a look-
up table based approach for modeling the correction factor.
Obviously, one may choose to fit a curve to the data in the
table instead of using the table directly. This way, the need for
the table look-up algorithm introduced in the previous section
can be eliminated and the computation of the correction factor
can be made much faster and with less memory consumption.

To test this approach, we chose to employ polynomial
regression due to its simplicity. Our regression analysis showed
that a third degree polynomial on three variables (A, P ∗

out, and
λsc) models the look-up table very closely.

G. Experimental Results

In this section, we will present the results of the experiments
we have performed to verify our high-level activity estimator.

1) Verification of the LUT approach: To verify the validity
of our LUT approach, we ran a number of experiments on
MCNC benchmark circuits to see if the values in the LUT
indexed by the P ∗

out, A and λsc matched the values of the
correction factor obtained by gate-level simulation. Figure 14
show the results of one such experiment. As can be seen,
there is a good agreement between the LUT values and the
simulation results.
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Fig. 14. Estimated correction factors for C1908.

2) Verification of the Polynomial Approximation: To test the
accuracy of the polynomial approximation to the look-up table
we ran experiments on the MCNC benchmark circuits to see
how well the polynomial approximates the actual correction
factor. Figure 14 shows the result of one such experiment. As
seen from the plot, the polynomial correction factor models
the actual correction factor very closely.

3) Verification of the activity model: Finally, to verify that
our high-level activity estimator works in the presence of
spatial correlation at the inputs, we ran experiments to compare
the simulated and estimated activity values for a number of
benchmark circuits. To be able to determine the improvement
of estimation accuracy with respect to the original estimation
method, we have repeated these experiments once with the
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original estimation method, and once with the modified activ-
ity model introduced in this work. Figure 15 is a correlation
plot for estimation using the modified activity model. The
average error of estimation is 21.6% for this experiment. For
comparison, the average error of estimation obtained using the
original activity method for the same input statistics is 32.7%.
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Fig. 15. Activity estimation with new method and correlated inputs.

VII. HIGH-LEVEL POWER ESTIMATION

In the previous sections we addressed the problem of
estimating the area complexity and the average activity of
Boolean functions from a high-level view. We can now com-
bine the estimated average activity with an estimate of the area
(capacitance) using (2) to obtain an estimate of the power
dissipated by the Boolean function. In this chapter, we will
outline the full power estimation flow introduced so far and
present the results obtained using this flow. A statistical power
estimation tool based on [23] was used to measure the power
dissipated by the gate-level designs. This power estimator
is basically a Monte Carlo based node transition density
estimator. The tool generates and simulates vector streams
with user defined statistics while observing the individual
node transition densities and stops once all the estimated node
densities are within the user specified accuracy and confidence
levels. That means, the tool will generate vector streams of
different lengths for each circuit at hand which are as long as
necessary to achieve the user defined accuracy levels.

For our experiments, we ran the gate level power estimator
for 5% error tolerance at 95% confidence level. For each
circuit, we have simulated the gate level circuits for a wide
range of input statistics, varying signal probability, activity
factor and pair-wise spatial correlation values.

A. Combinational Power Estimation Flow

The proposed power estimation flow for combinational logic
blocks based on the results presented so far and (2) can be
summarized as follows:

1) Read in the Boolean equations describing the design
2) Read in the input statistics and delay constraints

3) Build a Boolean network representation of the design
4) Estimate the gate count using the technique introduced

in II
5) Estimate the total capacitance using the technique intro-

duced in IV
6) Run a zero-delay logic simulation of the design with

random inputs to obtain P ∗
out

7) Estimate the average activity of the circuit using the
technique of V

8) Estimate the power using (2)

B. Results: Power Estimation

We begin by comparing the power estimated using the orig-
inal activity estimator with power dissipated by a gate-level
minimum-area implementation under zero-delay conditions.
The results of this comparison are shown in Figure 16. For
this experiment, we have used input streams with various
statistics. Among these streams, there are ones with high
spatial correlations, as well as low spatial correlations.
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Fig. 16. Actual and predicted zero-delay power obtained using the original
activity model.
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The average error of prediction with this method is 46.9%.
As can be seen from the plot, this technique has a tendency
to overestimate the power dissipation.

In Figure 17, we are presenting the results of the same
experiment using the modified activity model introduced in V.
The average prediction error is 32.5% for this experiment.

VIII. CONCLUSION

In this paper, we have presented the components of a
high-level power estimation technique. The first component
presented was a new area estimation technique based on the
complexity of the Boolean network representation of the high-
level design. Then, we have proposed a methodology for
estimating Cg needed to convert the area estimate into an
estimate of the total capacitance. This, combined with the
proposed activity estimator can be used to get high-level power
estimates at the structural RT level.
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