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Abstract—With lower supply voltages, increased integration
densities and higher operating frequencies, power grid verifica-
tion has become a crucial step in the very large-scale integration
design cycle. The accurate estimation of maximum instantaneous
power dissipation aims at finding the worst-case scenario where
excessive simultaneous switching could impose extreme current
demands on the power grid. This problem is highly input-
pattern dependent and is proven to be NP-hard. In this paper,
we capitalize on the compelling advancements in satisfiability
(SAT) solvers to propose a pseudo-Boolean SAT-based framework
that reports the input patterns maximizing circuit activity,
and consequently peak dynamic power, in combinational and
sequential circuits. The proposed framework is enhanced to
handle unit gate delays and output glitches. In order to disallow
unrealistic input transitions, we show how to integrate input
constraints in the formulation. Finally, a number of optimization
techniques, such as the use of gate switching equivalence classes,
are described to improve the scalability of the proposed method.
An extensive suite of experiments on ISCAS85 and ISCAS89
circuits confirms the robustness of the approach compared to
simulation-based techniques and encourages further research for
low-power solutions using Boolean SAT.

Index Terms—Maximum circuit activity, peak dynamic power,
pseudo-Boolean satisfiability, SAT.

I. Introduction

LOWER SUPPLY voltages, increased integration densities,
and higher operating frequencies, among other factors,

are producing devices that are more sensitive to power dis-
sipation and reliability problems [1], [2]. Excessive power
dissipation can lead to overheating, electromigration, and a
reduced chip life-time [3]. Also, large instantaneous power
consumption causes voltage drop and ground bounce, resulting
in circuit delays and soft errors [4]. Therefore, accurate power
estimation during the design phase is crucial to avoid a
time-consuming redesign process and in the worst-case an
extremely costly tape-out failure [3]. As a result, reliability
analysis has steadily become a critical part of the design
process of digital circuits.
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In CMOS circuits, power dissipation depends on the ex-
tent of circuit switching activity, which is input pattern de-
pendent. The maximum circuit activity estimation problem
aims at finding the input patterns which cause peak instanta-
neous dynamic power, a worst-case scenario where excessive
simultaneous gate switching imposes extreme current demands
on the power grid [1], leading to unwanted voltage drops.
This problem is NP-complete for combinational circuits, and
PSPACE-complete for sequential circuits [5].

Existing methods for maximum activity estimation can be
classified into the two general categories of simulation-based
and nonsimulative approaches [6]. The former rely on ex-
tensive circuit simulations under representative input vectors.
On the other hand, nonsimulative approaches use characteris-
tics of the circuit and stochastic properties of input vectors
to perform power estimation without explicit circuit simu-
lation [6].

In this paper, we leverage the advancements and ongoing
research in satisfiability (SAT)-based solvers [19], [20], [22]
to tackle this problem using a symbolic approach. Boolean
SAT solvers and their extensions, such as quantified Boolean
formula SAT solvers and pseudo-Boolean satisfiability (PBS)
solvers, have become attractive tools for solving theoretically
intractable problems in very large-scale integration computer-
aided design testing [21], verification [25], and physical
design [27]. Furthermore, any improvement to the state-of-
the-art in SAT solving translates into an immediate benefit to
all SAT-based solutions.

A PBS-based framework is presented for generating tight
lower bounds on maximum weighted circuit activity within
a clock-cycle [17]. The described framework is applicable to
both combinational and sequential circuits, and to both zero
and unit gate delay models. Glitches are accounted for in the
unit gate delay formulation. As a formal method, our technique
may be less scalable than simulation-based frameworks. For
this reason, it is intended as a complementary, rather than an
alternative, approach to simulations, that can discover “hid-
den” activity corner-cases. Additionally, the proposed method
is not applicable in the presence of variability or uncertainty
in gate delays.

In order to disallow unrealistic input transitions and invalid
initial states, we show how to integrate input constraints in
the problem formulation. Several optimization techniques are
presented to improve the scalability of the proposed method.
In particular, switching equivalence classes are used to group
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gates that are most likely to switch in tandem, thus reducing
the symbolic problem size.

An extensive suite of experiments on ISCAS85 and
ISCAS89 circuits confirms the effectiveness of SAT in a
low-power analysis application. Coupled with the modeling
flexibility offered by SAT and its extensions, this encourages
further research in the use of SAT-based tools as platforms to
solve other low-power problems.

This paper is organized as follows. Section II summarizes
previous work. Section III presents background on SAT and
PBS. Section IV briefly discusses assumptions and preliminar-
ies. Section V gives the PBS formulations for the maximum
activity problem in combinational and sequential circuits. Sec-
tion VI extends the framework to handle glitches due to gate
delays. Section VII describes how to apply input constraints
to disallow unrealistic input transitions. Section VIII discusses
optimizations and heuristics. Section IX shows experimental
results and Section X concludes this paper.

II. Previous Work

A number of techniques have been proposed in the literature
to estimate the maximum peak power dissipation [9]–[15]
or the maximum instantaneous current [4], [7], [8] of a
CMOS circuit. In [4] and [7], a loose upper bound on the
maximum instantaneous current is generated in linear time by
propagating signal uncertainties. This bound is subsequently
tightened using a branch-and-bound algorithm that considers
spatial signal correlations. Extending the characterization of
signal correlations from [4] to [7] and the authors in [8]
exploit mutually exclusive gate switching to generate tighter
upper bounds. However, for larger circuits, the gap between
the generated upper bounds and lower bounds obtained using
simulations can remain considerable.

In [9], the authors present an automatic test pattern
generation-based greedy algorithm that attempts to maximize
fanout-weighted gate flips. They also provide a statistical
quality measure for the generated lower bounds on maximum
circuit activity. In [10], the method is extended to cover
sequential circuits as well as glitches. A continuous optimiza-
tion method is set forward in [11], which treats the Boolean
input space as a real-valued vector space and makes use of a
gradient-based heuristic to estimate the maximum power.

The authors in [12] use genetic algorithms to compare
the effect of different delay models on peak power. They
conclude that peak power estimated using a zero-delay model
is inaccurate, whereas peak power estimated using a unit-delay
model is reasonably accurate. In [13], various genetic spot-
optimization heuristics are employed to avoid local maxima
during the search for maximum single-cycle activities using
a variable delay model. Reference [13] reports significant
improvements over simulations. Both [12] and [13] are able
to handle larger circuits and more general delay models than
symbolic approaches such as ours. However, unlike symbolic
techniques, they are unable to prove the optimality of their
results.

The work presented in [14] considers n independent and
identically distributed samples of power-per-cycle. Drawing on

the theory of asymptotic extreme order statistics, they model
the largest of the n sample values using a Weibull distribution.
They then perform a maximum likelihood estimation of the
largest power value. The approach of [6] is an extension
of [14], which handles more corner cases and uses different
statistical distributions. For example, instead of a Weibull-
maxima model, [6] uses the so-called Beta-exceedances model.
Both of these methods are considered simulative approaches,
and are therefore highly input-pattern dependent and lack the
exhaustive property of symbolic techniques. However, they can
handle any delay model and they scale better than symbolic
techniques.

The approach that is closest to this paper is given in
[15], where the power dissipation of a circuit is modeled
as a multi-output Boolean function in terms of the primary
inputs. A disjoint cover enumeration as well as a branch-
and-bound algorithm are used to maximize the number of
weighted gate transitions. An approximation strategy for upper
bounding maximum power is also proposed. However, the
described techniques can become computationally expensive.
Furthermore, sequential circuits are not covered.

The work in [16], published after our original paper [17],
proposed the use of temporal and spatial windows in order
to split the original maximum activity estimation problem
into smaller, more manageable subproblems. They presented
a high-level algorithm for using symbolic simulation to create
a symbolic network, which is then translated to a pseudo-
Boolean optimization (PBO) problem. They do not describe
the construction of this symbolic network in detail. The ad-
dition of spatial and temporal restrictions on the optimization
problem in [16] is orthogonal to our work, and provides a
viable method to scale activity estimation techniques, includ-
ing the approach described in this paper. It should be noted
that our work [17] was the first to propose such a PBO-based
approach to activity estimation.

