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1 Introduction

The reliability of integrated circuits is a major concern for the electronics industry. As higher

levels of integration are used, the minimum line width and line separation will decrease,

thereby increasing the chip failure rate. This indicates that the importance of reliability

can only increase in the future. It is, therefore, imperative that circuits are designed with

reliability in mind.

This work addresses electromigration [1, 2] (EM), which is a major reliability problem

caused by the transport of atoms in a metal line due to the electron 
ow. Under persistent

current stress, this can cause deformations of the metal leading to either short or open

circuits. The failure rate due to EM depends on the current density in the metal lines and

is usually expressed as a median time-to-failure (MTF). There is a de�nite need for CAD

tools that predict the susceptibility of a given design to EM failures.

A simulation tool, SPIDER [3], has been developed to estimate the MTF for each section

of a metal bus corresponding to any user-selected interconnect signal. It requires the user to

specify current sources to load the metal bus at speci�ed contact points. Using these current

sources, SPIDER extracts an equivalent resistance network to represent the bus, simulates

the network using SPICE [4] to determine the current density in each section, and then

estimates the MTF of each section using models developed in [5]. The user is, however, left

with the problem of specifying current sources. This can be very hard to do for a big chip,

especially for CMOS circuits, because they draw current only during switching transients.

Hence there is a need for a CAD tool that derives these currents.

We present a new technique for solving this current estimation problem for CMOS cir-

cuits. This has been implemented in the program CREST (CuRrent ESTimator) and has

proven to be very e�ective both in terms of accuracy and speed. We focus our attention

on the power and ground busses, and derive loading currents for them to be used for MTF

estimation. These busses are the usual, although not only, locations of severe EM failures.

Preliminary results of this works have been presented in [6, 7].

It is important to understand exactly what information about the current is needed for

EM analysis. CMOS circuits, as pointed out above, draw current only during switching,

and, therefore, produce a non-dc current waveform. It is well known [5] that, in the presence
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of such waveforms, the MTF due to electromigration is dependent on the shape of the

waveform and not simply on its time-average (ie area). So a simple averaging approach is

unacceptable. On the other hand, the MTF is the combined e�ect of a large number of

current waveforms, corresponding to the variety of logical waveforms that can be applied

at the circuit inputs during typical operation. It would be insu�cient, therefore, to use

a standard timing simulator to derive the current corresponding to a single set of logical

input transitions. It is also obvious that redoing a such a simulation for every possible input

transition is impractical, since for a circuit with n inputs, the number of possible transitions

at the inputs is 22n.

CREST overcomes this problem by deriving an expected current waveform; this is a

waveform whose value at a given time is the weighted average of all possible current values

at that time, as shown in Fig. 1. Such a waveform is a good compromise between an

unacceptable time-average and an insu�cient single-transition estimate of the current, and

provides an appropriate current estimate for electromigration analysis.

To derive this waveform, CREST considers a user-speci�ed range (or set) of possible in-

put values and/or transitions and calculates the expected current waveform over this range.

Rather than enumerating the set of inputs and averaging the corresponding current results

(which would be impractical), CREST uses statistical information about the inputs to di-

rectly derive the required expected current waveform. The resulting methodology is what

we call a probabilistic simulation of the circuit. In general, it can be slightly more time

consuming than standard timing simulation, but it needs to be applied only once, resulting

in signi�cant speedup.

Several simplifying assumptions and/or approximations will be made in the following

sections to make the problem computationally tractable. Whenever possible, we will attempt

to justify these assumptions. However, for lack of space, this will not always be possible, and

the reader will be referred to appropriate references. Nevertheless, we will o�er a veri�cation

of the overall approach on a global scale, by comparing the end result of the simulation

(expected waveform) from CREST with that derived using SPICE.

The rest of this paper is organized as follows. The next section gives a system overview

to introduce some basic concepts and the overall simulation strategy. Section 3 explains

the basic current estimation algorithm as part of the simulation of standard CMOS gates.
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Pass-transistor circuits are handled in section 4. Section 5 discusses supergates, required to

handle signal dependence. Section 6 presents implementation issues and results, and the last

section draws some conclusions and indicates the direction of future research. The appendix

discusses a basic graph reduction operation that will be frequently used.

2 System Overview

We have developed a new current estimation approach that derives the expected current

waveform directly from probabilistic information about the inputs. A single event-driven

simulation, similar in some aspects to timing simulation, is the basis of the technique. Be-

fore going into the details, we introduce some basic concepts and provide the theoretical

groundwork.

Consider a set 
, each element of which represents a combination of logical waveforms to

be applied at the circuit inputs1; this is the range of inputs over which the expected current

waveform is to be derived. If certain probabilities are assigned to the elements of 
, then

we can think of it as a probability space [8]. Associated with each element of 
 is an actual

current waveform that the circuit would draw if subjected to that combination of inputs.

This association (or mapping) de�nes a stochastic process i(t) whose mean E[i(t)] is the

expected current waveform to be derived. Likewise, every input node Ni has associated with

it a stochastic process xNi
(t) that embodies the di�erent possible logic waveforms allowed

at Ni. These in turn de�ne other processes at the internal nodes of the circuit.

The technique to be presented takes the user's input speci�cations (de�ning the processes

xNi
(t)) and uses the circuit topology (which de�nes the mapping from logical inputs to

current waveforms) to derive the corresponding processes at internal nodes, decipher the

statistics of i(t), and derive its mean. This, somewhat abstract, description will be made

more concrete below.

