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Abstract

With the advent of portable and high-density microelectronic devices, the power dissipation
of very large scale integrated (VLSI) circuits is becoming a critical concern. Accurate and
e�cient power estimation during the design phase is required in order to meet the power
speci�cations without a costly redesign process. In this paper, we present a review/tutorial
of the power estimation techniques that have recently been proposed.
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1. Introduction

The continuing decrease in feature size and the corresponding increase in chip density and op-

erating frequency have made power consumption a major concern in VLSI design [1, 2]. Mod-

ern microprocessors are indeed hot: the PowerPC chip from Motorola consumes 8.5 Watts,

the Pentium chip from Intel consumes 16 Watts, and DEC's alpha chip consumes 30 Watts.

Excessive power dissipation in integrated circuits not only discourages their use in a portable

environment, but also causes overheating, which degrades performance and reduces chip life-

time. To control their temperature levels, high power chips require specialized and costly

packaging and heat-sink arrangements. This, combined with the recently growing demand for

low-power portable communications and computing systems, has created a need to limit the

power consumption in many chip designs. Indeed, the Semiconductor Industry Association

has identi�ed low-power design techniques as a critical technological need [3].

Managing the power of an IC design adds to a growing list of problems that IC designers

and design managers have to contend with. Computer Aided Design (CAD) tools are needed

to help with the power management tasks. Speci�cally, there is a need for CAD tools to

estimate power dissipation during the design phase in order to meet the power speci�cations

without a costly redesign process.

In CMOS and BiCMOS technologies, the chip components (gates, cells) draw power

supply current only during a logic transition (if we ignore the small leakage current). While

this is considered an attractive low-power feature of these technologies, it makes the power-

dissipation highly dependent on the switching activity inside these circuits. Simply put, a

more active circuit will consumemore power. This complicates the power estimation problem

because the power becomes a moving target - it is input pattern-dependent.

Thus the simple and straight-forward solution of estimating power by using a simulator

is severely complicated by this pattern-dependence problem. Input signals are generally un-

known during the design phase because they depend on the system (or chip) in which the

chip (or functional block) will eventually be used. Furthermore, it is practically impossible

to estimate the power by simulating the circuit for all possible inputs. Recently, several tech-

niques have been proposed to overcome this problem by using probabilities to describe the set

of all possible logic signals, and then studying the power resulting from the collective inu-

ence of all these signals. This formulation achieves a certain degree of pattern-independence

that allows one to e�ciently estimate and manipulate the power dissipation.

The rest of this paper is organized as follows. In the next section, we explain the power

estimation problem in more detail and introduce a number of probabilistic measures that

have been used to estimate power. Section 3 contains a literature survey of power estimation

techniques and the following two sections focus in more detail on the two main types of
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approaches. We discuss sequential circuit power estimation in section 6, and provide a

summary and conclusions in section 7.

2. Detailed Problem Description

By power estimation we generally refer to the problem of estimating the average power

dissipation of a digital circuit. This is di�erent from estimating the worst case instantaneous

power, often referred to as the voltage drop problem [4{6]. Chip heating and temperature

are directly related to the average power.

We have already alluded to a most straight-forward method of power estimation, namely

by simulation: perform a circuit simulation of the design and monitor the power supply

current waveform. Subsequently, the average of the current waveform is computed and used

to provide the average power. The advantages of this technique are mainly its accuracy and

generality. It can be used to estimate the power of any circuit, regardless of technology,

design style, functionality, architecture, etc. The simulation results, however, are directly

related to the speci�c input signals used to drive the simulator. Furthermore, complete and

speci�c information about the input signals is required, in the form of voltage waveforms.

Hence we describe these simulation-based techniques as being strongly pattern-dependent.

The pattern-dependence problem is serious. Often, the power of a functional block needs

to be estimated when the rest of the chip has not yet been designed, or even completely

speci�ed. In such a case, very little may be known about the inputs to this functional block,

and complete and speci�c information about its inputs would be impossible to obtain. Even

if one is willing to guess at speci�c input waveforms, it may be impossible to assess if such

inputs are typical. Large numbers of input patterns would have to be simulated, and this

can become computationally very expensive, practically impossible for large circuits.

Most other (more e�cient) power estimation techniques that have been proposed start

out by simplifying the problem in three ways. Firstly, it is assumed that the power supply and

ground voltage levels throughout the chip are �xed, so that it becomes simpler to compute

the power by estimating the current drawn by every sub-circuit assuming a given �xed power

supply voltage. Secondly, it is assumed that the circuit is built of logic gates and latches, and

has the popular and well-structured design style of a synchronous sequential circuit, as shown

in Fig. 1. In other words, it consists of latches driven by a common clock and combinational

logic blocks whose inputs (outputs) are latch outputs (inputs). It is also assumed that the

latches are edge-triggered and, with the use of a CMOS or BiCMOS design technology, the

circuit draws no steady-state supply current. Therefore, the average power dissipation of

the circuit can be broken down into (1) the power consumed by the latches and (2) that

consumed by the combinational logic blocks. This provides a convenient way to decouple the
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problem and simplify the analysis. And, �nally, it is commonly accepted that, in accordance

with the results of [7], it is enough to consider only the charging/discharging current drawn

by a logic gate, so that the short-circuit current during switching is neglected.
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Figure 1. A combinational circuit embedded in a synchronous sequential design.

Whenever the clock triggers the latches, some of them will make a transition and will

draw power. Thus latch power is drawn in synchrony with the clock. The same is not true

for gates inside the combinational logic. Even though the inputs to a combinational logic

block are updated by the latches (in synchrony with the clock), the internal gates of the

block may make several transitions before settling to their steady state values for that clock

period.

These additional transitions have been called hazards or glitches. Although unplanned

for by the designer, they are not necessarily design errors. Only in the context of low-power

design do they become a nuisance, because of the additional power that they dissipate. It has

been observed [8] that this additional power dissipation is typically 20% of the total power,

but can be as high as 70% of the total power in some cases such as combinational adders. We

have observed that in a 16-bit multiplier circuit, some nodes make as many as 20 transitions

before reaching steady state. This component of the power dissipation is computationally

expensive to estimate, because it depends on the timing relationships between signals inside

the circuit. Consequently, many proposed power estimation techniques have ignored this

issue. We will refer to this elusive component of power as the toggle power. Computing the

toggle power is one main challenge in power estimation.

Another challenge has to do with independence when signals are represented with proba-

bilities. The reason for introducing probabilities is to solve the pattern-dependence problem,

as follows. Instead of simulating the circuit for a large number of patterns and then averaging

the result, one can simply compute (from the input pattern set, for instance) the fraction
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of cycles in which an input signal makes a transition (a probability measure) and use that

information to estimate (somehow) how often internal nodes transition and, consequently,

the power drawn by the circuit. Conceptually, this idea is shown in Fig. 2, which depicts

both the conventional path of using circuit simulation and the alternative path of using

probabilities. In a sense, one performs the averaging before, instead of after, running the

analysis. Thus, a single run of a probabilistic analysis tool replaces a large number of circuit

simulation runs, provided some loss of accuracy can be tolerated. The issues are exactly

what probabilities are required, how they are to be obtained and, most importantly, what

sort of analysis should be performed.
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Figure 2. An alternative ow for power estimation.

In practice, one can directly provide the required input probabilities, eliminating the

need for a large set of speci�c input patterns. The results of the analysis will depend on the

supplied probabilities. Thus, to some extent the process is still pattern-dependent and the

user must supply information about the typical behavior at the circuit inputs, in terms of

probabilities. However, since one is not required to provide complete and speci�c information

about the input signals, we call these approaches weakly pattern-dependent.

There are many ways of de�ning probability measures associated with the transitions

made by a logic signal, be it at the primary inputs of the combinational block or at an
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internal node. We start with the following two:

De�nition 1. (signal probability): The signal probability Ps(x) at a node x is de�ned as

the average fraction of clock cycles in which the steady state value of x is a logic high.

De�nition 2. (transition probability): The transition probability Pt(x) at a node x is

de�ned as the average fraction of clock cycles in which the steady state value of x is di�erent

from its initial value.

The signal probability is a relatively old concept that was �rst introduced to study circuit

testability [9]. It is important to note that both these probability measures are una�ected by

the circuit internal delays. Indeed, they remain the same even if a zero-delay timing model

is used. When this is done, however, the toggle power is automatically excluded from the

analysis. This is a serious shortcoming of techniques that are based on these measures, as

we will point out below.

If a zero-delay model is assumed and the transition probabilities are computed, then the

power can be computed as:

Pav =
1

2Tc
V 2

dd

nX
i=1

CiPt(xi) (1)

where Tc is the clock period, Ci is the total capacitance at node xi, and n is the total number

of circuit nodes that are outputs of logic gates or cells. Since this assumes at most a single

transition per clock cycle, then this is actually a lower bound on the true average power.

We can now discuss the signal independence issue. In practice, signals may be correlated

so that, for instance, two of them may never be simultaneously high. It is computationally

too expensive to compute these correlations, so that the circuit input and internal nodes are

usually assumed to be independent. We refer to this as a spatial independence assumption.

Another independence issue is whether the values of the same signal in two consecutive clock

cycles are independent or not. If assumed independent, then the transition probability can

be easily obtained from the signal probability according to:

Pt(x) = 2Ps(x)Ps(x) = 2Ps(x) [1� Ps(x)] (2)

We refer to this as a temporal independence assumption.

Other recent power measures are based on the transition density formulation [10, 25].

The transition density at node x is the average number of transitions per second at node x,

denoted D(x). Formally:

De�nition 3. (transition density) If a logic signal x(t)makes nx(T ) transitions in a time

interval of length T , then the transition density of x(t) is de�ned as:

D(x)
4

= lim
T!1

nx(T )

T
(3)
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The density provides an e�ective measure of switching activity in logic circuits. If the

density at every circuit node is made available, the overall average power dissipation in the

circuit can be computed as:

Pav =
1

2
V 2

dd

nX
i=1

CiD(xi) (4)

In a synchronous circuit, with a clock period Tc, the relationship between transition density

and transition probability is:

D(x) �
Pt(x)

Tc
(5)

where equality occurs in the zero-delay case. Thus the transition probability gives a lower

bound on the transition density.

Let P (x) denote the equilibrium probability [25] of a logic signal x(t), de�ned as the

average fraction of time that the signal is high. Formally:

De�nition 4. (equilibrium probability) If x(t) is a logic signal (switching between 0

and 1), then its equilibrium probability is de�ned as:

P (x)
4

= lim
T!1

1

T

Z +T

2

�T

2

x(t)dt (6)

In contrast to the signal probability, the equilibrium probability depends on the circuit

internal delays since it describes the signal behavior over time and not only its steady state

behavior per clock cycle. In the zero-delay case, the equilibrium probability reduces to the

signal probability.

In the remainder of this paper, we will make use of the probability measures de�ned

above in discussing the various recently proposed power estimation techniques.

3. Brief Overview

The earliest proposed techniques of estimating power dissipation were strongly patter-

dependent circuit simulation based [11, 12]. One would simulate the circuit while monitoring

the supply voltage and current waveforms, which are subsequently used to compute the av-

erage power. Besides being strongly pattern dependent, these techniques are too slow to be

used on large circuits, for which high power dissipation is a problem.

In order to improve computational e�ciency, other simulation based techniques were

also proposed using various kinds of timing, switch-level, and logic simulation [13{18]. These

techniques generally assume that the power supply and ground voltages are �xed, and only

the supply current waveform is estimated. While they are indeed more e�cient than tradi-

tional circuit simulation, at the cost of some loss in accuracy, they remain strongly pattern-

dependent.
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In order to overcome the shortcomings of simulation-based techniques, other specialized

approaches have been proposed with a focus on combinational digital CMOS circuits embed-

ded in a synchronous design environment, as described above. For the rest of this section,

therefore, we will be concerned with the power consumed in a combinational circuit whose

inputs switch in synchrony.

The use of probabilities to estimate power was �rst proposed in [19]. In this work,

a zero-delay model was assumed and a temporal independence assumption was made so

that the transition probabilities could be estimated using signal probabilities based on (2).

Signal probabilities supplied by the user at the primary inputs are propagated into the circuit

assuming spatial independence and the power was computed based on (1). Since a zero-delay

model was used, the toggle power was ignored.

A probabilistic power estimation approach that does compute the toggle power and does

not make the zero-delay or temporal independence assumptions, called probabilistic simula-

tion was proposed in [20{22]. In this technique, the use of probabilities was expanded to allow

the speci�cation of probability waveforms, as described in more detail in the next section.

This approach assumed spatial independence, and was not restricted to only synchronous

circuits. Improvements on this technique were proposed in [23, 24], where the accuracy and

the correlation handling were improved upon.

Another probabilistic approach was proposed in [25{27], where the transition density

measure of circuit activity was introduced. An algorithm was also presented for propagating

the transition density into the circuit. This approach does not make a zero-delay assumption

and makes only the spatial independence assumption, as will be discussed in more detail in

section 4. Nevertheless, the result of this independence assumption is to make the computed

density values insensitive to the internal circuit delays.

Yet another probabilistic approach was presented in [28], where Binary Decision Dia-

grams (BDDs) [35] were used to take into account internal node correlations and toggle

power, at the cost of increased computation. This approach can become computationally

expensive, especially for circuits where toggle power is dominant. It will be reviewed in more

detail in section 4.

We refer to the above approaches as probabilistic because probabilistic information is

directly propagated into the circuit. To perform this, special models for circuit blocks (gates)

must be developed and stored in the cell library. In contrast, other techniques, that we will

refer to as statistical, do not require specialized circuit models. Instead, they use traditional

simulation models and simulate the circuit for a limited number of randomly generated

input vectors while monitoring the power. These vectors are generated from user-speci�ed

probabilistic information about the circuit inputs. Using statistical estimation techniques,

one can determine when to stop the simulation in order to obtain a certain speci�ed error
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bound. Details of these techniques can be found in [29{32], and will be summarized below.

All of the above probabilistic and statistical techniques are applicable only to combi-

national circuits. They require the user to specify information on the activity at the latch

outputs. Power estimation in sequential circuits will be discussed in section 6.

4. Probabilistic Techniques

Recently, several power estimation approaches have been proposed that use probabilities

in order to solve the pattern-dependence problem. In practice, all are applicable only to

combinational circuits and require the user to specify typical behavior at the combinational

circuit inputs. We will compare and contrast these techniques based on the six criteria

of: (1) Whether they include the toggle power, (2) If they handle temporal correlation,

(3) Complexity of the required input speci�cation, (4) Whether they provide the power

consumed by individual gates, (5) If they handle spatial correlation, and (6) Speed. We will

discuss �ve di�erent approaches, for which the comparisons are shown in Table 1.

Table 1. Probabilistic techniques.

Approach
Handle

Toggle Power?

Handle Temporal

Correlation?

Input

Speci�cation
Individual

Gate Power?

Handle Spatial

Correlation?
Speed

Signal

Probability No No Simple Yes No Fast

CREST Yes Yes Moderate Yes No Fast

DENSIM

Yes
(approximately) Yes Simple Yes No Fast

BDD Yes Yes, Internally Simple Yes Yes, Internally Slow

Correlation
Coe�cients Yes Yes Moderate Yes

Yes, Internally

(approximately) Moderate

These techniques all use simpli�ed delay models for the circuit components and require

user-supplied information about typical input behavior. