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Abstract—A model for process-induced parameter variations is
proposed, combining die-to-die, within-die systematic, and within-
die random variations. This model is put to use toward finding
suitable timing margins and device file settings, to verify whether
a circuit meets a desired timing yield. While this parameter
model is cognizant of within-die correlations, it does not require
specific variation models, layout information, or prior knowl-
edge of intrachip covariance trends. The approach works with a
“generic” critical path, leading to what is referred to as a “process-
specific” statistical-timing-analysis technique that depends only on
the process technology, transistor parameters, and circuit style. A
key feature is that the variation model can be easily built from
process data. The derived results are “full-chip,” applicable with
ease to circuits with millions of components. As such, this provides
a way to do a statistical timing analysis without the need for
detailed statistical analysis of every path in the design.

Index Terms—Correlations, die-to-die variations, generic crit-
ical path, parametric yield, principal component analysis, sta-
tistical timing analysis, timing margin, virtual corner, within-die
variations.

I. INTRODUCTION

THE YIELD of integrated circuits can be thought of as
the ratio of the number of “functional chips” to that of

the total chips manufactured [1]. Traditionally, functionality
in the context of yield estimation and optimization has been
tied to contaminations in the manufacturing process and silicon
defects which lead to dramatic circuit faults (e.g., consider the
consequences of unwanted short circuits) [2]. This is referred
to as functional yield or catastrophic-failure yield. Beyond
catastrophic failures, yield is also reduced when a number of
manufactured chips does not meet target design specifications.
The most important example for digital integrated circuits is
that some chips may fail to meet timing requirements in a
given process and are sorted into “low-speed bins” [3], resulting
in yield loss for the high-speed design. This gives rise to
the concept of parametric yield, also known as circuit-limited
yield. With technology scaling, circuits are more exposed to
the adverse effects of process tolerances, and parametric yield
becomes a crucial metric, especially in aggressive and high-
speed designs. While the functional yield is primarily affected
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by the process of manufacture and typically improves as the
process matures [4], the parametric yield can be significantly
enhanced at the design stage through design awareness of
process variations and their impact on the overall circuit behav-
ior. In this paper, we focus on the parametric part of the overall
yield problem, with emphasis on timing margin budgeting,
which directly relates to “timing yield” [5], [6].

As part of circuit-timing verification, one has to leave enough
margin so that circuit-delay variations do not affect yield too
adversely. This has been usually taken care of by using a set of
worst case or corner-case files [7], [8] as part of timing veri-
fication, typically during static timing analysis (STA). Corner-
case files specify the values of transistor parameters for various
process corners, including the nominal and different extremes
of device behavior. A standard practice for generating corners is
to allow random variations of significant physical and electrical
parameters across their ±3σ window (where σ is the standard
deviation of the variations) [3], and a circuit is deemed to have
passed the timing test if it meets the performance constraints
for all these corners.

This conventional corner-case approach is becoming less
viable today, the main reason being the growing importance
of within-die variations [6] in state-of-the-art technologies. For
one thing, within-die variations appear as mismatches between
devices or interconnect features on the same chip [5] and exhibit
local layout-dependent trends. In consequence, an overwhelm-
ing number of corner cases would be needed if one were to
adequately capture these variations; and since layout informa-
tion is available only late in the design, checking for within-die
variations becomes a final sign-off stage, impractical during the
early phases [9]. In addition, the corner-case approach provides
pass/fail outcomes, offering little or no quantitative feedback on
the robustness of the design [8].

Statistical techniques offer an alternative. Statistical tran-
sistor modeling [8], [10] has been used for quite some time.
Design centering [11], [12] methods have also been developed
to tune the design to the manufacturing process. However, sta-
tistical methods have generally suffered from being too slow to
be readily usable in a practical design methodology, aside from
the inherent difficulty of gathering statistical data representative
of various levels of process variations and extracting from this
data information that can be effectively useful for the designer.

While die-to-die variations take the same value for all in-
stances of a given feature on a chip and can be easily mod-
eled, within-die variations have a statistical dependence on the
location within a chip and are intrinsically more problematic.
They are of two types: systematic and random. Systematic
variations arise from the observed wafer-level variation trends
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reflected on a given die [9], [13] or the spatial locations of some
features on the die and their context in terms of the neighboring
layout patterns. They account for the spatial correlations due
to physical parameter variations across a chip. Random varia-
tions constitute the residual component of the total variations
which, in essence, cannot be explained systematically [13]
and are modeled by statistically independent Gaussian random
variables (RVs) [13], [14]. Ideally, one would like to extract
systematic variations and treat them as “deterministic” [15],
[16]. This approach, however, necessitates detailed variation
models and is hard to apply in the early design stages. A key
contribution of this paper is to deal with statistical within-die
variations, both systematic and random.

Recently, there has been a growing interest in tackling the
timing-yield problem by employing statistical techniques as
part of the circuit-timing analysis step. The aim is to extend
traditional STA so that it takes into account statistical de-
lay variations [5], [6], [16]–[22] leading to a statistical STA
(SSTA). Given the difficulty of early estimation of system-
atic within-die variations, they have often been ignored; thus,
within-die variations were accounted for on a random basis
only [6], [13], [18], [21], [22], which is undesirable. In order
to avoid making this assumption, one needs to express the
within-die correlations with a model that can be easily built
from process data. This point is key, and is hard to do—there
are no published models, for instance, for how exactly the
variations are correlated across the die as a function, say, of the
distance between components. A model of correlations in terms
of distance is mentioned and used in [23], but no details or data
are given; it is not clear what shape the model should take for
an arbitrary parameter nor how one would build it from process
data. In [16], even though statistical within-die variations are
not taken into account, a suggestion is made as to how one
may include them and take care of correlation by enforcing
correlation between neighboring features on a die. This theme
was further developed recently where use was made of principal
component analysis (PCA) [20] or a quad-tree partitioning [19]
to express a regionwise spatial within-die correlation. Here, too,
it is not clear how one would identify these regions and how the
model would be built from process data. Finally, these methods
depend on placement information, making them hard to use
during circuit design and optimization.

The basic question that serves as premise to this paper is:
Prior to design, what can be said regarding circuit charac-
teristics? From the process/technology end, we assume that
one is able to know device/interconnect-delay sensitivities and
the extent of die-to-die and within-die correlations, without
knowing how these correlations will affect different elements
of the design once placement is done. Our analysis will account
for this knowledge and will thus introduce a level of awareness
of process variations, including their correlation, at this early
stage of the design cycle. From the design side, we assume
that one is able to make certain design decisions pertaining to
“design style,” such as the typical number of critical paths or
their depth in a circuit. Then, given a target process technology,
transistor models, and circuit design styles, the methodology
presented in this paper can be applied to suggest preferred
design styles (e.g., in terms of the number of high-speed

paths and their depths) or find preferred device characteristics
(e.g., in terms of device delay sensitivities) which would fore-
cast higher timing yields once the design is completed, consid-
ering that process variations are correlated but their correlations
still unknown at the time of the analysis. The quantitative mea-
sure will come in the form of yield bounds and yield-margin
curves that hold regardless of how the correlation structure of
the process-induced variations in each physical parameter will
look like once the placement is complete. Yield-margin curves
can be used to quantify yield loss at a given timing margin. Our
analysis will also result in a selection of “device file” settings
lying within the extremes of device behavior with which to run
deterministic STA, so that a given timing-yield requirement can
be met. Our work, of which a preliminary version appeared in
[24], straddles traditional STA and design space exploration
techniques under process variations and links circuit-timing
analysis as done today through the STA with process-induced
parametric yield.

For example, while the “nominal” device file may call for
a setting of ∆L = 0 (for channel-length variations) and the
“worst case” file may call for a setting of ∆L = +3σL, our
approach can be used to predict the value “δ,” which we refer
to as a virtual corner, such that if the setting of ∆L = δσL is
used for all devices, and if the circuit timing is verified using
deterministic STA, then the circuit will achieve the desired
timing yield. Therefore, our approach preserves existing static
timing methodology and only assumes the existence of statisti-
cal transistor models, which have been standard for some time.

We will perform our analysis using the concept of “generic
critical path,” in the style of [23], by examining the statistical
properties of large ensembles of such paths. The validity of the
generic-path model in the context of circuit-timing analysis was
verified by a separate set of experiments described in the appen-
dix of this paper. The generic paths will enable us to abstract
most circuit-specific information and obtain estimates of yield
loss considering a model of process variations including die-
to-die and within-die with correlations. The model of generic
paths is pertinent to circuit-timing analysis insofar as different
circuits share fundamental characteristics which impact timing
yield, and we think it is intuitively reasonable to use the generic-
path model to capture the way logic paths contribute to timing-
yield loss. It is well known, for instance, that the timing yield
of highly optimized circuits is determined by a relatively large
number of paths of comparable delay. This phenomenon of
the “wall of paths” clustered close to the clock edge as a
result of circuit optimization has been widely reported in the
literature [25] and forms an intuitive basis for the generic-path
model. Under this model, our analysis can serve as a theoretical
framework for understanding the timing-yield implications of
process variability.