III. Background

A. Boolean SAT

A propositional logic formula � can be constructed over a
set of Boolean variables using Boolean connectives such as
¯ (negation), ∧ (conjunction), and ∨ (disjunction). � is said to
be satisfiable or SAT if it has a satisfying assignment: a truth
assignment to each of its variables that causes it to evaluate
to 1. Otherwise, � is said to be unsatisfiable or UNSAT. The
problem of Boolean SAT consists of determining whether �

is SAT. In modern SAT solvers, the logic formula � is given
in conjunctive normal form (CNF) as a conjunction of clauses
where each clause is a disjunction of literals. A literal is an
instance of a variable or its negation. In order for a formula to
be SAT, at least one literal in each clause must evaluate to 1.
For example, the CNF formula given in (1) is SAT since {x1 =
1, x2 = 0, x3 = 1} is a satisfying assignment as follows:

� = (x1 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x3). (1)

A logic circuit can be converted to a CNF formula in
linear time under reasonable assumptions [21], such that there
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is a one-to-one correspondence between the variables of the
generated CNF formula and the gates of the corresponding
circuit, such that satisfying variable assignments in the CNF
formula correspond to valid gate output values in the circuit.
As such, a circuit and its corresponding SAT formulation are
often referred to interchangeably in this paper.

Modern SAT solvers implement conflict-driven clause learn-
ing [30]. They are able to solve large industrial SAT problems
with millions of variables and clauses. During the search, SAT
solvers prune parts of the search-space that do not contain sat-
isfying assignments by analyzing their decisions and learning
conflict clauses. For example, consider the CNF formula in (1)
and suppose that the solver has made the unsatisfiable variable
assignments {x1 = 0, x2 = 1, x3 = 1}. A conflict is generated
and analyzed by the solver, which realizes that {x1 = 0} cannot
be extended to a satisfying assignment, and therefore adds the
conflict clause (x1) to � in order to force {x1 = 1}.

B. Pseudo-Boolean Satisfiability

A pseudo-Boolean constraint over Boolean variables
x0, x1, . . . , xn−1 is an inequality of the form

n−1∑
i=0

ci · li ≥ cn (2)

where ci ∈ Z and li is a literal corresponding to xi, i.e., li = xi

or li = x̄i. Note that a CNF clause is a special case of a
pseudo-Boolean constraint with ci = 0 or 1, and cn = 1. A
pseudo-Boolean constraint becomes satisfied if (2) holds.

A pseudo-Boolean formula � is a conjunction of pseudo-
Boolean constraints. The problem of PBS questions the exis-
tence of a truth assignment to x0, x1, . . . , xn−1 satisfying all
the pseudo-Boolean constraints in �. A PBO problem tries to
find a satisfiable assignment to a PBS problem � that also
minimizes a given objective function as follows:

F(x) =
n−1∑
i=0

di · li (3)

where x = 〈x0, . . . , xn−1〉 and di ∈ Z.
For example, given � and F as shown in (4) below, both

{x1 = 1, x2 = 0, x3 = 1} and {x1 = 1, x2 = 0, x3 = 0} are
satisfying assignments. However, the former minimizes F as
follows:

� = (2x1 − 3x2 ≥ 1) ∧ (x1 + x2 + x̄3 ≥ 1)

F = x̄3 − x1 + 2x̄2. (4)

The classical approach for solving combinatorial
optimization problems, including PBO, has historically
been branch-and-bound [31]. In general, these algorithms
are able to prune the search tree by using estimates on the
value of the optimization function. Reference [31] gives
an overview of branch-and-bound techniques for PBO.
Motivated by recent advances in SAT solvers, the most
effective SAT techniques, including clause learning, lazy data
structures, and conflict-driven branching heuristics, have been
extended to PBO [32]. In this paper, we use the PBO solver

MiniSat+ [22] which translates pseudo-Boolean constraints
to SAT and runs a state-of-the-art SAT solver [20] on the
produced SAT instance. The latter approach is particularly
suited to problems consisting of mostly SAT clauses and
relatively few pseudo-Boolean constraints [22], which is the
case in this paper. Furthermore, any advancements in SAT
solving directly enhances such a strategy.

In MiniSat+, the objective function is minimized using a
linear search. MiniSat+ first runs the SAT solver without
considering F(x) in order to get an initial SAT solution
x0, with F(x0) = k, where k is the corresponding initial
value of the objective function. The new pseudo-Boolean
constraint F(x) ≤ k − 1 is subsequently added to the original
problem. The SAT solver is then run on the updated CNF
formula and this process is repeated until the problem becomes
UNSAT. The solution corresponding to the last k before the
problem becomes UNSAT is the optimal solution minimizing
the objective function.

IV. Assumptions and Preliminaries

Flip-flop-controlled synchronous digital circuits are consid-
ered. Primary inputs and flip-flop (DFF) outputs can only
switch at the beginning of the clock-cycle. This assumption
is considered valid in related previous work as well.

The dynamic power dissipation of a CMOS circuit during
a clock-cycle can be approximated as follows:

P =
1

2
V 2

dd

m∑
i=1

Ci · fi (5)

where m is the number of circuit gates, Ci is the capacitive
load on gate gi, and fi is the output transition count of gi

during a clock-cycle. Under the assumption that the clock
period is sufficiently small, it is sound to interpret (5) as the
instantaneous dynamic power during that clock-cycle [9]–[15].
In the remainder of this paper, the terms circuit activity and
switched capacitance refer to the summation in (5) and are
used interchangeably.

The following notation is used throughout this paper. T rep-
resents a combinational or sequential circuit and G(T ) denotes
the set of gates in T excluding primary inputs and states.
Symbol m denotes the number of gates in G(T ). Symbols x and
s are the Boolean vectors, respectively, denoting the primary
inputs and state elements (DFFs) of a sequential circuit T .
Variables xi and si denote the ith primary input and state
element of T . Variable gi refers to ith gate in T and can assume
all basic gate types, such as AND, OR, XOR, NOT, and BUFFER.

Circuit unrolling consists of replicating the combinational
component of a sequential design and connecting the next-
state of each time-frame to the current-state of the following
time-frame. As will be described later, this process allows the
PBO solver to reason on the operation of a sequential circuit.
A superscripted variable (e.g., gj) denotes the copy of that
variable in the jth copy of the unrolled circuit T . s0 denotes
the initial-state of T . FANOUTS(gi) (FANINS(gi)) denotes the
set of fanouts (fanins) of gi. Finally, in all the examples, it is
assumed that Ci = |FANOUTS(gi)| for internal gates and Ci = 1
for primary output gates.
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V. Zero-Delay Maximum Activity Computation

Using PBO

A. Maximum Activity for Combinational Circuits

Under a zero-delay model, each gate transition count fi is
a Boolean variable because gi can flip at most once per clock-
cycle. Accordingly, the summation in (5) can be rewritten as

m∑
i=1

Ci · (gi(x
0) ⊕ gi(x

1)) (6)

where x0 and x1 are consecutively applied primary input
vectors and gi(x) denotes the steady-state value of gate gi given
primary input vector x.

One needs to find the pair of consecutive primary input
vectors 〈x0∗

, x1∗〉 maximizing (6). This problem is formulated
as a PBO problem as follows. A new circuit N is constructed
which contains two replicas of the original circuit T , named
T 0 and T 1. The primary input vector x0 (x1) is applied to T 0

(T 1). Next, every pair of corresponding gates, g0
i in T 0 and

g1
i in T 1, is fed to a new XOR gate, called xori, in N. Clearly,

the output of each xori yields gi(x0) ⊕ gi(x1). Fig. 1(b) shows
the construction of N for the circuit given in Fig. 1(a).