2.1 Probability waveforms

We build on the concept of signal probabilities [9], which has recently become popular in

the testing �eld [10]. This can be summarized as follows : a probability value is assigned

1 Strictly speaking, if the circuit contains memory elements, then its initial state also
a�ects the structure of 
.
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to each input node to indicate the probability that it is high. The circuit topology is then

used to propagate these values so that the probability at any internal node is derived. The

probability space in this case is a subset of the set 
 de�ned above, because it contains

steady state values only, and not waveforms.

We extend the signal probabilities concept by de�ning transition probabilities. The tran-

sition probability of a signal N at time t is the probability of a low-to-high transition from t�

(just before t) to t+ (just after t), denoted PN;lh(t). Given these probabilities at the inputs

then internal node transition probabilities can be derived from them.

Using transition probabilities we can compactly describe a large set of logic waveforms.

For example : input N is high with probability .76 at time 0 (PN;h(0) = :76), switches low-

to-high with probability .5 at time 2ns (PN;lh(2ns) = :5), is then high with probability .35

at time 3ns (PN;h(3ns) = :35), etc... . Such an alternating sequence of signal probabilities

and transition probabilities will be referred to as a probability waveform. An example of a

probability waveform and the few logical waveforms it represents is shown in Fig. 2. CREST

uses such a waveform as a representation2of a stochastic process at a node. The site of a

transition probability in this waveform will also be referred to as a transition edge, shown as

an arrow in Fig. 2. A transition edge is an important part of a probability waveform because

it may cause current to be drawn. Transition edges will also be called probabilistic events,

or simply events.

An event at a node N at time t is described by the three probabilities : PN;h(t�), PN;lh(t),

and PN;h(t+). It is easy to see that these are enough to describe the statistics of the event

since other probabilities can be derived from them. For instance, the probability of a high-

to-low transition can be easily derived using the identity Ph(t+)� Ph(t�) = Plh(t)� Phl(t),

which is obtained from simple probability theory.

2.2 Simulation algorithm

CREST is a probabilistic simulator since it operates on probabilistic, rather than logical,

signals. The simulation algorithm itself, however, is deterministic. The user speci�es proba-

2 This, in fact, is an incomplete representation, but is su�ciently accurate for our purposes.
It would be prohibitively expensive to maintain a complete representation.
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bility waveforms at the primary inputs of the circuit, which are propagated into the circuit

to derive the expected current waveform.

The waveforms speci�ed at the circuit inputs constitute the primary means for the user

to in
uence the simulation. They allow one to study the reliability of the circuit under

\typical" operating conditions. As described above, every probability waveform consists of

a sequence of transition edges, or events, tagged with signal and transition probabilities. If

these probabilities are set to 0s and 1s, then the waveform becomes a simple logic waveform.

Thus, if enough is known about the activity at the circuit inputs, the user may �ne tune

the simulation to the point where logical waveforms are speci�ed at some inputs (say, clock

inputs). Otherwise, if little is known about the inputs, then one can allow a large variety of

possible signals by specifying appropriate probability waveforms.

To prepare a set of probability waveform inputs, there are at least two options. If one

is comfortable with the probability waveform concept, then these inputs may be simply

entered as sequences of real numbers between 0 and 1. Otherwise, we assume that the user

has available a representative set of logical input waveforms from previous logic, timing, or

fault simulation runs on his design. The corresponding set of probability waveforms can

then be obtained as follows. For a given input node, consider all the logical waveforms that

it may experience. Then, for every time point, take the average of the values in all these

waveforms, considering high to be 1 and low to be 0. When the signal is not changing, the

value thus obtained is the required probability waveform value at that time. When the signal

is changing, from low to high, then the fraction of the logic waveforms in which it makes that

transition at that time gives the required transition probability in its probability waveform.

Given the input probability waveforms, an event-driven simulation approach, similar

to what is commonly employed by logic or timing simulators, is used to propagate them

throughout the circuit. The circuit is divided into gates. When a probabilistic event occurs

on the input to a gate, the expected current pulse caused by the event is estimated, and

the appropriate probabilistic event is created on the output node of the gate. The expected

current pulses from individual gates are summed to create the expected current waveform

drawn by the circuit. The program operates on a transistor description of the circuit, which it

partitions into primitive gates of two major types : standard CMOS gates and pass transistor
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gates. Current pulse estimation and probabilistic event propagation for each of these gate

types will be further discussed in sections 3 and 4 below, respectively.

2.3 Signal dependence

A major problem with any tool dealing with a number of statistical quantities is keeping

track of, and modeling, the correlation or dependence among them, CREST is no exception.

Dependence between signals in CREST is of two types. The �rst is a dependence existing

between the two values at the same node at two distinct time points, this will be referred

to as temporal dependence. The second is the dependence existing between two signals if

their nodes depend on the same fanout stem in the circuit, this will be referred to as spatial

dependence. A feedback loop involves both spatial and temporal dependencies; in general

two signals may be dependent due to either or both of these types.

CREST accounts for temporal dependence in a limited sense. The dependence between

two signal values separated by a single transition edge is accounted for - this, in fact, is the

reason transition probabilities are introduced. The program, however, does not keep track of

the dependence between signal values separated by more than one transition edge. It turns

out that this approach is su�ciently accurate for our purposes because the probabilities at

(and on both sides of) a transition edge are enough to derive the current pulse corresponding

to it. To accurately keep track of temporal dependence between the signals at any two time

points in a waveform would be equivalent to a complete representation of a stochastic process

(see footnote 2 above) and would be prohibitively expensive.