The rest of this paper is organized as follows. Section II
introduces our generic parameter model, combining die-to-die
and systematic and random within-die (WDR) variations. In
Section III, we build a model for circuit timing starting from the
physical device and interconnect variations and show how cir-
cuit timing fits with our generic parameter model. Then, after a
brief summary in Section IV, we gradually look at the impact of
individual variation components on parametric yield. Section V
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examines the situation where parameter variation is considered
entirely die to die. Section VI adds within-die variations as
purely random, and the full variation model is addressed in
Section VII, with an application to circuit timing illustrated
in Section VIII. When systematic within-die variations are
excluded, our approach is to compute simple expressions to es-
timate parametric yield. When these variations are included, we
derive readily usable expressions to bound the yield from above
and below. Throughout this paper, we will derive the results
first on a generic parameter, then illustrate them with a direct
application to circuit timing. We will compare the necessary
timing margins and case file settings in different situations by
following a simple case where variation is progressively split
between different components, and a specified timing yield is
required. We conclude in Section IX.

II. PARAMETER MODEL

For a given circuit element or layout feature i, let its co-
ordinates on the die be (xi, yi) and let X(i) be a Gaussian
RV that denotes the variation of a certain parameter of this
element from its nominal (mean) value. Thus, for example,
X(i) may represent channel-length variations of transistor i.
Let n be the number of occurrences of this parameter on a
chip. For simplicity, we consider X(i) to be zero mean, with
the understanding that a mean shift can be easily incorporated
into the model below.

We break down X(i) into a die-to-die component Xdd and a
within-die component Xwd, such that

X(i) = Xdd +Xwd(i), i = 1, . . . , n. (1)

Here, Xdd is a zero-mean Gaussian RV that takes the same
value for all instances of an element on a given chip, irrespec-
tive of location, while Xwd(i) is a zero-mean Gaussian RV
which can take different values for different instances of an
element on the same die. We consider Xdd to be independent
of Xwd(i), ∀i. This leads to the following relationship between
the variances:

σ2(i) = σ2
dd + σ2

wd(i) (2)

where σ2(i), σ2
dd, and σ2

wd(i) are the respective variances of
X(i), Xdd, and Xwd(i).

Within-die variation is further broken down into system-
atic and random components, respectively, as Xwds(i) =
Xwds(xi, yi) and Xwdr(i)

Xwd(i) = Xwds(xi, yi) +Xwdr(i), i = 1, . . . , n (3)

where each of these components is itself a zero-mean Gaussian
RV. Systematic variations capture all location-dependent
within-die correlations, so that Xwds(xi, yi) and Xwdr(j) are
independent, ∀i, j, and Xwdr(i) and Xwdr(j) are independent,
∀i �= j. The following relationship can then be written for
within-die variance:

σ2
wd(i) = σ2

wds(xi, yi) + σ2
wdr(i) (4)

where σ2
wd(i), σ2

wds(xi, yi), and σ2
wdr(i) are the variances of

Xwd(i), Xwds(xi, yi), and Xwdr(i), respectively.

The problem clearly lies in knowing and managing the joint
distribution of the systematic variations. The covariance matrix
itself, which may contain an information pertaining to millions
of instances of a parameter on a given chip, is hard to estimate;
and even when it is available, numerical operations can become
extremely difficult. One way to express the systematic varia-
tions is to use the PCA [26] and write

Xwds(i) =
p∑

j=1

aijZj (5)

where Zj are independent standard normal RVs (Gaussians
with zero mean and unity variance), and p � n is the order of
the expansion. The RVs Zj correspond to underlying indepen-
dent unobservable factors. The value of p and the coefficients
aij represent the extent of correlation across the die. For exam-
ple, if p = 1, then the within-die spatial correlation coefficient
is one: There is a perfect correlation; a single underlying
RV Z1 determines the value of the systematic component of
Xwd all over the die. A p > 1 allows for less than perfect
correlation.

We will adopt the PCA expansion (5) as our “correlation
model” for the within-die component. At first glance, this
model appears hard to use because it seems to depend on knowl-
edge of the values of all the aij parameters. These coefficients
depend on the correlation structure of physical parameters on
the chip. In other words, a full PCA cannot be used to assess the
impact of statistical variations on the design until after layout
when the spatial locations of devices on chip are known. Even
then, it is not clear how one would compute them from process
data. A brute-force PCA over the millions of instances of a
parameter on a chip would be impractical. However, without
any explicit knowledge of the correlations, we will capitalize
on the following property that relates the PCA coefficients to
the parameter variances:

σ2
wds(xi, yi) =

p∑
j=1

a2
ij . (6)

Using this property, and without knowing the specifics of
systematic variations, including die-level trends and layout in-
formation, we will obtain lower/upper bounds on the parametric
yield that require only: 1) the order p of the PCA expansion, and
2) representative values (maximum, minimum, average) of the
variance terms given previously.

III. TIMING MODEL

This section shows how a model for circuit timing can be
built to conform with the generic model discussed in Section II
and whose characteristics are obtainable from process files.
Working toward the delay of a multistage generic critical path,
we start with the physical variations of transistor threshold
voltage and channel length. Physical variations lead to stage-
delay variations, where a stage consists of a gate with fan-
out interconnect, and we discuss interconnect-level variations.
Finally, stage-delay variations are used to characterize path-
delay variations as a generic parameter.
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A. Device Variations

In deep submicrometer CMOS, process-induced delay vari-
ations are mainly due to variations in the MOSFET threshold
voltage (Vt) and effective channel length (Le). Due to short-
channel effects, Vt may decrease with decreasing Le (the Vt

roll-off [3] effect), so that Vt and Le are not independent
variables. We assume that for small Le variations, denoted by
L, threshold voltage roll-off is linear with channel-length varia-
tion, and we express Vt as the sum of a linear term that depends
on Le (K∆Le, where K > 0) and another term representing
variations of Vt which are independent of Le, denoted by V .
With E[·] being the expected (or mean) value operator, we can
express Vt and Le of transistor i as follows:

Le(i) = E [Le(i)] + L(i) (7)

and

Vt(i) = E [Vt(i)] +KL(i) + V (i). (8)

We are interested in the RVs L(i) and V (i), which are assumed
to be zero-mean Gaussian and independent of each other. We
can thus break them up in the usual manner as

L(i) =Ldd + Lwds(xi, yi) + Lwdr(i)

V (i) =Vdd + Vwds(xi, yi) + Vwdr(i). (9)

(Of course, here, Vdd is the die-to-die component of V (i), and
not the supply voltage.) The variances of L(i) and V (i), as well
as the variance of their components, can be known from the
technology files

σ2
L(i) =σ2

dd,L + σ2
wds,L(xi, yi) + σ2

wdr,L(i) (10)

σ2
V (i) =σ2

dd,V + σ2
wds,V (xi, yi) + σ2

wdr,V (i). (11)

B. Gate Delay

We assume that, for a given chip design in a given tech-
nology, one can define a “nominal” representative logic gate,
with appropriate output loading and input slope. For reasons
that will become clear, this gate should be typical of gates on
critical paths in this technology. Due to the nonlinearity of the
relationship between gate delay and transistor parameters, the
mean value of gate delay does not necessarily coincide with
its nominal value [the value corresponding to the case when
L(i) = 0 and V (i) = 0]. Furthermore, the distribution of gate
delay would not necessarily be Gaussian. Simple experiments
with HSPICE, however, reveal that this nonlinearity is not
strong, at least not in 0.13-µm CMOS. Therefore, we will
ignore these complications and simply assume that gate delay
is linearly dependent on transistor parameter variations, so that
it becomes a Gaussian variable with mean equal to its nominal
value. Another consequence of this linearity assumption is that,
ifD(i) is the deviation of the delay of logic gate i from its mean
(nominal) delay, then

D(i) = α0L(i) + β (V (i) +KL(i)) (12)

where α0 and β are sensitivity parameters, with suitable units,
that one can easily obtain from circuit simulation of a repre-
sentative logic gate. Notice that, in general, α0 > 0 and β > 0.
(For a specific industrial 0.13-µm process, we have found
that for a minimum-sized inverter, α0 ≈ 0.857 ps/nm and β ≈
17.3 ps/V.) Let s1 = α0 +Kβ and let s2 = β. Then, we have

D(i) = s1L(i) + s2V (i). (13)

Now, we define the following:

Ddd = s1Ldd + s2Vdd

Dwds(xi, yi) = s1Lwds(xi, yi) + s2Vwds(xi, yi)

Dwdr(i) = s1Lwdr(i) + s2Vwdr(i). (14)

Clearly, Ddd, Dwds(xi, yi), and Dwdr(i) represent die-to-die,
WDS, and WDR variations of gate delay, corresponding to the
parametric model discussed in Section II. As a result, we can
define the three components of the total gate-delay variance
σ2

dd,D, σ2
wds,D(xi, yi), and σ2

wdr,D(i) and compute them from
the variations of channel length and threshold voltage using
(10), (11), and (14).