Let CNF(N) denote the translation of N into CNF clauses
(which are also pseudo-Boolean constraints). Clearly, the
solution of the following PBO problem maximizes the value
of (6) as follows:

� = CNF(N)

F = −
m∑
i=1

Ci · xori. (7)

Note that only the target function F is not already given
as a set of clauses. The pseudo-Boolean formula �, which
is simply the CNF of N, markedly suits the choice of the
nonnative (SAT-based) PBO solver MiniSat+ [22], since the
latter is only left to translate F into CNF.

Example 1: Consider the original circuit T and the cor-
responding construction N shown in Fig. 1. Disregarding
primary input flips, an optimal solution to the associated PBO
problem is 〈x0∗

, x1∗〉 = 〈〈0,0,0〉, 〈1,1,1〉〉, which amounts
to a total switched capacitance of six units by flipping all four
gate outputs as shown in Fig. 1(a).

B. Maximum Activity for Sequential Circuits

Let gi(s0, x) denote the steady-state value of gate gi given
initial-state s0 and primary input vector x. For a sequential
circuit, the transition count fi depends on both primary input
transitions and the initial state. Therefore, estimating the peak
power per cycle for sequential circuits is equivalent to finding
a triplet 〈s0∗

, x0∗
, x1∗〉 consisting of an initial state s0 and

consecutive primary input vectors, x0 and x1, that maximizes
the following summation:

m∑
i=1

Ci · (gi(s
0, x0) ⊕ gi(s

1, x1)) (8)

where s1 denotes the next-state of the circuit.

Fig. 1. Zero-delay PBO formulation for combinational circuits. (a) Zero-
delay gate switching. (b) Zero-delay PBO formulation.

Fig. 2. Zero-delay PBO formulation for sequential circuits. (a) Zero-delay
switching. (b) Zero-delay PBO formulation.

Finding this triplet is formulated as a PBO problem as
follows. First, DFF inputs (outputs) are transformed into
circuit pseudo-outputs (pseudo-inputs). A new circuit N is
constructed which contains two replicas of this full-scanned
circuit. Moreover, the pseudo-outputs of the first time-frame
T 0 are connected to the corresponding pseudo-inputs of the
second time-frame T 1. This two time-frame iterative logic
array expansion of the original sequential circuit is referred
to as circuit unrolling. Next, similarly to the combinational
case, every pair of corresponding gates, g0

i in T 0 and g1
i in

T 1, is fed to a new XOR gate. Clearly, the output of each xori

yields gi(s0, x0) ⊕ gi(s1, x1). Fig. 2(b) shows the construction
of N for the sequential circuit given in Fig. 2(a). Note that in
this example, s1

1 = g0
1.

The resulting PBO problem can be expressed by the set of
equations in (7), using the above description of the circuit N.

Example 2: Consider the circuit T and the corresponding
N shown in Fig. 2. Not counting flips at DFF outputs (s1) or
primary inputs, an optimal solution to the PBO problem for
sequential circuits given in this section is 〈s0∗

, x0∗
, x1∗〉 =

〈〈0〉, 〈0,0,0〉, 〈1,1,1〉〉, which amounts to a total switched
capacitance of five units as shown in Fig. 2(a). However, this
solution might be suboptimal if gate delays are considered.
Section VI describes how delay is integrated into the PBO
problem.

The given problem formulation allows for any initial state
and primary input transitions to be returned in the optimal
solution. In Section VII, we describe how to add constraints
to the PBS problem to disallow certain initial states, as well
as illegal or unlikely combinations of primary inputs.
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VI. Modeling Delay

Different input signal arrival times might cause a gate to
flip several times during one clock-cycle. In fact, glitches
due to gate propagation delays can dominate the maximum
instantaneous power in some cases [10], [12]. On the other
hand, empirical results in [12] show that a unit gate de-
lay model yields reasonably accurate power estimates. This
section discusses the integration of unit gate delay into the
problem formulation. It is also explained how this can be
extended to arbitrary (but fixed) delay using a preprocessing
step.

What follows is applicable to sequential circuits with no
combinational loops (sequential loops are obviously allowed),
in order to avoid unstable and metastable signals. In other
terms, the full-scanned version of the sequential circuit is
a directed acyclic graph (DAG). For each DAG node ni ∈
{x, s,G(T )}, we define its max-level L(ni) and min-level l(ni)
as follows:

Definition 1:

L(ni) =

{
max

{nj∈fanins(ni)}
L(nj) + 1, if ni ∈ G(T )

0, if ni ∈ {x, s}
Definition 2:

l(ni) =

{
min

{nj∈fanins(ni)}
l(nj) + 1, if ni ∈ G(T )

0, if ni ∈ {x, s}.

L(gi) and l(gi), respectively, denote the lengths of the
longest and shortest simple paths to gate gi, in terms of number
of gates, starting from a primary input in x or a pseudo-input in
s. Let L = maxgi∈GL(gi) designate the largest max-level in the
circuit. Under a unit-delay model, time t is a discrete variable,
meaningful in {0, . . . ,L}. Moreover, the signal arrival time at
the output of gate gi following a certain path from a primary
input or a DFF is equal to the length of the traveled path to
gate gi.

Let Gt describe the set of all gates whose max-levels and
min-levels bound t inclusively.

Definition 3: Gt = {gi ∈ G|l(gi) ≤ t ≤ L(gi)}
If some gate gi does not belong to Gt , then either l(gi) > t

or L(gi) < t. The former implies that the shortest signal arrival
time from an input or a pseudo-input to a fanin of gi takes at
least t time-steps. So gi can only flip strictly after time-step t.
Similarly, the latter implies that gi can only flip strictly before
time-step t. Therefore, any gate that could potentially flip at
time-step t belongs to Gt .

Consider a circuit whose gate logic values have stabilized
given initial state s0 and primary input vector x0. In a unit-
delay framework where each gate requires one time-step to
switch, this is equivalent to applying s0 and x0 at t = −1.
The primary input vector x1 is applied at the start of a new
clock-cycle at t = 0, and we let gt

i(s
0, x0, x1) denote the value

of gate gi at time-step t. Note that the output value of gi

depends on both x0 and x1 because if t < l(gi), gt
i(s

0, x0, x1) =
gi(s0, x0), which is defined in Section V-B. Accordingly, the

Fig. 3. Unit-delay sequential PBO formulation.

total switched capacitance can be given by

L∑
t=1

∑
gi∈Gt

Ci · (gt−1
i (s0, x0, x1) ⊕ gt

i(s
0, x0, x1)). (9)

The inner summation in (9) adds the capacitances of the
gates whose outputs flip at time t. This summation only
checks gates in Gt and disregards all other gates, because only
the gates in Gt can potentially flip at time-step t. The outer
summation adds the total switched capacitances across time-
steps t = 1 to L.

To maximize (9), we will again construct a new circuit N
that will be used by the PBO solver. In order to do so, we need
to create an XOR gate for each term in the summation of (9),
representing each potential glitch. As such, we need to store
the value of each gate at only time-steps when its output value
may potentially flip. The remainder of this section describes
and proves the correctness of a circuit construction N that
“remembers” all gate flips in T .

This construction is illustrated with the use of an example.
Consider the sequential circuit T shown in Fig. 2(a). First, DFF
inputs (outputs) are transformed into circuit pseudo-outputs
(pseudo-inputs). The min-level and max-level of each node can
be calculated in linear time by visiting nodes in topological
order starting from primary inputs and pseudo-inputs. As a
result, the sets G1,G2, . . . ,GL can be generated. For the circuit
in Fig. 2(a), these sets are as follows:

G1 = {g1, g2, g4},G2 = {g2, g3, g4}
G3 = {g3, g4},G4 = {g4}.

For each time-step t, for 0 ≤ t ≤ L, we associate a time-
circuit T t containing the following time-gates:

G(T t) =

{{
gt

i|gi ∈ Gt

}
, if t ≥ 1{

g0
i |gi ∈ G(T )

}
, if t = 0

(10)
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as shown in Fig. 3. At the base case, T 0 contains all the
gates in T , whereas T t , for t ≥ 1, contains every gate that
can potentially switch at time t. The new circuit N in Fig. 3
accommodates all these time-circuits T 0, T 1, . . . , T L.