Spatial dependence is handled using the concept of a supergate [10], as explained in sec-

tion 5 below. It is important to make the point now, however, that this reduces to simulating

gates whose inputs are independent. The descriptions of the simulation of primitive gates in

the following sections will therefore assume that a gate's inputs are independent.

2.4 Graph reduction

This section brie
y introduces a graph reduction procedure that is central to the simulation

algorithms to be presented, and which will be used frequently below. The appendix is

devoted to a precise formulation and description of this approach.
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Simply stated, the need will frequently arise to derive the probability that a mesh of

transistors, joining two speci�ed points, provides a conducting path between them. An

example is given in Fig. 3, where the p part of a CMOS complex gate is shown. Typically,

the probabilities at the gate nodes of the transistors are known, and the probability at the

gate output is required. The general methodology will be to consider a graph that is identical

to the transistor mesh (Fig. 3) in which the edges are labelled with the probabilities of the

gate nodes. This graph is then reduced to a single edge whose label(s) provide the required

probabilities. In Fig. 3, the probability that the output is high is simply the probability that

the edge � is conducting.

Actually, the edges are labelled by both signal and transition probabilities, as well as by

the expected conductance of the transistors. After the graph is reduced, the resultant labels

on � determine the event at the output, and its expected conductance is used to derive the

expected current. The reader is referred to the appendix for details of this reduction.

3 Standard Gate Simulation

The term standard gate will be used to refer to a CMOS fully complementary gate, as shown

in Fig 4. The p-block or p-part (n-block or n-part) of a gate will be used to refer to the

p (n) channel transistor mesh between its output node and the power supply (ground). A gate

will be assumed to have spatially independent inputs. The general case is properly handled

using the concept of a supergate, as described in section 2 above, with the independent-

inputs-gate-solver used as a subroutine. Simulating a gate is the procedure of analyzing

a gate that has certain events at its inputs to derive the corresponding output event and

expected current pulse.

Given the events at the inputs of a gate at a certain time t, its output event can be easily

derived as follows. Consider the p part of the gate and build a graph that represents it using

the transistor gate probabilities to label the graph edges with the probabilities that each

edge \is on," \was on," and \transitions from o� to on." The graph reduction procedure

described in the appendix is then used to reduce the graph to a single edge between Vdd and

the output node. It is obvious that the probabilities of the single edge � remaining at the
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end of the reduction give the required output event. The time of occurrence of this event

will be derived at the end of this section.

The current estimation procedure at each gate will now be discussed. The expected gate

current pulse will be modeled by a triangular pulse that starts with a peak of E[I]
4
= E[i(t+)]

at time t and decays linearly to zero at time t + � . The rest of this section describes the

derivation of E[I] and � .

We will focus on the charging current component and leave out the direct component

which may be drawn through a path of p and n channel transistors during the transition.

This policy has been adopted based on Veendrick's [11] work which suggests that if the gate

is well designed then the direct current component may be neglected.

Consider the generic CMOS gate structure shown in Fig. 4. The �gure shows the p-

transistor block, the n-transistor block, and the output node capacitance split into two

lumped capacitors Cp to Vdd and Cn to Vss. Similarly, each internal node ni has two ca-

pacitances Cin and Cip. The values of these capacitances are derived from the circuit de-

scription and the transistor model parameters. On a low-to-high transition, the currents


owing through Cn and Cp at the output node are ip1 and ip2, respectively, as shown in

the �gure. The corresponding in1 and in2 for a high-to-low transition are also shown. The

currents ip2 and in2 are discharging currents that redistribute locally, and we are interested

in i = ip1 + in1. Of course these currents are associated with the output node only, and the

total gate current itot will be larger than i. However, the output current will play a central

role in the derivation.

Let ip = ip1 + ip2 and in = in1 + in2. It's easy to verify that ip1 = ip � Cn=(Cp + Cn),

and in1 = in �Cp=(Cp + Cn). Therefore :

E[i(t)] = E[ip(t)]�
Cn

Cp + Cn
+ E[in(t)]�

Cp

Cp + Cn
(3:1)

And in particular, the value at the peak is :

E[I] = E[Ip]�
Cn

Cp +Cn
+ E[In]�

Cp

Cp +Cn
(3:2)

The values of E[Ip] and E[In] are derived as follows. For ip, consider the p part of the

gate, and let every transistor Tk be represented by a switch of on-conductance gon;k, where
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gon;k is (the maximum conductance) given by :

gon;k =
�k

2Vdd
(Vdd � VT )

2(1 + �Vdd) (3:3)

where VT is the magnitude of the transistor threshold voltage, �k is its transconductance,

and � is the channel length modulation factor. This de�nition of gon;k is used because we

are interested in the peak current drawn, which occurs during saturation. The value of gon;k

is derived from the transistor model parameters given by the user.

Now let Gp(t) be the random conductance between the output node and Vdd. Gp is a

function of the individual transistors' random conductances gk, where gk is 0 if the transistor

is o� and gon;k if it is on. If an event occurs at the gate at time t, then the value of E[Gp(t+)]

and the previous state of the output node, Vo(t�), will determine E[Ip]. Formally, we have

E[Ip] = E[(Vdd � Vo(t�))�Gp(t+)], which becomes :

E[Ip] = Vdd � E[Gp(t
+) j Gp(t

�) = 0]� P (Gp(t
�) = 0) (3:4)

where P (A) is the probability of the event A, and E[A j B] denotes the conditional expected

value of A given B. The formula is correct because if Gp(t�) = 0 (1) then Vo(t�) = 0 (Vdd).