C. Interconnect Delay

Gate delay is one factor in total path delay, the other be-
ing interconnect. We extend the previous analysis to include
interconnect-delay variations by considering each stage on a
path to comprise a gate with corresponding fan-out intercon-
nect. Let τ(i) be the delay of the interconnect line in stage i.
Similar to a generic gate, we assume that each stage can be
characterized by a nominal interconnect delay τ0(i) that is the
same for all stages, i.e., τ0(i) = τ0, ∀i. In a simple model,
τ(i) = R(i)C(i), where R(i) and C(i) are, respectively, the
resistance and capacitance of line i [27]. If ρ is the metal
resistivity and εox is the oxide permittivity, then

R(i) =
ρl(i)

w(i)t(i)
C(i) =

εoxw(i)l(i)
TILD(i)

where l(i) and w(i) are, respectively, the metal length and
width, and t(i) and TILD(i) are, respectively, the thicknesses
of the interconnect and the interlayer dielectric (ILD) oxide, in
stage i. Then, we have

τ(i) =
ρεoxl(i)2

t(i)TILD(i)
. (15)

Denote by t0 and TILD,0 the nominal values of metal and ILD
thicknesses and let t(i) = t0 + ∆t(i) and TILD(i) = TILD,0 +
∆TILD(i). Neglecting the second-order term ∆t(i)∆TILD(i),
we write

τ(i) ≈ ρεoxl(i)2

t0TILD,0 + TILD,0∆t(i) + t0∆TILD(i)

=
τ0

1 + ∆t(i)
t0

+ ∆TILD(i)
TILD,0

. (16)
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Let ∆τ(i) = τ(i) − τ0, then

∆τ(i)
τ0

=
−
(

∆t(i)
t0

+ ∆TILD(i)
TILD,0

)
1 +
(

∆t(i)
t0

+ ∆TILD(i)
TILD,0

) . (17)

Let u = ∆t(i)/t0 + ∆TILD(i)/TILD,0. Assuming small (rela-
tive) variations in ILD and metal thicknesses, |u| � 1, which
leads to

∆τ(i) ≈ − τ0
t0

∆t(i) − τ0
TILD,0

∆TILD(i)

= − s3∆t(i) − s4∆TILD(i). (18)

Supposing zero-mean Gaussian deviations in ILD and metal
thickness, we consider each to be a generic parameter
as in Section II, with corresponding variation components
(TILD,dd, TILD,wds, TILD,wdr) and (tdd, twds, twdr) and their
respective variance triplets (σ2

TILD,dd, σ
2
TILD,wds, σ

2
TILD,wdr) and

(σ2
t,dd, σ

2
t,wds, σ

2
t,wdr).

While advanced interconnect variation models have been
developed [28]–[30] and may depend on several physical para-
meters, we assume that in any case, it is possible to express the
interconnect-delay variation as a linear summation of physical
parameters Pi, in the form

∆τ(i) ≈
∑

±siPi.

For simplicity, the analysis to follow includes only variations in
ILD and metal thicknesses, as given in (18).

D. Stage Delay

Considering each stage to represent a gate with correspond-
ing fan-out interconnect, we can now express stage-delay devi-
ation S(i) as follows:

S(i)=D(i)+∆τ(i)

= [s1Ldd+s2Vdd−s3tdd−s4TILD,dd]

+[s1Lwds(xj , yj)+s2Vwds(xj , yj)

− s3twds(xj , yj)−s4TILD,wds(xj , yj)]

+[s1Lwdr(i)+s2Vwdr(i)−s3twdr(i)−s4TILD,wdr(i)] .

(19)

The die-to-die, WDS, and WDR components of the variations
in stage delay are readily identifiable from (19). Stage delay
therefore conforms with the model for a generic parameter in
Section II, in the sense that it has three variance components
which can be computed from physical parameter variances,
with the die-to-die component being the same for all stages and
the within-die random components of two distinct stages being
statistically independent.

E. Path Delay

Consider a path with a number N of logic stages, represen-
tative of a circuit’s typical critical paths, which we will refer to
as a generic critical path. Assume that path j comprises stages
1, . . . , N and let DN (j) denote the deviation of the delay of
path j from its mean (nominal) value. Then

DN (j) =
N∑

i=1

S(i)

=NSdd +
N∑

i=1

Swds(xi, yi) +
N∑

i=1

Swdr(i) (20)

where Sdd, Swds(xi, yi), and Swdr(i) are the die-to-die, WDS,
and WDR variations in stage delay, derived in (19).

The gates on a path exist at various different locations. We
make the simplifying assumption that as far as physical location
on the die, for purposes of computing the within-die-systematic
component, all gates (and stages) on path j share the same
“nominal” coordinates (xj , yj), so that

DN (j) = NSdd +NSwds(xj , yj) +
N∑

i=1

Swdr(i). (21)

This approximation is motivated by the expectation that gates
on a critical path should be nearby on the die, and differences
between their position-dependent within-die-systematic varia-
tions should be minor. We note that this may no longer be true
in latch-based designs that make use of a cycle stealing, and
where critical paths may span large distances.

Using (19), we arrive at the following relationship between
path-delay and physical parameter variations:

DN (j) = [Ns1Ldd +Ns2Vdd −Ns3tdd −Ns4TILD,dd]

+ [Ns1Lwds(xj , yj) +Ns2Vwds

− Ns3twds(xj , yj) −Ns4TILD,wds(xj , yj)]

+

[
s1

N∑
i=1

Lwdr(i) + s2

N∑
i=1

Vwdr(i)

− s3

N∑
i=1

twdr(i) − s4

N∑
i=1

TILD,wdr(i)

]
. (22)

We can readily identify the die-to-die, WDS, and WDR compo-
nents of path delay from the previous expression. It can be seen
that the systematic component is the same for all the considered
generic critical paths. Assume that the considered paths j =
1, 2, . . . are disjoint, then the random components of path delay
become strictly independent from one another and the structure
of the generic parameter introduced in Section II is preserved.
In the sequel, we will consider that path delay conforms with
our generic parameter model, with three variance components
related to physical parameters and obtained from process data,
and such that its die-to-die component is the same for all
instances (on the same die), its WDR components are inde-
pendent for different instances, and its WDS components are
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spatially correlated due to WDS physical parameter variations.
For practical purposes, the assumption of disjoint paths is not
restrictive and is needed to ensure that random components
of path delay remain strictly uncorrelated. Recall that we are
looking at generic paths which are representative of all the
chip’s critical paths, and the number of such disjoint paths is
effectively large enough so that any statistics inferred on such a
disjoint group reflect those of the critical paths collectively.

Based on the independence relations between the terms in
(22), we now have expressions for the variance triplet of path
delay, so that we can write

σ2
DN

(j) = σ2
dd,DN

+ σ2
wds,DN

(xj , yj) + σ2
wdr,DN

(j) (23)

where

σ2
dd,DN

=N2s21σ
2
dd,L +N2s22σ

2
dd,V +N2s23σ

2
dd,t +N2s24σ

2
dd,TILD

(24)

σ2
wds,DN

(xj , yj)

=N2s21σ
2
wds,L(xj , yj) +N2s22σ

2
wds,V (xj , yj)

+N2s23σ
2
wds,t(xj , yj) +N2s24σ

2
wds,TILD

(xj , yj) (25)

σ2
wdr,DN

(j)

=Ns21σ̂
2
wdr,L(j) +Ns22σ̂

2
wdr,V (j)

+Ns23σ̂
2
wdr,t(j) +Ns24σ̂

2
wdr,TILD

(j) (26)

where σ̂2
wdr,L(j), σ̂2

wdr,V (j), σ̂2
wdr,t(j), and σ̂2

wdr,TILD
(j) are

the average variances of the within-die random variations of
the corresponding physical parameters taken over path j. These
path averages may be approximated by averages over the whole
die, so that we write

σ̂2
wdr,V (j) ≈ σ̂2

wdr,V

σ̂2
wdr,L(j) ≈ σ̂2

wdr,L

σ̂2
wdr,t(j) ≈ σ̂2

wdr,D

σ̂2
wdr,TILD

(j) ≈ σ̂2
wdr,TILD

.

In turn, we can approximate the variance of delay on path j due
to WDR parametric variations as a die-level average variance,
in other words

σ2
wdr,DN

(j) ≈ σ̂2
wdr,DN

. (27)

As usual, we define σ̂2
wdr,DN

to be the average value of
σ2

wdr,DN
(j) across the die. An important observation from

(24)–(26) is that, unlike the two other components, WDR vari-
ance grows with N , not N2. This gives a preliminary insight on
the effect of random variations on path delay “averaging out,”
or becoming significantly less manifest than other variation
components over paths with a large number of stages. We will
return to this point in the subsequent analysis.

IV. PARAMETRIC AND TIMING YIELD

A key component of our approach is the application of the
generic parameter yield model developed previously to path
delay, and using that to compute chip timing yield. The reason
we can do this is because, as shown, we can express the variance
of path delay, for a large collection of critical generic paths, as a
standard variance model with die-to-die, within-die systematic
(WDS), and within-die random (WDR) components. With this,
we can effectively talk about delay (be it of a gate, a stage, or a
path) as being a “parameter.”

Throughout this paper, we define the yield of a certain
parameter X as the probability of satisfying a constraint on
the maximum value of the parameter on a chip (with the
understanding that the results to follow can be extended to cover
minimum values and interval constraints)

Y (x) = P {X(i) ≤ x, i = 1, 2, . . . , n} (28)

where n is the number of instances of that parameter on the
die. We write Y (x) to refer to the yield of a generic parameter
and denote specifically by Y(d) a timing yield. In the following
sections, we will build our way gradually to a full model of chip
timing yield by first investigating the timing yield when only
die-to-die variations are considered, then when only die-to-die
and WDR variations are considered, before finally presenting
the full model. This improves the clarity of the results, and also
allows us to highlight interesting results that arise when only
certain variation components are dominant.

V. DIE-TO-DIE YIELD

We start by considering only die-to-die variations.

A. Generic Parameter

We define the die-to-die yield of a generic parameter X as

Ydd(x) = P{Xdd ≤ x} = Φ
(

x

σdd

)
(29)

where P{·} is a probability, Φ(·) is the cumulative distribution
function (cdf) of a standard normal RV, and σdd is the variance
of the die-to-die component of X . Since Xdd(i) = Xdd, ∀i, the
die-to-die yield is governed by a single RV.

B. Timing Yield

The simple expression in (29) can be directly used to estimate
the die-to-die timing yield Ydd(d), replacing σdd by σdd,DN

,
obtained from (24). Fig. 1 plots the values of die-to-die timing
yield versus the timing margin d, where d is normalized in
numbers of standard deviations σ = σdd,DN

.
Now, suppose that a value Y is desired for the die-to-die

timing yield. Then, we have

d =Y−1
dd (Y)

=Φ−1(Y)σdd,DN
. (30)

We can interpret (30) in two ways. Suppose that d0 is the
critical path delay when the nominal process files are used,
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Fig. 1. Timing yield when considering die-to-die variations alone.

i.e., excluding process variations. If the nominal timing mar-
gin (e.g., Tclk − d0, where Tclk is the clock period) exceeds
Y−1

dd (Y), then the timing yield Y is met.
Alternatively, if a corner-case process file is set to produce

a delay of d0 + Y−1
dd (Y) while still meeting the timing con-

straints, then the die-to-die yield Y is achieved. Therefore,
we refer to plots such as Fig. 1 as yield-margin curves. For
example, such a corner file can be built simply by allowing a
delay deviation of Y−1

dd (Y)/N at each of the N stages of the
critical path. In turn, stage physical parameters can be modified
so that stage delay deviates by this amount. S(i) being the delay
of stage i, we let

Y−1
dd (Y)
N

=S(i), i = 1, . . . , n

= s1L(i) + s2V (i) − s3∆t(i) − s4∆TILD(i)

= Φ−1(Y)
σdd,DN

N
(31)

where the last equality follows from (30). This gives a range
of possible settings of the physical parameters that achieve a
timing deviation of Y−1

dd (Y) over N -stage paths. For simplicity
of illustration, if we impose on our corner-case files equal
relative deflection (i.e., deviation from the mean or nominal
value) of the physical parameters, i.e.

L(i)
σdd,L

=
V (i)
σdd,V

= −∆t(i)
σdd,t

= −∆TILD(i)
σdd,TILD

= δ, ∀i (32)

then

δ =
Y−1

dd (Y)/N
s1σdd,L + s2σdd,V + s3σdd,t + s4σdd,TILD

(33)

is the value of the process file setting which, when applied to all
the parameters, causes the right amount of path-delay deflection
Y−1

dd (Y) to be created so as to “test” the circuit for timing
yield Y .

It is of interest to note the following. Recall from (24) that
the die-to-die path-delay variance is as follows:

σ2
dd,DN

= N2
(
s21σ

2
dd,L + s22σ

2
dd,V + s23σ

2
dd,t + s24σ

2
dd,TILD

)
.

(34)

Since the square of the sum of positive quantities is larger than
the sum of their squares, then

σdd,DN
≤ N(s1σdd,L + s2σdd,V + s3σdd,t + s4σdd,TILD).

(35)

From (30) and (33), it then follows that

δ ≤ Φ−1(Y). (36)

Thus, when equal deflections of the physical parameters are
assumed, then δ, for a desired die-to-die yield Y , is at most
Φ−1(Y), irrespective of the specific variance values.

In order to get a sense of typical values for δ, assume for
simplicity that path-delay variance is equally divided among
channel length, threshold voltage, dielectric thickness, and wire
thickness, that is

s21σ
2
dd,L = s22σ

2
dd,V = s23σ

2
dd,t = s24σ

2
dd,TILD

= s2

and suppose a die-to-die yield of 95% is desired. From Fig. 1,
we get that Y−1

dd (95%) = 1.6σdd,DN
. Then, each stage delay

may be set to Y−1
dd (95%)/N = 1.6σdd,DN

/N = 3.2s. Impos-
ing equal relative deflection in interconnect and device parame-
ters, therefore using (33), yields

δ =
3.2s
4s

= 0.8. (37)

To sum up, δ defines a “corner-case” file for which the
circuit should be tested for timing-constraint violations. If the
circuit satisfies the timing constraints with this δ setting, then it
would have a die-to-die timing yield of Y . Observe that this file
setting is not unique in the sense that any corner-case file which
produces a delay deviation of Y−1

dd (Y) around the nominal delay
effectively serves the same purpose. Our particular derivation
of the case file simply imposed equal stage timings and similar
relative deviation in transistor physical parameters. We refer to
these corners (defined by a δ value) that lie between device
extremes and that could be used to design for a certain target
yield as virtual corners.

VI. YIELD CONSIDERING DIE-TO-DIE

AND WDR VARIATIONS

In this section, we consider only the die-to-die and WDR
variations.

A. Generic Parameter

We start by considering a generic parameter X . Let
Ydd,wdr(x) be the yield of X considering die-to-die and WDR
variations of X . If n is the number of instances of X on the
chip, then

Ydd,wdr(x) =P{Xdd +Xwdr(i) ≤ x, i = 1, . . . , n}
=P{Xwdr(i) ≤ x−Xdd, i = 1, . . . , n}. (38)

We now recall a result from a basic probability theory that
will be used repeatedly in this paper. Let A be an arbitrary event
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andX be an RV with a probability density function (pdf) fX(·).
Then, we have (see [31, p. 85])

P{A} =

+∞∫
−∞

P{A|X = x}fX(x)dx. (39)

This result is simply an extension to the continuous case of the
simple fact that P{A} = P{A|B} · P{B} + P{A|B} · P{B},
where B is another event. Applying (39) to (38) and denoting
by fXdd(·) the pdf of Xdd, give

Ydd,wdr(x)

=

+∞∫
−∞

P {Xwdr(i) ≤ x−Xdd, ∀i|Xdd = z} fXdd(z)dz

=

+∞∫
−∞

P {Xwdr(i) ≤ x− z, ∀i|Xdd = z} fXdd(z)dz

=

+∞∫
−∞

P{Xwdr(i) ≤ x− z, ∀i}fXdd(z)dz (40)

where the transition between the second and third equation in
(40) is due to the statistical independence of Xdd and Xwdr(i),
∀i. If φ(·) denotes the pdf of the standard normal distribution,
then fXdd(z) = φ(z/σdd)/σdd. Letting z0 = z/σdd and using
the statistical independence of Xwdr(i) and Xwdr(j) for i �= j,
we can write (40) as

Ydd,wdr(x) =

+∞∫
−∞

n∏
i=1

Φ
(
x− z0σdd

σwdr(i)

)
φ(z0)dz0. (41)

We now introduce another basic result from the probability
theory that will be used repeatedly in this paper, which is
commonly referred to as the law of the unconscious statistician.
If X is an RV with pdf fX(·) and if g(·) is a function, then, (see
[31, p. 106]) the mean of g(X) can be written as