Now we describe the gate interconnections in N. The gates
of T 0 are interconnected identically to the original full-scanned
circuit, given pseudo-input vector s0 and primary input vector
x0, as shown in Fig. 3. For a time-gate gt

i in time-circuit T t ,
with t ≥ 1, there are three cases for connecting it to its new
inputs, depending on each fanin of the corresponding gate gi

in the original circuit T .

1) If the fanin gate was originally another internal gate, the
given time-gate must be connected to the most recent
corresponding time-gate strictly before the current time-
step. No two time-gates in the same time-circuit can be
connected because they can only change simultaneously.

2) If the fanin gate was originally a primary input, the given
time-gate must be connected to the corresponding new
primary input in x1.

3) If the fanin gate was originally a DFF output, the
given time-gate must be connected to the corresponding
pseudo-output in T 0.

Formally, consider a gate gi ∈ G(T ), such that fanin(gi) =
{gα, xβ, sγ}, where gα ∈ G(T ), xβ is a primary input, and sγ

is a DFF output. Each of these fanins corresponds to one of
the three different cases above. In the new circuit N, for each
time-step t ≥ 1 where gt

i exists, it will be connected to the
following fanins:

fanin(gt
i) =

{
gmax{j|gj

α∈G(T j),j<t}
α , x1

β, fanin(sγ )0
}

.

Here, fanin(sγ ) denotes the only fanin of sγ , which is its cor-
responding pseudo-output, or next-state. fanin(sγ )0 denotes
the time-gate corresponding to this pseudo-output in T 0 of N.

In what follows, we use the notation gi@t to denote the
value of gate gi in the original circuit T at time-step t.

Lemma 1: Given any s0, x0, x1, the time-gate gt
i in time-

circuit T t of N holds the value of gi@t in T , ∀i, and ∀t ≥ 0.
Proof: The proof uses strong induction on the time-step

variable t.

1) Base case: At time-step t = 0, every gate gi in T assumes
its steady-state value given initial state s0 and primary
input vector x0. Furthermore, time-circuit T 0 in N is a
replica of the original full-scanned circuit of T , with
primary inputs set to x0 and initial state s0. As such,
given any s0, x0, x1, the time-gate g0

i in time-circuit T 0

of N holds the value of gi@0 in T , ∀i.
2) Inductive hypothesis: Given any s0, x0, x1, the time-gate

g
j
i in time-circuit T j of N holds the value of gi@j in

T , ∀i and ∀j[0 ≤ j < t].
3) Inductive step: Consider a hypothetical gate gi in T

whose fanins cover all three cases for interconnecting
time-gates in N. In other terms, let fanin (gi) =
{gα, xβ, sγ}, where gα ∈ G(T ), xβ is a primary input
and sγ is a DFF output. As discussed, the correspond-
ing time-gate gt

i in T t of N will have fanin(gt
i) ={

gmax{j|gj
α∈G(T j), j<t}

α , x1
β, fanin(sγ )0

}
. We must prove

Fig. 4. Unit-delay gate switching in a sequential circuit.

that gt
i in T t of N holds the value of gate gi@t in T .

In order to do so, we must show that the three types
of fanins in fanin(gt

i), respectively, hold the values of
gα@t − 1, xβ@t − 1 and sγ@t − 1.

a) Consider gmax{j|gj
α∈G(T j), j<t}

α . By the inductive hy-
pothesis, time-gate gmax{j|gj

α∈G(T j), j<t}
α holds the

value of gate gα@ max{j|gj
α ∈ G(T j), j < t}.

Furthermore, by definition of G(T j) in (10) and
Gt , this is the last time-step before t during which
gate gα can flip in the original circuit T . As such,
time-gate gmax{j|gj

α∈G(T j), j<t}
α holds the value of gate

gα@t − 1 in T .
b), c) Consider x1

β and fanin(sγ )0. Since xβ (sγ ) is set
to x1

β (s1
γ = fanin(sγ )0) in T at all time-steps t ≥

0, clearly x1
β (fanin(sγ )0) in N is equal to xβ@j

(sγ@j) in T , ∀j[0 ≤ j < t], and in particular for
j = t − 1.

Since gt
i in T t of N performs the same logic function

as gi in T and its fanins hold the values of the fanins
of gi at time t − 1, it follows that gt

i holds the value of
gi@t.

Lemma 1 shows that the values of the time-gates gt
i in N

are consistent with the definition of gt
i(s

0, x0, x1) used in (9).
As such, the final step is to add an XOR gate for every pair of
gt

i and gt′
i , where there exists no gt′′

i with t < t′′ < t′ in N. By
construction, this is equivalent to adding an XOR gate between
every gt

i and g
max{j|gj∈G(T j), j<t}
i . This is shown in Fig. 3.

The weighted sum of these XOR gates yields

L∑
t=1

∑
gi∈Gt

Ci · (gmax{j|gj∈G(T j),j<t}
i (s0, x0, x1) ⊕ gt

i(s
0, x0, x1)).

(11)

Moreover, since time-step max{j|gj ∈ G(T j), j <

t} is by definition the last time-step before t in
which gate gi could have flipped, it follows that the
value of g

max{j|gj∈G(T j), j<t}
i (s0, x0, x1) is equal to that of

gt−1
i (s0, x0, x1). Replacing this in (11) yields (9), which is

to be maximized by the PBO solver.
Example 3: Consider the circuit T in Fig. 4 and the cor-

responding N in Fig. 3. Using a unit-delay model and not
counting flips at DFF outputs or primary inputs, an optimal
solution to the described PBO problem is 〈s0∗

, x0∗
, x1∗〉 =

〈〈0〉, 〈1, 1, 0〉, 〈0, 0, 1〉〉, which amounts to a total switched
capacitance of six units as shown in Fig. 4.

The circuit N shown in Fig. 3 generates the activity pro-
duced by the triplet 〈s0∗

, x0∗
, x1∗〉 = 〈〈0〉, 〈1, 1, 0〉, 〈0, 0, 1〉〉

as follows. Recall that T t (∀t ≥ 1) does not contain gates
that cannot flip at time-step t, by construction. For instance,
there is no time-gate corresponding to the inverter g3 in T 1
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because g3 cannot flip at time-step 1. Furthermore, as shown
in Lemma 1, the interconnections in N are made such that
each time-gate gt

i holds the value of gi@t in T .
1) In T 0, g0

1 = 1, g0
2 = 0, g0

3 = 1, g0
4 = 1. These values

represent the initial state of the circuit (at time-step 0),
before x1∗

starts propagating inside.
2) In T 1, g1

1 = 0, g1
2 = 1, g1

4 = 1. Therefore, xor1 = 1, xor2 =
1, xor6 = 0, yielding two gate flips and a total switched
capacitance of 3 so far, since C1 = 2.

3) In T 2, g2
2 = 0, g2

3 = 0, g2
4 = 1. Therefore, xor3 = 1, xor4 =

1, xor7 = 0, yielding a total switched capacitance of 5
so far.

4) In T 3, g3
3 = 1, g3

4 = 1. Therefore, xor5 = 1, xor8 = 0,
yielding a total switched capacitance of 6 so far.

5) Finally, in T 4, we have g4
4 = 1. Therefore, xor9 = 0 and

the total switched capacitance is 6.
Fig. 4 illustrates all gate switches on the original sequential
circuit T .

The procedure outlined in this section can be extended
to a more general delay model, where each gate has an
arbitrary but fixed delay. This is done as follows. A linear
time preprocessing step is described in [10], which generates,
for each gate, the sequence of time instants at which it might
flip. For each gate gα, let tigα

and tfgα
, respectively, denote the

first and last time instants at which gα might flip. A circuit-
level time sequence that includes all possible gate flipping
time instants can be subsequently created. In order to apply
the methodology described in this section to an arbitrary delay
model, for each gate gα, l(gα) and L(gα), respectively, should
be set to the indices of tigα

and tfgα
in the sorted circuit-level

time sequence. Note that this generalization is not applicable
if the delay of each gate is variable or is given by an interval
of possible values.

It should be noted that using a general delay model would
significantly increase the size of the circuit N because the
number of time instants at which the inputs of a given gate
can switch scales exponentially with the topological level of
the gate (i.e., its min-level) [16]. This is in contrast to unit-
delay, where the number of time instants at which the inputs
of a given gate can switch scales linearly with its min-level.
The authors of [16] proposed a viable approach to allow such
techniques to handle general gate delays as well as larger
circuits, by splitting the problem into smaller subproblems that
are easier to solve, using a sequence of spatial and temporal
windows. Furthermore, advances in PBO solvers will increase
the applicability of our method.

VII. Input Constraints

Digital designs might operate under certain assumptions,
where some input patterns are considered illegal or unlikely to
occur. Not taking these assumptions into account can produce
unrealistic maximum activity estimates which can result in
an over-conservative design. In this section, we outline how
to add input or state constraints to the problem to exclude
unwanted input combinations or sequences of input combi-
nations. For instance, the following is an example of such a
constraint. Given the initial state s0 = 〈0, 0, X, X〉, the input

Fig. 5. Optimized PBO formulation, unit-delay model.

sequence 〈x0, x1〉 = 〈〈X, 1, 0〉, 〈1, 0, X〉〉 is illegal. Here X

denotes a don’t-care. This constraint can be translated to the
following SAT clause:

(s0
1 ∨ s0

2 ∨ x̄0
2 ∨ x0

3 ∨ x̄1
1 ∨ x1

2).

During the PBO search, any assignment of the triplet
〈s0, x0, x1〉 that violates the given condition will produce a
conflict due to this clause, forcing the solver to backtrack from
unwanted parts of the search-tree.

Similarly, sets of unreachable initial-state cubes, possibly
including don’t-cares, can be ruled out from the search. For
instance, the illegal initial-state cubes s0 = 〈1, X, 0〉 and s0 =
〈1, 1, 1〉 can be ruled out with the two SAT clauses: (s̄0

1 ∨
s0

3) ∧ (s̄0
1 ∨ s̄0

2 ∨ s̄0
3). The interested reader can refer to [34] for

a discussion on sequential reachability, which is outside the
scope of this paper.

Furthermore, it is also possible to rule out input sequences
that are deemed as unlikely. Here, we consider a type of
constraint limiting the number of bit flips in the primary inputs
to at most d flips. In other terms, the Hamming distance
between x0 and x1 is constrained to be less than or equal
to d as follows:

∑
i

x0
i ⊕ x1

i ≤ d.

In this case, a naive encoding into clauses that does not
use auxiliary variables will blow up in memory, especially if
d is large. In order to express this type of constraints using
clauses, first an XOR gate ai = x0

i ⊕ x1
i is added in N for

every primary input bit xi in T . Next, we construct a bitonic
sorter [29] using AND and OR gates, which takes in the Boolean
variables a1, a2, . . . and generates the corresponding sorted
output sequence in decreasing order, denoted as b1, b2, . . . .
Finally, the unit clause (b̄d+1) is added to the problem, forcing
bd+1 = 0. Since the bis are sorted in decreasing order, this will
automatically force bd+2 = 0, bd+3 = 0, . . . . Consequently at
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most d bits in the output of the bitonic sorter (b1, . . . , bd) can
be set to 1 by the solver. Hence, by construction, at most d

bits in a1, a2, . . . can be set to 1, which means that at most
d primary inputs can flip simultaneously. This construction
requires O(|x| log2 |x|) clauses, where |x| denotes the number
of primary inputs [22].

VIII. Optimizations and Heuristics

In this section, optimization techniques are presented for
improving the PBO formulation.

A. Reduction of Gt

The definition of Gt given in Definition 3 can be tightened.
In fact, irrespective of the triplet 〈s0, x0, x1〉, it is sometimes
known in advance that a certain gate gi can never flip at time-
step t even though gi ∈ Gt . This can happen if l(gi) ≤ t ≤
L(gi), but there exists no path p of length exactly t (|p| = t)
from a primary input or DFF output to the output of gi. For
example, in the circuit of Fig. 2(a), although l(g4) = 1 and
L(g4) = 4, g4 can never flip at time-step 2. Hence, in Fig. 3,
the time-gate g2

4 is redundant because its output will always
be the same as that of g1

4. The following is a tighter definition
of Gt .

Definition 4: Gt = {gi ∈ G(T )|∃ a path p from a primary
input or state to gi with |p|=t }

In other terms, Gt is the set of all gates reachable in exactly
t steps from a primary input or a DFF output. The sets
G1,G2, . . . ,GL can be generated using a variation of breadth-
first traversal of the original circuit, starting from primary
inputs and pseudo-inputs and memorizing the set of newly
reached gates at each time-step. In Fig. 5, N is optimized to
use Definition 4 for Gt .

B. Sequences of BUFFERs and/or NOTs

Suppose gate gi is a BUFFER or a not. If the input of gi

flips, then the output of gi flips. Therefore, for every sequence
of BUFFERs and/or NOTs, it is sufficient to put only one XOR

at the input of the first BUFFER/NOT and to add the load
capacitances of the other gates to the weight of this XOR.
In Fig. 5, this optimization is used to reduce the number
of XORs. For large circuits with significant numbers of NOTs
and BUFFERs, this can significantly reduce the size of the N
as well as F , and therefore the number of pseudo-Boolean
constraints.

C. Nonzero Initial Activity Using Simulations

As described in Section III-B, the PBO solver gradually
tightens the upper bound on the objective function, and there-
fore the lower bound on maximum circuit activity. This is
done until either the maximum is proved or the solver times-
out. However, instead of starting from an activity of 0, it is
possible to first run random simulations for R s, record the
generated maximum activity M, and then force the solver to
start from an activity of at least α ·M, for some user-specified
α ∈ [0, 1], using an appropriate pseudo-Boolean constraint. If
α is close to 1, this has the advantage of guiding the solver into
parts of the search-space that might potentially yield higher

Algorithm 1 Gate switching equivalence classes

1: Procedure SolveUsingEquivalenceClasses
2: Run random simulations for R s to obtain the switching

signature of each (time-)gate.
3: Sort signatures in lexicographical order and group gates

with equal signatures into same equivalence class.
4: Pick a representative (time-)gate for each equivalence

class.
5: In the construction of N, add “switch detecting” XORs only

for these representatives.
6: Add the output capacitances of every gate in the same

equivalence class to the weight of that XOR.
7: Run the PBO solver.
8: Simulate each returned solution to get the real switching

activity.
9: End Procedure

circuit activities, and saves it the time of finding possibly
many suboptimal solutions in other parts of the search-space.
However, this will make the initial PBS problem harder.
Therefore, finding the first solution that yields a circuit activity
greater than α ·M may take a longer time. Moreover, the PBO
solver may have a harder time learning from its mistakes.

D. Gate Switching Equivalence Classes

Section VIII-B considers a special case of several gates
always switching together for sequences of BUFFER and/or
NOT gates. In fact, this may happen in more general cases.
Also, due to structural correlations, some gates are more
likely to switch in tandem. We utilize such gate switching
correlations by building equivalence classes for simultaneously
switching gates as follows.

We run random simulations for R s. Each gate or time-
gate is associated with its switching signature, which is a
sequence of 0s and 1s indicating switching times based on
these simulations. For each gate, a 1 indicates a switch, while
a 0 indicates that no switch occurred for a given input vector.
In the case of nonzero gate delays, the switching of each time-
gate is recorded (this is equivalent to recording all glitches of
a gate during the simulation of the original circuit).

Next, these gates are sorted in their signatures’ lexicograph-
ical order (i.e., in increasing order of the binary numbers
given by these signatures. For example, 001010 < 010001).
Successive gates (or time-gates) with equal signatures are
grouped into the same equivalence class. These gates (or
time-gates) are assumed to be likely to switch simultaneously,
although they are not guaranteed to do so.