Similarly for the n part of the gate, we get :

E[In] = Vdd � E[Gn(t
+) j Gn(t

�) = 0]� P (Gn(t
�) = 0) (3:5)

If the gate inputs at t+ are independent of their values at t� then E[Gp(t+) j Gp(t�) =

0] = E[Gp(t+)] and the problem would be simpli�ed. In this case the value of E[Gp] (or

E[Gn]) may be derived from the graph by considering a graph representation of the p (n)

block of the gate using the conductances E[gk] of the transistors and their gate node prob-

abilities and performing a graph reduction. However this is not true in general and the

dependence between G(t+) and G(t�) should be taken into account.

To �nd the conditional expected value of Gp, E[Gp(t+) j Gp(t�) = 0], we perform

the graph reduction using E[gk(t+) j Gp(t�) = 0], instead of E[gk(t+)], for every transistor;

likewise for Gn. If xk is the gate node of transistor Tk in the p-part, then it can be shown [12]

that :

E[gk(t+) j Gp(t�) = 0] = gon;k �

�
Pxk;ll(t)

Pxk;l(t
�)

+
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�
Pxk;lh(t) � Pxk;l(t

�)Pxk;h(t
+)

�
�

P (Gp(t�) = 0 j xk(t�) 6= 0)

P (Gp(t�) = 0)P (xk(t�) = 0)

�
(3:6)

and, if Tk is in the n part, then :

E[gk(t
+) j Gn(t

�) = 0] = gon;k �

�
Pxk;hh(t)

Pxk;h(t
�)

+

�
Pxk;lh(t) � Pxk;l(t

�)Pxk;h(t
+)

�
�

P (Gn(t�) = 0 j xk(t�) = 0)

P (Gn(t�) = 0)P (xk(t�) 6= 0)

�
(3:7)

Therefore, it takes an additional graph reduction for every gate input to compute the values

P (Gp(t�) = 0 j xk(t�) 6= 0) and P (Gn(t�) = 0 j xk(t�) = 0).

The derivation of E[G(t+) j G(t�) = 0] outlined above makes the implicit assumption

that when the probability space is restricted by the condition G(t�) = 0 the independence

of the gate inputs is preserved. This may not always be true, and the implementation in

CREST has a protection measure to safeguard against this consisting of a simple upper

bound [12] on E[G(t+) j G(t�) = 0].

Having found E[I] for the output node, the expected value of charge delivered to (or

from) the output node capacitors is easily found as follows :

E[q] = Vdd � Cn � Po;lh(t) + Vdd � Cp � Po;hl(t) (3:8)

where o is the output node. We now make the approximation that the time constant for

charging or discharging the output node is the largest of the internal gate nodes. Conse-

quently, the time span of the output node current represents the time span � of the total

gate current. By the triangular pulse approximation :

� = 2�
E[q]

E[I]
(3:9)

Next, the expected value of the charge delivered by the total gate charging current,

E[qtot] is derived using the capacitances at each internal node j as follows :

E[qtot] �
X

j2p block

VddCjnPj;lh +
X

j2n block

VddCjpPj;hl (3:10)

Strictly speaking the probabilities Pj;lh and Pj;hl are hard to �nd; they are in fact NP�hard

to �nd in general, based on [13]. We have therefore opted to use an upper bound of these

probabilities to replace them in the equation. An upper bound of Pj;lh (Pj;hl), for a node in
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the p (n) block, is the probability that the conduction state between j and Vdd (Vss) goes

from o�-to-on. This is found by a graph reduction that repeats the work done to �nd Po;lh

for the output node o for every internal node j. Finally, the peak total current is found as :

E[Itot] =
2E[qtot]

�
=
E[qtot]

E[q]
�E[I] (3:11)

The relationship between these quantities is depicted in Fig. 5.

Having derived the expected gate current pulse, the time of the new event at the output

of this gate needs to be derived, as follows. If one considers a resistor R charging a capacitor

C from a power supply V , then the current and voltage at the capacitor both reach their

half-point at time :693 � RC. If we assume that the individual current pulses i(t) are

exponentially decaying, rather than linear, then the switching time at the output, ts, is

0:693�(Cp+Cn) = Gp for a low-to-high transition, and 0:693�(Cp+Cn) = Gn for a high-to-low

transition. This ts is, again, a random variable, and one is interested in E[ts j Vo transitions].

Knowing that the duration of ip (or in) determines the gate delay, and that these currents

deliver charge to both Cp and Cn, then if qp and qn are the charges delivered, we have :

E[qp] = Vdd � (Cp + Cn)� Po;lh ; and (3:12)

E[qn] = Vdd � (Cp + Cn)� Po;hl (3:13)

The duration of the two pulses is derived as before, as :

�p = 2�
E[qp]

E[Ip]
; and �n = 2�

E[qn]

E[In]
(3:14)

Having found these values, the time delay can be shown [12] to be :

E[ts j Vo transitions] = 0:35�
�p � Po;lh + �n � Po;hl

Po;lh + Po;hl
(3:15)

It is important to note that �p and �n are independent of the particular partitioning of

(Cp + Cn), which makes the timing estimate reliable.

4 Pass-Transistor Circuits

Pass-transistors present a problem because they act as memory elements. The output of

a pass-transistor network depends on more than just its inputs, the previous values at its
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output and internal nodes are also important. It is also no longer true that the probabilities

of the path(s) from the output to Vdd or Vss completely de�ne the output event because

the output may be disconnected from both. Current drawn through pass-transistors is a

relatively small fraction of the overall current dissipated in a CMOS circuit and will be

ignored. However, events must be propagated correctly through them so that the gates

downstream are correctly simulated.

To reduce their complexity, we break up pass-transistor networks into two types of prim-

itive gates : stages and wires, as shown in Fig. 6. A concrete example of this decomposition

is given in Fig. 7. Stages represent conducting paths that connect two nodes; while wires

are used to tie together the outputs of two or more stages. These gates can be used to

build complicated pass transistor networks. This decomposition involves two simplifying

assumptions : transistors are unidirectional, and memory states are signi�cant only at the

boundaries of stages and wires. The direction of each gate must be carefully assigned, and

we use several levels of algorithms, including some rules from [14].

As in traditional logic simulation, the two logic values 0 and 1 are not enough to model

pass-transistor circuits, and ways of representing weak 0 and 1 signals must be introduced.

Nodes in a pass-transistor section of a circuit can have four valid states : conducting path

to Vdd (high tied or ht), conducting path to Vss (low tied or lt), charged with no conducting

paths (high 
oating or hf), and discharged with no conducting paths (low 
oating or lf).

An additional state is introduced : no path to either Vdd or Vss (
oating or f). Although

there is redundant information, �ve probabilities are used to fully de�ne the states of all

nodes in a pass transistor structure : Pht, Plt, Phf , Plf , and Pf .

Correspondingly, the set of probabilities needed to describe an event is also enlarged,

these events will be referred to as expanded events. Expanded events must contain the

probability that the node was high tied (Pht), low tied (Plt), and high (Ph) before and after

the transition. Additionally, transition probabilities from low to high (Plh), low tied to high

tied (Plt!ht), low tied to 
oating (Plt!f ), 
oating to high tied (Pf!ht), and 
oating to


oating (Pf!f ) are needed to propagate probability waveforms through the pass-transistors.
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4.1 Stage simulation

The simulation of a stage involves a graph reduction by which the stage is reduced to a

single edge � between its input and output. This procedure (see the appendix) provides the

probabilities that this edge is on, P�;1(t+), was on, P�;1(t�), and transitions from o� to on,

P�;01(t). Other probabilities, such as on to o�, P�;10(t), on to on, P�;11(t), and o� to o�,

P�;00(t), can be derived from simple probability theory. If the stage has input x and output

y then the following formulas can be derived [12] :

Py;ht(t
�) = P�;1(t

�)� Px;ht(t
�) (4:1)

Py;lt(t
�) = P�;1(t

�)� Px;lt(t
�) (4:2)

Py;lt!ht(t) = P�;11(t)� Px;lt!ht(t) (4:3)

Py;f!ht(t) = P�;01(t)� Px;ht(t
+) + P�;11(t)� Px;f!ht(t) (4:4)

Py;lt!f (t) = P�;10(t)� Px;lt(t
�) + P�;11(t)� Px;lt!f (t) (4:5)

Py;f!f (t) = P�;00(t) + P�;01(t)� Px;f (t+)

+ P�;10(t)� Px;f (t
�) + P�;11(t)� Px;f!f (t) (4:6)

Notice that these formulas, while determining most of the stage output probabilities, do

not �nalize its simulation because the probabilities of the high 
oating or low 
oating states

are not yet available. This is to be expected because the state of the 
oating output of a

stage can be a�ected by other stages tied to the same wire gate. The simulation of a wire,

to be discussed next, uses the quantities derived above for the stage(s) outputs to �nalize

their simulation and obtain the wire output probabilities.

4.2 Wire simulation

If a wire has more than two inputs, one can think of it as a cascade of several wires with

two inputs each. Consequently, it is su�cient to study the simulation of a wire with only

two inputs x and y, and an output z. Since a wire is basically a wired-or con�guration,

voltage division may arise when its inputs are x = lt and y = ht (or vice versa). In

this case we make the assumption that the output is z = lt; this is based on the \weak

pull-up to Vdd" con�guration which is commonly used in CMOS and nMOS circuits. This
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assumption is implicit in the derivation of the following wire simulation formulas whose

(tedious) derivation [12] will not be included here :

Pz;ht = Px;ht � Py;f + Py;ht � Px;f + Px;ht � Py;ht (4:7)

Pz;lt = Px;lt + Py;lt � Px;lt � Py;lt (4:8)

Pz;lt!ht(t) = Px;ht(t
+)� [Py;lt!ht(t) + Py;lt!f (t)]

+ Py;ht(t
+)� [Px;lt!ht(t) + Px;lt!f (t)]

+ Px;f(t
+)� Py;lt!ht(t) + Py;f (t

+)� Px;lt!ht(t)

� Px;lt!ht(t)� Py;lt!f (t)� Py;lt!ht(t)� Px;lt!f (t)

� Px;lt!ht(t)� Py;lt!ht(t) (4:9)

Pz;f!ht = Px;f!ht � Py;f!f + Py;f!ht � Px;f!f + Px;f!ht � Py;f!ht (4:10)

Pz;lt!f (t) = Px;f(t
+)� Py;lt!f (t) + Py;f (t

+)� Px;lt!f (t)

� Px;lt!f (t)� Py;lt!f (t) (4:11)

Pz;f!f = Px;f!f � Py;f!f (4:12)

When all the inputs of a wire have been considered, its simulation is �nalized using the

following two formulas [12] :

Pz;lf (t
+) �

(
Pz;lt!f (t); if Pz;f(t�) = 0;
Pz;lf (t

�)

Pz;f (t
�)
� Pz;f!f(t) + Pz;lt!f (t); otherwise.

(4:13)

Pz;lf!ht(t) �

(
0; if Pz;f(t�) = 0;
Pz;lf (t

�)

Pz;f (t
�)
� Pz;f!ht(t); otherwise.

(4:14)

A minor independence assumption must be made in the derivation of these formulas;

this is necessary because of the limited sense in which temporal dependence is accounted for

(as mentioned in sub-section 2.3 above).

Having derived the probabilities of the wire's output event, the only remaining unknown

is the time of that event. The approach used by Horowitz [15] is suited to our probabilistic

models. By using the expected conductance of a stage derived in the graph reduction step,

and the internal capacitances of stages, a time constant can be derived for the pass-transistor

network. This is used to derive the time of the output event.
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5 Supergates

CREST assumes that the primary circuit inputs are independent. The single-gate current

estimation algorithms described above require that the probability waveforms, at the inputs

of each gate, be independent. This condition is violated if the circuit contains reconvergent

fanout or feedback. To overcome this problem, we borrow the concept of supergates from [10];

a supergate is simply a subset of the circuit with independent inputs, an example is shown

in Fig. 8. Supergate input nodes that are reconvergent fanout stems, or that a�ect inter-

nal reconvergent fanout stems of the supergate, are called reconvergent fanout input nodes,

abbreviated r� nodes. Nodes A and B in Fig. 8 are r� nodes of that supergate.

If logic (not probability) waveforms are assigned to r� nodes, then the signals at all inter-

nal supergate nodes become independent and the supergate can be easily simulated. Given

the probabilistic events at the r� inputs of a supergate, suppose the set of all possible logical

transitions embodied by these events is generated (Fig. 9), and the supergate simulated for

each of them. If the current results are summed up, weighted by the probability of each

case, the required supergate currents would result.

Based on these observations, the simulation of a supergate in CREST is carried out

by maintaining a set of di�erent simulation sub-processes, each representing the result of a

particular sequence of logical events at the supergate's r� nodes. Every sub-process has a

certain probability, namely the probability that the supergate has that state at that time.

When a new event arrives at an r� node it is applied to all existing sub-processes, some of

which will cause the creation of new sub-processes. When two sub-processes are performing

identical simulations, they are merged to produce a single new sub-process whose probability

is the sum of their probabilities.

This approach, while acceptable for small supergates, is too expensive for larger ones.

In these cases, CREST uses two heuristic parameters to reduce the performance penalties

while maintaining acceptable accuracy :

(1) �s : Limit supergate size to a user-speci�ed size threshold, �s. By limiting supergate size,

this indirectly limits the number of r� nodes and, therefore, the number of simulation

sub-processes.
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(2) �p : Terminate a simulation sub-process if its probability becomes less than a user-

speci�ed probability threshold, �p. This eliminates sub-processes that are likely to con-

tribute very little to the current waveform.

The e�ectiveness of these heuristics will be discussed in the next section.

The formation of supergates is done as a preprocessing step, during the initial parti-

tioning phase of the program. The details of that process are tedious and not interesting

enough to warrant inclusion in this paper. Very brie
y, if the circuit is combinational, then

the process involves a forward and a backward sweep to discover the node dependencies and

build the supergates. In a circuit with feedback, it's easy to see that every feedback loop is,

strictly speaking, a single supergate. Therefore a standard strongly-connected-components

algorithm is �rst used to group feedback loops into temporary supergates, after which the

circuit appears combinational, and supergates can be easily built. Since large feedback loops

can lead to huge supergates, we have used heuristics to break up large feedback blocks into

smaller ones to maintain a reasonable execution time.

6 Implementation and Results

As mentioned above, the probabilistic simulation approach has been implemented in a pro-

gram called CREST (CuRrent ESTimation program). The program is about 15000 lines,

written in C, and has been run on a variety of circuits and computer systems. It accepts a

SPICE circuit description �le, and requires another �le that speci�es the probability wave-

forms at the primary circuit inputs. Excellent accuracy and speed have been achieved on

real circuits.

To assess the accuracy of the results, it is important to make a fair comparison with an

expected current waveform derived using a valid simulation tool. To do so, we have generated

the expected current waveform for a variety of examples by running SPICE on every set of

input voltage signals allowed by the probability vectors, weighting each resulting current

waveform by the probability that the inputs producing it would occur, and summing the

weighted waveforms to produce the required result. Since the number of required SPICE

simulation runs grows exponentially with the number of circuit inputs, the comparisons to

be presented below will necessarily be limited to medium sized circuits. There is no reason
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to suspect, however, that the accuracy observed on these circuits will deteriorate on larger

ones.

Figures 10 and 11 show the results for a single complex gate and an inverter chain

respectively. Important features of these two �gures are the accuracy of the current waveform

in Fig. 10 and the good timing performance in Fig. 11. Fig. 12 shows the current pulse for

a typical pass-transistor circuit. In Fig. 13 we show the result for a larger circuit - a 4-bit

ALU with 154 MOSFETS involving a large number of pass-transistor gates and weak pull-

up transistors. The ALU was run for logical (rather than probabilistic) inputs because it

would take too long to run SPICE for all its possible inputs to allow a comparison with a

probabilistic CREST run.

CREST simulation times for these and other circuits are compared with SPICE in Ta-

ble 1. SPICE was chosen for these comparisons because it is a generally available tool,

and as such provides a common frame of reference. Since SPICE is known to be slow on

large circuits, we also o�er absolute measures of timing in the form of CPU seconds. The

table illustrates the dramatic gains available from CREST's probabilistic analysis when an

expected waveform is needed. In fact, as the number of circuit inputs increases, the speedup

of CREST compared to an approach based on logical inputs increases exponentially since

the size of the inputs space increases as 22n. For example, a (heuristic) CREST run on the

1839-transistor 34-bit ALU, which takes 13 seconds on a CONVEX 220, is equivalent to 2144

SPICE runs. The gains possible for logical inputs are illustrated in the last two examples,

where logical waveforms were used since the circuits were too large to examine for all inputs

in SPICE.

We �nally present the results to demonstrate the e�ectiveness of the supergate simulation

heuristics. Three circuits were used for these simulations : a 2-bit adder (Fig. 14), a 4-bit

adder (Fig. 15), and a 4-bit multiplier (Fig. 16). The waveforms are compared in the �gures

indicated and the timing and speedup results of the di�erent runs are shown in Table 2.

The exact CREST simulation shown in Fig. 14a was 3000 times faster than SPICE. Fig. 14b

shows a heuristic CREST run that is over four times faster with comparable current results.

Fig. 15 shows the results of three di�erent heuristic runs in CREST compared to a full-

accuracy run. The �rst run merely eliminated extremely improbable supergate processes

and obtained 11X speedup with virtually no accuracy loss. The second run combined both
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Table 1. Execution time comparison between
CREST and SPICE. Time is in CPU seconds on
a SEQUENT. Size refers to the number of tran-
sistors.

Circuit Size CREST SPICE Speedup

Decode1 20 1.1 642 584X

Decode2 28 1.4 989 706X

Decode3 36 1.9 1588 836X

Invt10 20 1.0 221 221X

Invt40 80 3.3 2094 635X

Bridge 10 0.8 23237 29000X

Pass1 8 0.8 282 352X

Pass2 9 1.1 1505 1370X

4-bit ALU 154 10.9 3535 324X

34-bit ALU 1839 145.0 86152 594X

heuristics and achieved excellent accuracy with 31X speedup. The �nal run completely

eliminated supergates and shows acceptable accuracy with a 59X speedup. Fig. 16 compares

a fairly tight heuristic run and a relaxed heuristic run for a 4-bit parallel multiplier. In

the tight run, supergates are allowed to grow up to nine gates and supergate simulation

processes are ignored only if their probability is less than .0005. In the relaxed run, the

supergate size limit is set to one gate, ie \no supergates." The relaxed heuristic ran 8 times

faster with comparable results. In general, the heuristics yielded comparable results with

excellent improvements in speed. This was particularly true for the most complex circuit,

the 4-bit multiplier.

In all examples tested, the results were excellent. Peak currents were within 20%, average

currents were within 10%, and, as clearly shown in Fig. 11, timing estimates were within

10% of SPICE.

7 Summary and Conclusions

We have discussed the electromigration problem and stressed the need for an expected

current waveform for MTF estimation. We have presented such a technique, based on a

new so-called probabilistic simulation approach which has been implemented in the program

18



Table 2. Performance of the supergate heuristics.
Time is in CPU seconds on a VAX-11/780. Size
refers to the number of transistors.

Circuit Size �s �p Time

2-bit ripple 54 1 0 11.4

adder 1 0 2.6 (4.4X)

4-bit ripple 200 1 0 332.2

adder 1 .01 29.0 (11.4X)

3 .1 10.6 (31.3X)

1 0 5.6 (59.3X)

4-bit 648 9 .0005 2403.1

multiplier 1 0 297.5 (8.1X)

CREST. The combined e�ects of a variety of input patterns, each of which would require

separate SPICE simulations, can be derived with a single simulation at no more expense

than the simulation for a single vector. As such, our approach is pattern-independent and

provides a dramatic speed-up (ranging from 200X to 29000X) over the conventional approach

using SPICE. Furthermore the speedup increases exponentially with the number of circuit

inputs because a single probabilistic run covers an exponentially increasing number of logical

runs. The waveforms produced agree well with results obtained from SPICE : peak currents

are within 20%, average currents are within 10%, and timing estimates are within 10%.

CREST can handle general CMOS circuits, allowing pass transistors, reconvergent fanout

and feedback. Heuristics have been presented that help maintain speed in the presence of

reconvergent fanout, without signi�cantly a�ecting accuracy. The results of several CREST

runs on real circuits have been presented.

The success of the heuristics leads to the conclusion that reconvergent fanout paths and

the corresponding signal dependence become less important for larger circuits (eg. Fig. 16).

This is supported by the intuitive observation that the e�ect of a reconvergent fanout node

becomes negligible if the reconvergent paths contain a large number of gates.

The expected current waveform derived by CREST has an obvious immediate use in

an unrelated application : the derivation of the expected instantaneous power dissipation,

as well as the overall power dissipation of the circuit. Apart from this obvious application,

19



future work on CREST will address the simulation of circuits with truly bidirectional pass-

transistors. Other extensions of the approach will also be aimed at estimating the voltage

drop on the power and ground busses. This may require deriving more statistics of the

current waveform, such as the waveform variance.

Appendix : Graph Reduction

This appendix describes a graph reduction procedure that is central to the simulation

algorithms to be presented. Let G = (V;E) be an undirected connected graph with no self

loops, possibly with parallel edges, in which two arbitrary vertices u; v 2 V are speci�ed.