E [g(X)] =

+∞∫
−∞

g(x)fX(x)dx. (42)

Based on this, and if we define Z0 to be an independent1

standard normal RV, then (41) can be written as

Ydd,wdr(x) = E

[
n∏

i=1

Φ
(
x− Z0σdd

σwdr(i)

)]
. (43)

We have so far assumed the parameter variations to be
Gaussian, which technically allows the variations to extend to
±∞, allowing for nonphysical situations. In reality, one would
expect the process variations to be bounded by some upper and

1Throughout this paper, whenever an individual RV is described as “indepen-
dent,” this means that it is independent of all other RVs under consideration.

lower bounds, as process tolerances fall within a certain range.
If a device somewhere deviates by larger amounts, then chances
are, there is a serious problem with that die, and that it would
be lost due to other reasons, that is, other than timing yield.
Therefore, when estimating a parametric yield, we truncate nor-
mal variations at ±kσ, where k is an arbitrary positive number
and σ is the standard deviation of the untruncated distribution.
For simplicity of presentation, we apply the truncation only
to the within-die random variations, since this is where the
nonphysical tails of the normal distribution have a big effect
on the yield estimates because the cdfs of the WDR variations
are multiplied n times, as can be observed in (43).

We affect the truncation of the normal distribution by condi-
tioning it over the interval [−kσ,+kσ], leading to the so-called
truncated normal distribution. Let Φk(·) denote the cdf of the
standard normal distribution truncated at ±k, so that

Φk(x) =




0, x < −k
Φ(x)−Φ(−k)
Φ(k)−Φ(−k) , −k ≤ x ≤ k

1, x > k.

It can be easily verified that if X is a zero-mean Gaussian RV,
with standard deviation σ and cdf Φ(x/σ), then conditioning
X on being in the interval [−kσ,+kσ] yields the cdf Φk(x/σ).
We now write (43) as follows:

Ydd,wdr(x) = E

[
n∏

i=1

Φk

(
x− Z0σdd

σwdr(i)

)]
. (44)

This can be easily computed by numerical integration using
the integral form (41), with Φk(·) used in place of Φ(·).
Fig. 2 shows the resulting yield-margin curves, where we have
assumed for simplicity that σwdr(i) is constant across the die:
σwdr(i) = σwdr, we have assumed that σ2

dd = σ2
wdr, and we

define σ2 = σ2
dd + σ2

wdr, so that σdd = σwdr = σ/
√

2. The
values on the x axis are normalized in multiples of this σ.
The figure includes yield plots for three different values of n,
each for both cases of untruncated random variations and
random variations truncated at ±3σwdr. Effectively, truncating
the distribution amounts to cutting off its “tail,” leading to
less pessimistic yield estimates, especially for large n: the
n = 1e+ 06 and n = 1e+ 08 plots are indistinguishable.
Comparing Fig. 1 with Fig. 2, we can readily contrast the level
of yield loss when all the variance is taken to be die to die with
that when the variance is split (equally, in our case) between
die-to-die and WDR variations. For example, if the variation
is attributed only to die-to-die effects, then we need to budget
1.6σ to meet a yield of 95%. Considering the WDR variations
to be on a par with the die-to-die variations, the same yield level
is reached only at 3.2σ (for very large n and taking truncated
WDR variations), that is, the required margin doubles.

B. Timing Yield

Since we considered the path delay to conform to our
generic parameter model (see Section III-E), then the results of
Section IV-A can now be put to use in order to estimate the
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Fig. 2. Comparison of parametric yield when using untruncated and truncated
distributions.

timing yield Ydd,wdr(d). Applying (44) to derive an expression
for timing yield, and using (27), we get

Ydd,wdr(d) = E

[
Φn

k

(
d− Z0σdd,DN

σ̂wdr,DN

)]
. (45)

For simplicity, we assume that the variance of each physi-
cal parameter is equally split between die-to-die and WDR
components

σ2
dd,L = σ̂2

wdr,L = σ2
L/2

σ2
dd,V = σ̂2

wdr,V = σ2
V /2

σ2
dd,t = σ̂2

wdr,t = σ2
t /2

σ2
dd,TILD

= σ̂2
wdr,TILD

= σ2
TILD

/2.

These and similar simplifying assumptions, made throughout
this paper, are for illustration purposes only and do not affect
the generality of the approach. From (24) and (26), it follows
that σ2

dd,DN
= Nσ2

wdr,DN
(j). Then, using (23) and (27), we

can write

σ2
dd,DN

= Nσ̂2
wdr,DN

=
N

N + 1
σ2

DN
(46)

where we have dropped the index j from σ2
DN

(j) for simplicity,
and because we have used the die average σ̂2

wdr,DN
in the

equation. Plugging (46) into (45), we get

Ydd,wdr(d) = E

[
Φn

k

(√
N + 1

d

σDN

−
√
NZ0

)]
. (47)

Fig. 3 plots Ydd,wdr(d) (with k = 3) for different values of
N and n. The yield-margin curves clearly show the impact
of random variations on total path delay diminishing with the
number of path stages.

We may follow the same approach as in Section V to com-
pute the timing margins and derive corner-case files in order
to check the circuit-timing yield. Once again, a timing margin
of Y−1

dd,wdr(Y) is to be left when simulating the circuit with
nominal files, to get a desired yield Y . The value of Y−1

dd,wdr(Y)

Fig. 3. Timing yield considering die-to-die and WDR variations.

can be obtained from plots such as those in Fig. 2. For exam-
ple, if N = 9 and n = 1e+ 08, and a 95% yield is desired,
then a margin of 2.5σDN

is to be budgeted (compared with
1.6σDN

when variations are die to die only). We can equally
derive a corner-case file that checks for yield Y . Following the
discussion in Section V, we let each stage delay deviate by
Y−1

dd,wdr(Y)/N , so that

Y−1
dd,wdr(Y)

N
= s1L(i)+s2V (i)−s3∆t(i)−s4∆TILD(i), ∀i.

(48)

We may further impose a proportional deflection of channel
length, threshold voltage, wire thickness, and dielectric thick-
ness by setting

L(i)
σL

=
V (i)
σV

=
−∆t(i)
σt

=
−∆TILD(i)

σTILD

= δ, ∀i

leading to

δ =
Y−1

dd,wdr(Y)/N
s1σL + s2σV + s3σt + s4σTILD

. (49)

As before, this value of δ specifies a virtual corner for the
circuit device and interconnect that achieves a yield of Y (if
only die-to-die and WDR variations are considered) when it
meets the design timing constraints. To compare the new virtual
corner with that in (37), we assume again that the device and
interconnect parameters have the same effect on path delay

s21σ
2
L = s22σ

2
V = s23σ

2
t = s24σ

2
TILD

= s2

so that σDN
=

√
2Ns(1 + 1/N)1/2 and, withN = 9 as before,

we arrive at

δ =
2.5

√
2Ns(1 + 1/N)1/2

4Ns
= 0.93 (50)

which is more than 16% larger than the value obtained in (37),
where all variations were considered die to die.
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VII. FULL PARAMETRIC YIELD MODEL

We now generalize the results to include all three com-
ponents of the variations of the parameter X . The focus in
this section is on a generic parameter, which conforms with
the model of Section II. The application to timing yield will
be done in the next section. Recall that the yield of X was
defined as

Y (x) = P {X(i) ≤ x, i = 1, 2, . . . , n} (51)

where X(i)=Xdd+Xwds(xi, yi)+Xwdr(i). Because Xdd∼
N (0, σ2

dd) (this notation means that the RV is normally dis-
tributed with mean 0 and variance σ2

dd) is independent of
Xwds(xi, yi) and of Xwdr(i), ∀i, then Z0 = Xdd/σdd is an
independent standard normal RV (mean 0, variance 1). With
this notation, we write Y (x) as

Y (x) = P {σddZ0 +Xwds(xi, yi) +Xwdr(i) ≤ x, ∀i} .
(52)

Applying (39) to (52), and because Z0 is independent of all
other RVs, then

Y(x)=

+∞∫
−∞

P{Xwdr(i)+Xwds(xi, yi)≤x−σddz0,∀i}φ(z0)dz0.

(53)

A. Yield Upper Bound

We start by stating the proof, in the multidimensional case,
of a well-known lemma which will be useful in establishing an
upper bound on parametric yield.
Lemma 1: Let X1, . . . , Xn be nonnegative RVs. Then,

E[
∏n

i=1 Xi] ≤
∏n

i=1(E[Xn
i ])1/n.

Proof: Let u = [u1, u2, . . . , un] be a real vector. If
ui ≥ 0, then the function f(u) =

∏n
i=1 u

1/n
i is concave

(see [32, p. 74]). Thus, g(u) = −f(u) is convex, and if
U1, . . . , Un are nonnegative RVs, then by Jensen’s inequality
(see [32, p. 77]), we have that E[g(u)] ≥ g(E[u]) so that
E[
∏n

i=1 U
1/n
i ] ≤

∏n
i=1(E[Ui])1/n. The desired result follows

by letting Xi = U
1/n
i . �

Let fXwds(·) be the joint pdf of the n RVs Xwds(xi, yi).
Using the independence of Xwdr(i), it can be shown that (53)
leads to

Y (x) =

+∞∫
−∞

[ +∞∫
−∞

. . .

+∞∫
−∞︸ ︷︷ ︸

n

n∏
i=1

Φk

(
x− σddz0 − xi

σwdr(i)

)

× fXwds(x1, . . . , xn)dx1, . . . , dxn

]
φ(z0)dz0

=E

[
n∏

i=1

Φk

(
x− σddZ0 −Xwds(xi, yi)

σwdr(i)

)]
(54)

where the second equality is due to (42).

Each Φk(·) term in the above product can be considered a
nonnegative RV in its own right. Let Z1 be an independent
standard normal RV. Applying Lemma 1, we obtain

Y (x) ≤
n∏

i=1

(
E

[
Φn

k

(
x− σddZ0 − σwds(xi, yi)Z1

σwdr(i)

)])1/n

.

(55)

The computation of this upper bound depends on the values
of within-die variances for different locations on a die. When
the values of σwds(xi, yi) and σwdr(i) are known, then the
right-hand side of the inequality in (55) can be calculated.
In a more realistic situation, however, the values of system-
atic and WDR variance components are not determined at all
locations, but rather, we expect to know, from process data,
representative values of these variances, such as their average,
minimum, and maximum. In this case, one can show that the
above upper bound can be adequately estimated via an integral
expansion of (55) using only the average and extreme variance
values [24].

As an interesting special case, assume there is a constant
value of the variance σ2

wdr(i) across the die, equal simply to
σ2

wdr, and similarly assume that σ2
wds(xi, yi) = σ2

wds, ∀i. If
Y1(x) is the upper bound on Y (x), given by (55), then it
simplifies to

Y1(x) = E

[
Φn

k

(
x− σddZ0 − σwdsZ1

σwdr

)]
. (56)

This can be evaluated by numerical integration. To illustrate,
consider the special case where σ2

dd = 2σ2
wds = 2σ2

wdr and let
σ2 = σ2

dd + σ2
wds + σ2

wdr be the total variance, then the yield
upper bound is given by the simpler expression

Y1(x) = E

[
Φn

k

(
2x
σ

−
√

2Z0 − Z1

)]
. (57)

The computation of Y1(x), involving a single double integration
in this case, is fairly simple. For the illustrated case, this
integration may be performed by affecting a change of vari-
ables: u = Φ(z0) and v = Φ(z1), so that

Y1(x) =

1∫
0

1∫
0

Φn
k

(
2x
σ

−
√

2Φ−1(u) − Φ−1(v)
)
dudv. (58)

Fig. 4 plots this yield upper bound versus x, for k = 3.
For comparison, we show the yield estimates when all the
within-die variations are taken as random. The plots illustrate
the potential for yield underestimation when within-die vari-
ations are considered to be entirely random. In our exam-
ple, a yield of 95% may be reached at about 2.9σ (for n =
1e+ 08) when accounting for systematic variations, while for
the same deviation, random-only variations limit the yield to
about 86%.
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Fig. 4. Upper bound on yield when considering die-to-die and both types of
within-die variations.

B. Yield Lower Bounds

Yield lower bounds are more useful. Recalling the pth-
order PCA expansion of Xwds(xi, yi) given in (5), we start by
defining the RV Qp as follows:

Qp =



Z1 ∼ N (0, 1) p = 1(

p∑
j=1

Z2
j

)1/2

⇒ Q2
p ∼ χ2

p p > 1

where N (0, 1) denotes the standard normal distribution and χ2
p

denotes the chi-square distribution with p degrees of freedom
[31]. For p = 1, we can write

Xwdr(i) +Xwds(xi, yi) =Xwdr(i) + ai1Z1

=Xwdr(i) + σwds(xi, yi)Q1. (59)

For p > 1, by Cauchy’s inequality [31], we have

Xwdr(i) +Xwds(xi, yi)

= Xwdr(i) +
p∑

j=1

aijZj

≤ Xwdr(i) +


 p∑

j=1

a2
ij


1/2 p∑

j=1

Z2
j


1/2

= Xwdr(i) + σwds(xi, yi)Qp (60)

where we used (6) to introduce σwds(xi, yi).
Therefore, for a ∈ R and i = 1, . . . , n, Xwdr(i) +

σwds(xi, yi)Qp ≤ a is a sufficient condition for Xwdr(i) +∑n
j=1 aijZj ≤ a, ∀p, and a necessary condition as well when

p = 1. Define

Ywd,0(a) = P {Xwdr(i) + σwds(xi, yi)Qp ≤ a, ∀i} .

Recalling (53) and using the PCA expansion of Xwds(xi, yi),
we can write

Y (x)=

+∞∫
−∞

P


Xwdr(i)+

p∑
j=1

aijZj ≤x−σddz0,∀i


φ(z0)dz0

≥
+∞∫

−∞

Ywd,0(x−σddz0)φ(z0)dz0 (61)

where the inequality is obtained based on (60), and where the
inequality reduces to an equality for p = 1.

Notice that Ywd,0(a) can be written as

Ywd,0(a) = P
{
Qp ≤ min

∀i

(
a−Xwdr(i)
σwds(xi, yi)

)}
. (62)

Consider each RV

Mi =
a−Xwdr(i)
σwds(xi, yi)

. (63)

Each of these RVs is independent, and has a mean of
a/σwds(xi, yi) and a variance of σ2

wdr(i)/σ
2
wds(xi, yi). Let RV

M denote the minimum

M = min
∀i

(
a−Xwdr(i)
σwds(xi, yi)

)
(64)

and let FM (·) and fM (·), respectively, be the cdf and pdf of
M . Considering that Xwdr(i) is a truncated normal with the cdf
Φk(·) given earlier, it can easily be shown that

FM (y) = 1 −
n∏

i=1

Φk

(
a− σwds(xi, yi)y

σwdr(i)

)
. (65)

Let fQp
(·) denote the pdf of Qp, then, making use of the fact

that Qp and M are independent, we can express Ywd,0(a) as

Ywd,0(a) =P{Qp ≤ M}

=

+∞∫
−∞

+∞∫
q

fM (y)fQp
(q)dydq

=

+∞∫
−∞

(1 − FM (q)) fQp
(q)dq

=E [1 − FM (Qp)]

=E

[
n∏

i=1

Φk

(
a− σwds(xi, yi)Qp

σwdr(i)

)]
(66)
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where we have made use, again, of the law of the unconscious
statistician (42) in the fourth line. Applying (66) to (61) and
making further use of (42) lead to

Y (x)≥Y0(x)=E

[
n∏

i=1

Φk

(
x− σddZ0 − σwds(xi, yi)Qp

σwdr(i)

)]
(67)

where Y0(x) is the desired yield lower bound, which can be
computed using the above expression. Notice that the inequality
reduces to an equality for p = 1.

As was the case with the upper bound, the previous expres-
sion for the yield lower bound depends on the variances at
different die locations, but a suitable integral expansion of (67)
can be derived to estimate a yield lower bound when only the
mean, maximum, and minimum values of within-die variances
are known [24]. As an interesting special case, assume there
is a constant value of the variance σ2

wdr(i) across the die,
equal simply to σ2

wdr, and similarly assume that σ2
wds(xi, yi) =

σ2
wds, ∀i, then the yield lower bound is given by the simpler

expression

Y0(x) = E

[
Φn

k

(
x− σddZ0 − σwdsQp

σwdr

)]
. (68)

This can be evaluated by numerical integration. To illustrate, we
consider the same special case as in Section VII-A. Let σ2

dd =
2σ2

wds = 2σ2
wdr and let σ2 = σ2

dd + σ2
wds + σ2

wdr be the total
variance, then

Y0(x) = E

[
Φn

k

(
2x
σ

−
√

2Z0 −Qp

)]
. (69)

Again, computation of Y0(x) in this example comes down
to a simple double integration, which may be done via a
straightforward change of variables. For p = 1, let u = Φ(z0)
and v = Φ(q). Then, (69) leads to

Y0(x) =

1∫
0

1∫
0

Φn
k

(
2x
σ

−
√

2Φ−1(u) − Φ−1(v)
)
dudv. (70)

For p > 1, and denoting by Fχ2
p
(·) the cdf of the χ2 distribution

with p degrees of freedom, let u = Φ(z0) and v = Fχ2
p
(q).