In the construction of N, the “switch detecting” XOR gates
described in this paper are only added for one representative
gate (or time-gate) in each equivalence class. Furthermore, all
the output capacitances of the gates in an equivalence class
are now added to the weight of the XOR of the representative
in the objective function. Less added XORs leads to a smaller
F , which results in a smaller PBO to SAT translation in the
solver [22], improving the scalability of the technique.

The downside is that the resulting circuit activities returned
by the PBO solver can now contain a small error, due to
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TABLE I

Maximum Activities Per Cycle Obtained by PBO and SIM for Combinational Circuits

T c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552
|G(T )| 164 555 381 549 404 709 965 1579 3398 2325
100 s ∗193 441 470 447 430 753 1053 1395 3023 2064

1000 s ∗193 493 482 480 445 754 1054 1611 3191 2282
10 000 s ∗193 493 ∗482 480 456 773 1058 1689 3678 2544

+VIII-C 100 s ∗193 462 476 462 433 744 979 1578 3078
PBO R = 5 s 1000 s ∗193 471 481 471 441 764 1008 1593 3497 2236

Zero α = 0.9 10 000 s ∗193 485 ∗482 479 459 775 1032 1638 3497 2620
delay +VIII-D 100 s 193 478 474 457 427 727 973 1528 3449 2135

R = 2 s 1000 s 193 482 482 473 443 739 1041 1606 3449 2399
10 000 s 193 485 482 480 459 773 1053 1654 3449 2484

100 s 176 421 414 424 389 657 938 1470 2980 2179
SIM 1000 s 178 421 437 426 389 659 938 1470 3107 2198

10 000 s 178 444 437 426 389 671 950 1476 3195 2222
100 s 838 2172 1330 2647 2133 2082 2633 7140 64 720 6198

1000 s 1006 2713 2508 2770 2176 2467 5096 7140 64 720 6198
10 000 s ∗1041 2779 2743 2781 2720 2779 6670 8034 64 720 10 477

+VIII-C 100 s 879 2494 1712 2691 2466
PBO R = 5 s 1000 s 941 2741 3103 2974 2720 2605

Unit α = 0.9 10 000 s ∗1041 2900 3196 2987 3329 2804 6813 8706 101 921 12 744
delay +VIII-D 100 s 902 2277 3056 2487 2510 2503 3809 3895 82 055 6195

R = 2 s 1000 s 1032 2928 3056 2562 2524 2725 4776 7178 96 622 6195
10 000 s 1041 2928 3056 2909 2896 2886 6332 8583 147 010 13 517

100 s 880 2292 2366 2234 2500 2508 6540 8100 118 364 11 699
SIM 1000 s 949 2299 2366 2348 2509 2605 6570 8199 129 672 11 811

10 000 s 964 2316 2366 2450 2509 2606 6596 8216 139 341 11 900

the fact that gates belonging to the same equivalence class
might not always switch together. In order to avoid returning
“false positive” (i.e., unrealizable) switching activities due to
this approximation, we always simulate the resulting solutions
(input sequences) returned by the solver and record their real
switching activities. Here, we can generate a tradeoff based on
the original simulation time R to set up the equivalence classes.
The longer R, the more accurate the results of the PBO solver
will be, but the smaller the size of gate switching equivalence
classes and therefore the bigger the problem size. With shorter
simulation times, the formulation will be smaller, however
there will be more noise in the solution returned by the PBO
solver. It should be emphasized that this approximation can
miss input transitions that cause more switching in the original
circuit and therefore cannot be used to prove that the maximum
circuit activity has been found.

IX. Experimental Results

The zero-delay and unit-delay formulations of the proposed
PBO-based approach for circuit activity estimation are im-
plemented in C++. The resulting PBO problem is solved
using the MiniSat+ [22] engine. The optimizations given in
Sections VIII-A and VIII-B are integrated into the formula-
tion by default, and experiments are run with and without
the heuristics described in Sections VIII-C and VIII-D. All
experiments are conducted on a Pentium IV 2.8 GHz Linux
platform with 2 GB of memory.

Our approach is compared to parallel-pattern random simu-
lations, referred to as SIM, with 32-bit words (32 simultaneous
vector simulations). In SIM, let p denote the (user-specified)
probability that a given primary input flips. In other terms,
∀i, let Pr(x0

i �= x1
i ) = p. We have experimented with several

values of p ranging from 55% to 95%, using a time-out of
100 s and a representative set of 30 instances from ISCAS85
and ISCAS89 circuits, using both zero and unit-delay models.

Fig. 6. Normalized SIM activity versus p given 100 s.

Fig. 6 shows the results in the form of average normalized
SIM activities for each input switching probability p. More
precisely, for each instance and each primary input switching
probability p, we compute the ratio of the generated activity
to the maximum activity for that instance among all switching
probabilities. It can be seen that p = 90% yields the highest
average normalized activity (0.983), whereas 95% and 85%,
respectively, yield ratios of 0.977 and 0.971. Lower ps yield
inferior activities, with p = 55% resulting in the lowest average
ratio of 0.918. Therefore, the switching probability of each
primary input in SIM in the remainder of our experiments is
set to 90%. This value is also consistent with [9].

For sequential circuits, SIM continuously picks a new,
arbitrary, initial state s0, and applies x0, x1 from s0. This
guarantees a fair comparison with the PBO-based approach,
which can also explore arbitrary initial states. At the end
of this section, we provide experimental results using input
constraints for both of these methods. The time-out is set to
10 000 s, and the generated sequence of increasing switching
activities along with their corresponding runtimes is recorded
for each experiment. Depending on the size of the circuit,
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TABLE II

Maximum Activities Per Cycle Obtained by PBO and SIM for Sequential Circuits

T s208 s298 s344 s382 s386 s444 s526 s820 s832 s953
|G(T )| 113 148 191 201 172 224 236 432 300 298
100 s ∗76 ∗139 ∗199 ∗194 ∗203 ∗201 ∗233 ∗364 ∗365 ∗274
1000 s ∗76 ∗139 ∗199 ∗194 ∗203 ∗201 ∗233 ∗364 ∗365 ∗274

10 000 s ∗76 ∗139 ∗199 ∗194 ∗203 ∗201 ∗233 ∗364 ∗365 ∗274
+VIII-C 100 s ∗76 ∗139 ∗199 ∗194 ∗203 ∗201 ∗233 ∗364 ∗365 ∗274

PBO R = 5 s 1000 s ∗76 ∗139 ∗199 ∗194 ∗203 ∗201 ∗233 ∗364 ∗365 ∗274
Zero α = 0.9 10 000 s ∗76 ∗139 ∗199 ∗194 ∗203 ∗201 ∗233 ∗364 ∗365 ∗274
delay +VIII-D 100 s 76 139 199 194 203 201 233 364 365 274

R = 2 s 1000 s 76 139 199 194 203 201 233 364 365 274
10 000 s 76 139 199 194 203 201 233 364 365 274

100 s 76 139 195 188 203 198 224 360 361 265
SIM 1000 s 76 139 196 190 203 198 231 360 361 265

10 000 s 76 139 196 190 203 198 231 360 361 269
100 s ∗118 ∗195 ∗439 ∗265 ∗267 ∗321 ∗303 ∗465 ∗475 556
1000 s ∗118 ∗195 ∗439 ∗265 ∗267 ∗321 ∗303 ∗465 ∗475 ∗570

10 000 s ∗118 ∗195 ∗439 ∗265 ∗267 ∗321 ∗303 ∗465 ∗475 ∗570
+VIII-C 100 s ∗118 ∗195 ∗439 ∗265 ∗267 ∗321 ∗303 ∗465 ∗475 556

PBO R = 5 s 1000 s ∗118 ∗195 ∗439 ∗265 ∗267 ∗321 ∗303 ∗465 ∗475 ∗570
Unit α = 0.9 10 000 s ∗118 ∗195 ∗439 ∗265 ∗267 ∗321 ∗303 ∗465 ∗475 ∗570
delay +VIII-D 100 s 118 195 439 265 267 321 303 465 475 533