At time t, each edge e 2 E is labeled with three probability values Pe;1(t+), which is the

probability that the edge is on, Pe;1(t�), the probability that the edge was on, and Pe;01(t),

the probability that it transitions from o� to on. Furthermore, each edge has associated with

it a random conductance value g(e) which is either 0, if the edge is o�, or gon(e), if it is on.

The equivalent conductance of a network of edges is de�ned to be that of an identical resistive

network with the same conductances. The events \is on," \was on", and \transitions from

o� to on", as well as the random conductances, of any two distinct edges e1 and e2 are

assumed to be independent.

Let  be a random variable that is 1 if there exists at least one path of on-edges in G

between u and v, and 0 otherwise. The probabilities P ;1(t+), P ;1(t�), and P ;01(t) are

de�ned as above. Finally, let GG be the random conductance between u and v at t+. We

are interested in �nding the values of P ;1(t+), P ;1(t�), P ;01(t), and E[GG].

Finding P ;1(t+), which is perhaps the simplest to derive, is known to be NP � hard,

see [16] page 211. The algorithms to be given will, therefore, include some approximations

to maintain a reasonable execution time. The general methodology will be to reduce the size

of the graph by removing edges and/or vertices, so that the probabilities of  and E[GG]

remain invariant, until the graph reduces to a single edge � between u and v, as shown in

Fig. 3. The labels on this edge, P�;1(t+), P�;1(t�), P�;01(t), and E[g(�)] are the required

answers. Hence the term \graph reduction."

We will �rst describe solutions for a restricted class of graphs, namely for series-parallel

graphs (see [17], pp. 197{199). For such a graph, one can accurately derive the probabilities
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of  by making parallel and series combinations of edges until a single edge remains. If

ep (es) is the parallel (series) combination of edges e1 and e2, then the following formulas

apply :

Pep;1(t
�) = Pe1;1(t

�) + Pe2;1(t
�)� Pe1;1(t

�)Pe2;1(t
�) (A:1)

Pes;1(t
�) = Pe1;1(t

�)Pe2;1(t
�) (A:2)

Pep;01(t) = Pe1;01(t)Pe2;0(t
�) + Pe2;01(t)Pe1;0(t

�)� Pe1;01(t)Pe2;01(t) (A:3)

Pes;01(t) = Pe1;01(t)Pe2;1(t
+) + Pe2;01(t)Pe1;1(t

+)� Pe1;01(t)Pe2;01(t) (A:4)

The derivation of E[GG] is not as simple. To begin with, E[g(e)] is easily derived for

every edge e as gon(e)� Pe;1. We then perform the series-parallel combinations using these

values. In case of two edges in parallel, it is easy to see that :

E[g(ep)] = E[g(e1)] + E[g(e2)] (A:5)

In the series case, however, the problem is not as simple and we resort to the approxi-

mation :

E

�
1

g(e)

���� g(e) 6= 0

�
�

1

E[g(e) j g(e) 6= 0]
(A:6)

where E[A j B] denotes the conditional expected value of A given B, to derive [12] :

1

E[g(es)]
�

1

E[g(e1)]Pe2;1
+

1

E[g(e2)]Pe1;1
(A:7)

In case of a general, non series-parallel, graph, and since the problem is NP � hard as

pointed out above, we resort to another technique which is in line with the graph reduction

methodology. This involves a node elimination technique which is the graph-domain opera-

tion corresponding to Gaussian Elimination on the graph's adjacency matrix [18]. It works

by removing a vertex from the graph and adding new edges between each of its neighbors, as

shown in Fig. 17. Suppose a vertex v has neighbors v1; : : : ; vn along edges e1; : : : ; en. Upon

removing v, every two neighbors vi and vj share a new edge eij (Fig. 17) whose probabilities

are derived by applying the series formulas (A.2) and (A.4) above to ei and ej. Using the

approximation (A.6), the value of E[g(eij)] is derived [12] as :

1

E[g(eij)]
�

1

E[g(ei)]Pej ;1
+

1

E[g(ej)]Pei;1
+

Pn
k=1
k 6=i;j

E[g(ek)]

E[g(ei)]E[g(ej)]
(A:8)

21



As a result, certain edges are split into two or more new edges which may not, therefore,

be independent. We however ignore this fact and proceed with the graph reduction as before.

Knowing that the problem is NP � hard, the resulting loss of accuracy is inevitable, but

excellent results have been obtained in practice.
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Figure Captions :

Figure 1: Four actual current waveforms (dashed) and the corresponding expected current
waveform (solid).

Figure 2: A probability waveform (bottom) represents four logical waveforms (top).

Figure 3: A typical graph reduction.

Figure 4: A generic CMOS gate.

Figure 5: Relationship between gate output current and gate total current pulses.

Figure 6: Stages and wires.

Figure 7: The decomposition of a typical pass-transistor circuit into stages and wires.

Figure 8: A supergate schematic showing two r� nodes A and B.

Figure 9: The decomposition of a single event into logical transitions.

Figure 10: Complex gate current estimate.

Figure 11: A 40-stage inverter chain current estimate.

Figure 12: Current results for a typical pass-transistor circuit.

Figure 13: Current results for a 4-bit ALU circuit with 154 MOSFETS.

Figure 14: Current waveforms for the 2-bit ripple adder in Table 2.

Figure 15: Current waveforms for di�erent heuristic CREST runs compared to the full-
accuracy CREST run on the 4-bit ripple adder in Table 2.

Figure 16: Current waveforms for a fairly tight heuristic run and a relaxed heuristic run
for the 4-bit multiplier in Table 2.

Figure 17: A generic node elimination step.
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