Then, the yield lower bound may be evaluated as

Y0(x) =

1∫
0

1∫
0

Φn
k

(
2x
σ

−
√

2Φ−1(u) −
√
F−1

χ2
p
(v)
)
dudv.

(71)

An important observation is due: When p = 1, meaning that
systematic variations are all perfectly correlated and can be ex-
pressed with only one principal component, then (57) and (69)
are identical. This means that the lower bound (70) becomes an
equality (rather than a bound on the yield), when p = 1.

Fig. 5 plots the yield lower bound curves for various values
of n and p. For comparison, we also show yield plots when
all the within-die variations are assumed random. Observe that

Fig. 5. Upper and lower yield bounds for (a) large n and (b) small n.

accounting for within-die variations as entirely random leads
to yield estimates that are somewhere between the lower and
upper bounds.

A crucial point in our results is that neither the upper nor
the lower bound requires any prior knowledge of the layout-
dependent within-die correlation. Instead, summary variance
information and an estimate of a sufficient number of principal
components to capture systematic parameter variations on a
chip are all that is needed. While early knowledge of the
detailed correlation functions is hard, estimating only the order
p of the PCA is clearly much easier. Specifically, we can
name three ways in which p can be estimated. First, based on
knowledge of the process, it may be possible to simply identify
a number of underlying independent factors that are responsible
for the systematic variations, such as specific equipment or
process steps. Second, one may associate each Zj with a certain
spatial location on the die, such as was done in [20]. Thus, if
the chip area is partitioned into, say, four quadrants, and if one
has some sense about distances over which the autocorrelation
functions die down, one may be able to make an estimation
of p. Third, and this may be the easiest approach, we can
collect process data relative to some parameter from various
locations across the die, and we use the PCA with different
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candidate values of p, until we find one that gives an accurate
decomposition. In any case, systematic variations generally
exhibit smooth trends across a given die [14], [15], often in
the form of a “slanted plane” [9], and we expect to be able
to capture the bulk of correlations in systematic within-die
variations with a small number p of principal components.

C. Yield Bounds Independent of n

It is noteworthy that we can further derive yield bounds
which are independent of n. While the analysis to follow can be
extended to the general case, we will, for clarity of presentation,
limit the discussion to some special cases. From (68), let

V =
x− σddZ0 − σwdsQp

σwdr
. (72)

We start with a decomposition of the yield expression using
conditional expected values, so that (68) gives

Y0(x) = E [Φn
k (V )|V ≥ k] × P{V ≥ k}

+E [Φn
k (V )|V < k] × P{V < k}. (73)

Since Φk(x) = 1 for x ≥ k, then the first conditional expec-
tation is 1. As for the second expectation, since V < 1, then
Φk(V ) < 1 and Φn

k (V ) → 0 for large n, which one would
expect to have in an integrated circuit. Therefore, the second
term can be neglected relative to the first, so that

Y0(x) ≈ P{σddZ0 + σwdsQp ≤ x− kσwdr}. (74)

The resulting (74) is most interesting. It gives the parametric
yield (lower bound) for a large ensemble of parameters with
a full statistical model, keeping in view the three variance
components. To simplify the notation, if we let

U =
x− kσwdr − σwdsq

σdd
(75)

then, (74) can be simplified as follows:

Y0(x) ≈
+∞∫
0

U∫
−∞

φ(z0)fQp
(q)dz0dq

=

+∞∫
0

Φ
(
x− kσwdr − σwdsq

σdd

)
fQp

(q)dq

=E

[
Φ
(
x− kσwdr − σwdsQp

σdd

)]
. (76)

Following the same steps, one can show that for large n, the
yield upper bound given in (56) can be expressed as

Y1(x) ≈ E

[
Φ
(
x− kσwdr − σwdsZ1

σdd

)]
. (77)

These equations can be computed by numerical integration. To
illustrate, we appeal once more to our illustrative special case.
Let σ2

dd = 2σ2
wds = 2σ2

wdr and let σ2 = σ2
dd + σ2

wds + σ2
wdr be

the total variance, then the previous equation simplifies to

Y0(x) ≈ E

[
Φ

(√
2x
σ

− k√
2
− Qp√

2

)]
(78)

and

Y1(x) ≈ E

[
Φ

(√
2x
σ

− k√
2
− Z1√

2

)]
. (79)

Plots of these two results are shown in Fig. 5. As expected, these
bounds are very tight; they are indistinguishable from the 1e6
and 1e8 curves in each group.

VIII. APPLICATION TO CIRCUIT TIMING

A. Yield-Margin Curves and Virtual Corners

We will now show how the results can be easily applied
in the context of timing-yield estimation and timing margin
budgeting. For each of the transistor channel length, transistor
threshold voltage, wire thickness, and ILD thickness, we as-
sume that, at all die locations, the die-to-die variance is equal to
the within-die variance, and WDS and WDR variances are also
equal. That is, ∀i, we let

σ2
dd,L =2σ2

wds,L(xi, yi) = 2σ̂2
wdr,L = σ2

L/2

σ2
dd,V =2σ2

wds,V (xi, yi) = 2σ̂2
wdr,V = σ2

V /2

σ2
dd,t =2σ2

wds,t(xi, yi) = 2σ̂2
wdr,t = σ2

t /2

σ2
dd,TILD

=2σ2
wds,TILD

(xi, yi) = 2σ̂2
wdr,TILD

= σ2
TILD

/2.

Applying the above with (24)–(26) gives the following rela-
tionship between the individual components of the path-delay
variance, ∀i

σ2
dd,DN

= 2σ2
wds,DN

(xi, yi) = 2Nσ̂2
wdr,DN

=
σ2

DN

1.5 + 0.5
N

.

Let Y0(d) and Y1(d) be the lower and upper bounds of timing
yield, respectively. Plugging the variance relationships into (76)
and (77) leads to

Y0(d) ≈E

[
Φ

(
d

σDN

√
1.5 +

0.5
N

− k√
2N

− Qp√
2

)]

Y1(d) ≈E

[
Φ

(
d

σDN

√
1.5 +

0.5
N

− k√
2N

− Z1√
2

)]
.

Plots of these bounds are shown in the yield-margin curves
of Fig. 6, for various values of p, with N = 9 and k = 3.
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Fig. 6. Timing-yield bounds.

The same analysis as before can be done to compute the timing
margins and corner file settings that check for yield, this time
incorporating all parameter variations. Suppose that each of
the four physical parameters requires in its representation three
principal components. From (22), path delay will be expanded
in terms of 12 principal components. Fig. 6 indicates that when
the circuit is simulated at nominal process conditions, a timing
margin of at most 4σDN

needs to be budgeted to achieve a
yield of 95%. We can also easily derive an appropriate file
setting by imposing a delay deviation of 4σDN

/N at each stage,
so that

4σDN

N
= s1L(i) + s2V (i) − s3∆t(i) − s4∆TILD(i), ∀i.

Now, let

L(i)
σL

=
V (i)
σV

=
−∆t(i)
σt

=
−∆TILD(i)

σTILD

= δ, ∀i

where δ is our virtual corner in this case. This leads to

δ =
4σDN

/N

s1σL + s2σV + s3σt + s4σTILD

.

To compare the resulting virtual corner with (37) and (50), we
make the same assumption that all four physical parameters
contribute equally to path-delay variance

s21σ
2
L = s22σ

2
V = s23σ

2
t = s24σ

2
TILD

= s2 (80)

so that (24)–(26) yield σDN
= 2sN(0.75 + 0.25/N)1/2. We

arrive at

δ =
4 × 2s× 9 × (0.75 + 0.25/9)1/2

9 × 4s
= 1.76

so that the circuit would need to be simulated (and its timing
checked) with transistors’ channel length and threshold-voltage
set at their 1.76σ point, and interconnect and wire-thickness set
at their −1.76σ point. Since s1 and s2, defined in (13), depend

on transistor sizing, the above provides a way in which δ can be
controlled by circuit optimization and/or process tuning.

B. Monte Carlo (MC) Simulations

We compare the yield bounds derived above with the yield-
margin curves obtained from MC simulations. The purpose
of the MC experiments is to check the validity of the pro-
posed yield bounds under arbitrary correlations of the physical
parameters on chip, since the bounds are meant to provide
conservative estimates of yield for any correlations.

The experimental setup was as follows: We first generate
a number of identical generic paths, each of a certain depth.
Both the number of paths and their depths are user specified.
The stages in each path are all similar and made of a generic
gate with generic fan-out interconnect. The sensitivities of
gate delay to channel length and threshold voltage are derived
from a 0.13-µm technology and are given as inputs in these
experiments (ignoring threshold voltage roll-off). The user also
specifies a nominal RC delay for the generic gate fan-out,
which is used to compute the sensitivities of interconnect delay
to metal and ILD thickness as per (18), given a nominal thick-
ness of ILD (Metal1—Substrate) and interconnect (Metal1).
The user also defines the standard deviation of the channel
length, and (80) is used to compute the standard deviation of
the other three physical parameters. The user also specifies the
number of principal components for each of Le, Vt, ∆t, and
∆TILD and the fraction of total variability due to each of the
die-to-die, WDS, and within-die random components in each
of these parameters.

MC experiments were performed by generating random co-
efficients for the PCA expansion (aij) of every parameter in
every gate, such that the sum of squares of each coefficient
corresponds to the parameter variance in every instance. This
assignment of PCA coefficients is repeated NumberOfCurves
times, each corresponding to a different correlation structure
for each parameter on the chip. For every one of these random
coefficient assignments, we sample independent realizations
of RVs corresponding to die-to-die, within-die random, and
standard normal RVs corresponding to the PCA expansion for
every parameter. This sampling is such that a global die-to-die
variable is sampled for every parameter type (channel length,
threshold voltage, ILD, and metal thickness) and assigned to
every gate or interconnect instance on the circuit; the PCA-
derived standard normal RVs (whose number corresponds to
the PCA order expansion for every parameter) are sampled
independently for every parameter and assigned to all parameter
instances on the circuit; finally, the random components are
sampled independently for every parameter and every instance
of the circuit. Thus, the parameter model presented in this
paper is reproduced with its within-die correlation based on
PCA expansions. For every one of the NumberOfCurves co-
efficient assignments, independent RV sampling is repeated
MonteCarloSamples times, each leading to one realization of
stage, path, and circuit delay. A Monte-Carlo-based realization
of a yield-margin curve is deduced for the given correla-
tion structure when MonteCarloSamples delay realizations
are obtained. Altogether, NumberOfCurves realizations of
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Fig. 7. Yield bounds and MC curves for various number of paths.

yield-margin curves are obtained, each corresponding to a
particular (randomly generated) correlation structure. The fol-
lowing summarizes the MC procedure.

-Repeat NumberOfCurves times:
-For each instance i of L, V , t, and TILD, generate random
PCA coefficients aparam,ij , where param = L, V , t, TILD.

-Repeat MonteCarloSamples times:
-Sample independently Ldd, Vdd, tdd, and TILD,dd.
-Sample independent standard normal RVs Zparam,i for
the wds variations of each parameter type.

-For each gate and interconnect i, sample independently
Lwdr(i), Vwdr(i), twdr(i), and TILD,wdr(i).

-Compute the realization of each parameter at each
instance i:
L(i) = Ldd +

∑
aL,ijZL,i + Lwdr(i)

V (i) = Vdd +
∑

aVt,ijZVt,i + Vwdr(i)
t(i) = tdd +

∑
at,ijZt,i + twdr(i)

TILD(i) = TILD,dd +
∑

aTILD,ij
ZTILD,i

+ TILD,wdr(i)
-Compute a realization of the delay of all stages i:
S(i) = s1L(i) + s2V (i) + s3t(i) + s4TILD(i)
-Compute a realization of the delay of all paths j as
DN (j) =

∑
S(i), for all stages i lying on path j.

-A realization of circuit delay is: max DN (j).
-end Repeat

-Rank circuit-delay realizations and deduce a realization
of a yield-margin curve.

-end Repeat.

The MC experiments were carried out by writing C pro-
grams, with various results illustrated in Figs. 7–9, comparing
the derived upper and lower bounds with MC simulations when
varying the number of paths n, the number of principal compo-
nents p of path delay and path depth N . The maximum number
of paths for which it was practical to run MC simulations was
1000. The figures were obtained with NumberOfCurves = 300
and MonteCarloSamples = 2000. In all cases, the bounds
were found to hold for all correlations and all timing margins,
and to mirror the results of MC simulations when parameters
are varied. We note the overlap of the MC curves for various
p and various N , shown in Figs. 8 and 9. From the plots, we

Fig. 8. Yield bounds and MC curves for various PCA orders.

Fig. 9. Yield bounds and MC curves for various path depths.

observe that the lower bounds tend to be closer to the MC
curves for larger numbers of paths and smaller PCA orders,
and upper bounds tend to be closer to the MC curves for
smaller numbers of paths. In the other cases, the MC curves fall
around the center of the interval defined by the lower and upper
bounds. Tables I–III illustrate the results of the corresponding
figures (respectively Figs. 7–9), emphasizing timing margins
for selected yield levels. The tables compare the timing margins
obtained by the lower bound curve and the upper bound curve
and shown in the third and fourth columns of the tables (remark
that the timing margin corresponding to the upper bound curve
is smaller than that corresponding to the lower bound curve and
vice versa), with the spread in the timing margin obtained from
our MC simulations, which we refer to as the “Monte Carlo
range,” and which is shown as the last column in each table.

IX. CONCLUSION

We proposed a generic parameter model for process-induced
variation and applied it in statistical timing analysis. The model
is a “full-chip” model, in that, it can be applied with ease to
large chips, before layout. This is achieved by using a measure
of yield based on use of a generic critical path concept and
capturing the statistics of a large collection of such paths with
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TABLE I
COMPARISON OF MC RESULT WITH THE DERIVED BOUNDS FOR

DIFFERENT VALUES OF THE NUMBER OF CRITICAL PATHS n

TABLE II
COMPARISON OF MC RESULTS WITH THE DERIVED BOUNDS FOR

DIFFERENT VALUES OF THE PCA ORDER p

a model of within-die correlations based on PCA. This results
in a methodology, whereby one can select the right setting
of the transistor parameters to be used in simulation or in
traditional timing analysis in order to verify the performance
while guaranteeing a certain desired yield.

APPENDIX

We conducted a series of experiments to substantiate the va-
lidity of the generic-path model in the context of circuit-timing
analysis. The accuracy of the generic-path model was verified
by comparing the timing results from a standard direct STA-
based MC analysis with a generic-path-based MC analysis.

Our standard MC experiments are carried out using the SSTA
capabilities in an industrial STA framework. This includes a
comprehensive library characterization process to model vari-
ation for the significant process parameters affecting delay.

TABLE III
COMPARISON OF MC RESULTS WITH THE DERIVED BOUNDS FOR

DIFFERENT VALUES OF PATH DEPTH N

The MC capability in this framework works by first generating
the systematic variation profiles (or spatial maps) for a set of
artificial dies. These profiles are generated using the PCA for
the process parameter that exhibits spatial correlation (chan-
nel length). The mathematically generated population of dies
models the parameter variations that would be seen after manu-
facturing. Through prior experimentation, we have determined
that 800 dies (MC samples) provide an acceptable accuracy for
SSTA purposes. Depending on the location of the cell within
each die sample, a WDS is calculated for each cell. Hence, a
cell that falls within a high-Le region of the die would be slower
than nominal. The WDR offsets are generated using a Gaussian
random number generator. STA is then carried out for each of
the generated dies using cell delays that are modified depending
on the offsets. The stage delay (driver input to receiver input)
was calculated as

delay = nominal_delay(input slope, cload)

+ wds_offset × sensitivitywds(input slope, cload)

+ wdr_offset × sensitivitywdr(input slope, cload).

In the equation, sensitivitywds and sensitivitywdr are obtained
from the variation-aware library models. Path delays are mea-
sured as the difference in arrival times between a capture flop
data pin and a launch flop clock pin (over one-cycle paths).
Path delay for the longest path is stored for each of the dies
and data from the STA runs for all dies was used to generate a
distribution.

For the generic-path-based MC analysis, the generic path was
created out of an alternating sequence of inverters and NAND2s
with a total delay equal to the cycle time T of the design.
Each die sample was divided into a grid with the dimension
of each grid square set to the distance at which the systematic
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TABLE IV
DESIGN 1: 19 264 CELLS

TABLE V
DESIGN 2: 131 897 CELLS

correlation would drop to 0.98. That is, all devices within each
grid square are highly correlated. An identical generic path
is assigned to each grid square. Essentially, this generic path
represents all critical paths within the grid square. For each die
sample (or spatial profile), a delay analysis is carried out for the
set of generic paths with the variation-aware delay for the path
calculated as shown above. The maximum path delay deter-
mines the critical delay for that die sample. The overall distrib-
ution is obtained by combining the results from all die samples.

Tables IV and V compare the maximum path-delay dis-
tribution obtained from the STA-based MC analysis to that
obtained from the generic-path-based MC run. These results
were obtained for two industrial designs at two successive
technology nodes. In these tables, the percentage error is de-
fined as 100 ∗ (Generic_Path—Direct_MC)/Direct_MC. These
tables corroborate the validity of the generic-path model and its
usefulness in an actual design cycle.
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