R = 2 s 1000 s 118 195 439 265 267 321 303 465 475 570
10 000 s 118 195 439 265 267 321 303 465 475 570

100 s 118 195 432 262 267 320 303 463 472 568
SIM 1000 s 118 195 433 263 267 320 303 463 473 568

10 000 s 118 195 433 263 267 320 303 463 475 570

T s713 s1238 s1423 s1488 s1494 s9234 s13207 s15850 s38417 s38584
|G(T )| 454 545 806 666 660 6054 9290 10 967 25 452 22 158
100 s ∗485 444 710 ∗684 ∗685 3010 3727 2720 12 077 11 425
1000 s ∗485 460 726 ∗684 ∗685 4266 3727 2720 12 077 11 425

10 000 s ∗485 ∗474 757 ∗684 ∗685 4533 5181 6072 12 077 11 425
+VIII-C 100 s ∗485 432 713 ∗684 ∗685 3161

PBO R = 5 s 1000 s ∗485 460 713 ∗684 ∗685 4074 5225 9401 10 519
Zero α = 0.9 10 000 s ∗485 ∗474 ∗770 ∗684 ∗685 4404 5489 6451 11 852 11 193
delay +VIII-D 100 s 485 456 710 684 685 3010 3671 2633 12 718 11 413

R = 2 s 1000 s 485 469 748 684 685 4344 3671 6830 12 718 11 413
10 000 s 485 474 770 684 685 4433 4905 7300 12 718 11 413

100 s 437 451 634 684 683 3085 3506 3995 10 702 12 609
SIM 1000 s 439 451 641 684 685 3085 3562 4089 10 929 12 734

10 000 s 439 451 641 684 685 3085 3572 4089 11 422 12 869
100 s 667 747 1104 1450 1430 3155 4708 3906 21 879 15 522
1000 s 1306 844 1483 ∗1450 ∗1450 3155 4708 3906 21 879 15 522

10 000 s 1696 870 3848 ∗1450 ∗1450 5922 10 779 3906 21 879 15 522
+VIII-C 100 s 847 1440 1449 4708 3855 13 742

PBO R = 5 s 1000 s 1187 2484 ∗1450 ∗1450 4708 3855 20 109 14 310
Unit α = 0.9 10 000 s 1577 845 3596 ∗1450 ∗1450 5843 7546 3855 20 109 14 310
delay +VIII-D 100 s 1425 849 1116 1429 1433 2873 4719 3767 21 306 15 253

R = 2 s 1000 s 1441 849 1512 1450 1450 5374 4719 3767 21 306 15 253
10 000 s 1671 854 3012 1450 1450 5374 8484 3767 21 306 15 253

100 s 1683 890 1631 1450 1450 5774 7892 7324 20 120 19 113
SIM 1000 s 1725 897 1840 1450 1450 5878 7959 7371 20 293 19 286

10 000 s 1731 913 1986 1450 1450 5946 8638 8042 21 829 20 509

roughly a million to 40 million vectors are simulated in
10 000 s for SIM.

On the other hand, three sets of PBO experiments are per-
formed. The first is the original formulation for combinational
or sequential circuits, with zero or unit-delay. This includes
the Gt reduction technique described in Section VIII-A, as
well as the optimization for BUFFER/NOT sequences given in
Section VIII-B. The second set of experiments adds to this
the heuristic given in Section VIII-C. Here R = 5 s of random
simulations are run to find an initial maximum activity M

before our method is applied, and the PBO solver is forced
to start from an activity of at least α · M with α = 0.9. This
value is chosen as a compromise between an α which yields
an original problem that is too difficult to solve (e.g., α ≥ 1)
and one that has little effect on the solver. The third set of
experiments adds the switching equivalence classes heuristic

described in Section VIII-D to the original PBO formulation.
Here, R = 2 s of random simulations are performed to obtain
the switching signatures of each gate or time-gate.

Tables I and II show the experimental results for ten
ISCAS85 and 20 ISCAS89 benchmarks, respectively. We
describe these two tables simultaneously because they have
the same structure. The first and second rows, respectively,
show the circuit names and the corresponding numbers of
gates. The maximum circuit activities in Tables I and II are
in units of switched capacitance, where Ci = |fanouts(gi)|
for internal gates and Ci = 1 for primary output gates. For
each experiment, the generated maximum activity values are
recorded after 100 s, 1000 s, and 10 000 s. For each circuit and
delay model, activities are compared between the four sets
of experiments, namely, PBO, PBO+VIII-C with R = 5 s and
α = 0.9, PBO+VIII-D with R = 2 s, and finally SIM. The
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Fig. 7. Maximum activity versus execution time for c7552, zero-delay
model.

highest activity after each time-period is highlighted in bold.
An empty table cell indicates that no bound is found up to
that time. Finally, a “∗” in front of an activity value indicates
that the PBO solver proved that the generated activity is in
fact the absolute maximum. This occurs if the incremental
PBS formula becomes UNSAT, signaling that no higher circuit
activity can be found.

For instance, using a unit-delay model, in circuit c432,
both PBO and PBO+VIII-C prove the maximality of 1041 by
10 000 s, whereas the maximum activity generated by SIM is
(964). Note that for PBO+VIII-D, the activities found by the
solver are not recorded directly since they are not guaranteed
to be exact due to uncertainties in switching equivalence
classes, as described in Section VIII-D. Instead, the corre-
sponding input sequences returned by the solver are simulated
on the circuit and the resulting activities are recorded. As
a result, even when PBO+VIII-D “proves” the maximality
of a switching activity, this is not shown using a “∗” in
Tables I and II.

Overall, by the 10 000 s time-out, PBO, PBO+VIII-C, and
PBO+VIII-D, respectively, yield 6%, 7%, and 7% higher
activities than SIM on average. Our approaches yield an
average 11% improvement over simulations using a zero-delay
model, and 3% improvement using a unit-delay model. All
these averages are pushed down by some of the negative results
of the PBO-based approaches for the largest circuits, such as
s38584. At the 100 s and 1000 s marks, SIM slightly outper-
forms the PBO-based approaches. However, a longer time-
out benefits our methods. There exists previous work [9] that
provides a statistical quality measure for maximum activities
generated using simulations. On the other hand, attempting to
estimate a reasonable PBO time-out is a very difficult endeavor
because of the nature of SAT and PBO solvers, in the sense
that it is difficult to predict their performance. The assumption
is that these power estimation runs can be performed by the
engineer overnight and therefore can have reasonably long
time-outs, which benefits our method.

Figs. 7 and 8 show the circuit activities generated by each
of the methods for c7552 with zero-delay and c2670 with unit-
delay, plotted against execution time. A common observation
in these figures, as well as in Tables I and II, is that SIM
results tend to plateau, whereas PBO-based approaches con-
tinue producing increasing activities. However, in some cases

Fig. 8. Maximum activity versus execution time for c2670, unit-delay
model.

Fig. 9. SIM versus PBO maximum activities.

Fig. 10. SIM versus PBO+VIII-C maximum activities.

where the size of the symbolic problem starts affecting the
performance of the PBO-based approach (e.g., for benchmark
s15850), even 10 000 s is not enough time for MiniSat+ to
improve the maximum activity significantly.

There exist cases where the estimation improvement of
PBO-based approaches compared to SIM is considerably large.
For instance, using a unit-delay model, in circuit s1423, PBO,
PBO+VIII-C, and PBO+VIII-D, respectively, record 94%,
81%, and 52% improvements over SIM. This supports the
argument that our PBO-based technique, being an exhaustive
symbolic approach, complements simulations by occasionally
discovering “hidden” corner cases of maximum activity gen-
erating stimuli that are missed by SIM.

Benchmark c6288 with unit-delay constitutes a special
case because of its disproportionately large number of levels
(L = 164), which causes N, and subsequently the CNF of the
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TABLE III

Switching Equivalence Classes

T c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552
Zero # switch xors 129 421 302 420 312 576 785 1305 2363 1774
delay # equivalence classes (R = 2 s) 129 412 299 413 310 542 730 1273 2359 1679
Unit # switch xors 1053 3565 3061 3669 4011 3199 9666 11 132 143 422 19 428
delay # equivalence classes (R = 2 s) 1041 3284 2733 3316 3522 2616 8066 9437 94 638 15 899

T s713 s1238 s1423 s1488 s1494 s9234 s13207 s15850 s38417 s38584
Zero # switch xors 168 451 526 566 571 2194 3048 3766 10 345 12 794
delay # equivalence classes (R = 2 s) 131 446 481 537 544 1720 2303 2985 9109 11 254
Unit # switch xors 3198 2497 10 186 2194 2213 17 241 14 126 42 765 61 748 75 973
delay # equivalence classes (R = 2 s) 1093 1998 2293 1871 1887 5415 4330 6758 28 364 26 994

Fig. 11. SIM versus PBO+VIII-D maximum activities.

Fig. 12. SIM versus PBO with at most d = 10 input flips, unit-delay model.

SAT problem, to be very large. As a result, for c6288 with
unit-delay, we explicitly tell MiniSat+ to use “-adders” [22]
in order to save memory, at the expense of performance.

Figs. 9–11 plot the activities generated by PBO,
PBO+VIII-C, and PBO+VIII-D, respectively, against those
generated by SIM, on a logarithmic scale. These numbers are
compared after 100 s, 1000 s, and 10 000 s. In all cases, it can
be seen that longer time-outs help PBO over SIM, given that
simulation results start to plateau. In Fig. 9, after 100 s and
1000 s, many points are still below the 45° line. However, after
10 000 s, the PBO activities mostly beat SIM activities with
some exceptions. For PBO+VIII-C, Fig. 10 and Table I only
record the activities found by the PBO solver and do not show
the activities generated by the first R = 5 s of simulations.
As expected, the PBO solver sometimes requires more than
100 s to find circuit activities exceeding the maximum found
by simulations after R = 5 s. The 10 000 s points in Fig. 10
are generally above the 45° line. Finally, in Fig. 11, the use

TABLE IV

PBO Versus SIM Results with a 50 000 s Time-Out

PBO SIM
T 10 000 s 50 000 s 10 000 s 50 000 s
c5315 8034 8633 8216 8427
c6288 64 720 111 346 139 341 142 375
c7552 10 477 12 569 11 900 12 713
s713 1696 ∗1829 1731 1739
s1238 870 884 913 913
s9234 5922 6157 5946 6005
s13207 10 779 11 740 8638 8638
s15850 3906 8090 8042 8042
s38417 21 879 29 282 21 829 22 085
s38584 15 522 20 570 20 509 20 509

TABLE V

PBO Versus SIM Results with at Most Ten Input Flips

PBO SIM
T 1000 s 10 000 s 1000 s 10 000 s
c432 921 996 822 822
c499 1410 1569 1369 1375
c880 1912 2306 1893 1893
c1355 1604 1634 1342 1358
c1908 2145 2197 1751 1769
c2670 1688 1808 1535 1568
c3540 4486 5175 5372 5372
c5315 3337 4985 3977 3984
c6288 87 107 100 683 111 268 111 268
c7552 6790 8895 7766 7766
s713 1554 1615 1513 1602
s1238 773 792 766 828
s1423 2478 3465 1644 1966
s9234 4827 6349 5337 5842
s13207 5888 10530 8174 8678
s15850 4049 4049 8008 8008
s38417 21 154 21 154 19 777 20 556
s38584 16 044 16 044 19 343 19 890

of equivalence classes improves the scalability of the larger
problems. In particular, the activity found using PBO+VIII-D
for c6288 with unit-delay is the only one that surpasses that
found by SIM within 10 000 s.

Table III shows the number of switching equivalence classes
found using R = 2 s of simulation (and hence the number of
“switch” XOR gates in N) for the ten largest ISCAS89 circuits
and all ISCAS85 circuits. This number is compared to the
original number of XOR gates in N without the heuristic of
Section VIII-D. One can notice that the reduction in added
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XORs increases with the circuit size. This is expected, since
given a constant simulation time, less vectors can be simulated
for a large circuit compared to a small design, and therefore
gates or time-gates will be less differentiated during simula-
tions, resulting in larger equivalence classes. The argument
for doing this is that a reduction is more useful for larger
problems in order to extend scalability. The advantage of using
switching equivalences classes becomes especially apparent
for the c6288 benchmark with unit-delay, where due to the
prohibitively large F in the original formulation, MiniSat+

is unable to improve on its original activity estimates using
PBO (64720) and PBO+VIII-C (101921). On the other hand,
using PBO+VIII-D, the found maximum activity is improved
several times.

In order to observe the effects of a longer time-out, we
pick ten circuits, where, using a unit-delay model, SIM either
outperforms PBO or yields only slightly lower activities within
10 000 s, as shown in Tables I and II. We increase the time-out
to 50 000 s, and record the generated activities in Table IV,
next to the 10 000 s time-out results. Whereas in only two
of these circuits (s13207 and s38584), PBO outperforms SIM
within 10 000 s, this number increases to seven within 50 000 s.
Overall, PBO activities increase by 30% on average from the
10 000 to the 50 000 s mark, whereas SIM activities increase
by a mere 1%. This is not surprising because MiniSat+

keeps learning clauses and focusing its search in an attempt to
exhaust the problem search-space, whereas SIM continues to
blindly apply pseudo-random simulations. Furthermore, PBO
is able to find the maximum circuit activity for s713 within
50 000 s.

However, this indicates that the PBO activities generated
within 10 000 s for the circuits in Table IV are on average at
least 30% lower than their actual maximum activities. As such,
it is useful to investigate the time required by the PBO solver to
arrive at reasonably accurate maximum activity estimates. Un-
fortunately, there is no clear relationship between circuit size
and this required time-out, due to the unpredictable behavior
of PBO solvers. Furthermore, the incremental improvements
in activities returned by the PBO solver do not necessarily
become smaller with time. As such, it is not possible to
use the sequence of returned PBO activities in a vacuum to
determine a time-out. On the other hand, some PBO solvers,
e.g., MiniSat+, regularly report a progress value at runtime,
measuring the percentage of the search-space that has been
visited or pruned so far. This could be used in determining
when to stop the solver. A more robust option would be to
use a statistical method such as [6] and [14] as a preliminary
maximum activity estimation step, which is to be confirmed by
an actual input pattern returned by PBO. In this case, the PBO
solver would be stopped if an activity close to the statistical
estimation has been found, or if some ultimate time-out has
been reached.

Next, instead of attempting to characterize the reachable
states of ISCAS89 circuits as input constraints, we have im-
plemented the nontrivial Hamming distance input constraints,
as described in Section VII, as a proof of the applicability
and effectiveness of input constraints using PBO. Obtaining a
realistic set of valid states for the ISCAS89 circuits is beyond

the scope of this paper. Table V shows the results of PBO
versus SIM with a unit-delay model, constrained to at most
d = 10 primary input flips, for the ISCAS benchmarks that
have at least ten primary inputs. The resulting activities are
expectedly generally lower than those in Table I because of
the added restrictions on input switching. Fig. 12 plots the
PBO versus SIM activities with input constraints of at most
d = 10 bit flips on a logarithmic scale. Again, our PBO-
based improves with increasing time-outs. After 10 000 s, PBO
generates 10% higher activities than SIM on average.

X. Conclusion

This paper proposed a PBS-based framework for finding
the input sequence that maximized single-cycle circuit activity.
The method was extended to take into account multiple gate
transitions during a clock-cycle. The integration of various
external input constraints into the symbolic problem formula-
tion was also described. Several optimizations were presented,
such as the grouping of gates that were likely to switch in
tandem into switching equivalence classes. The experimental
results on ISCAS benchmarks showed 7% higher activities
on average compared to parallel-pattern random simulations
within 10 000 s, and further improvements with longer time-
outs.

The theory and results of this paper confirmed the need
for further research in SAT-based solutions for problems in
low-power design, especially given the tremendous rate of
advancement in SAT engines and their extensions.
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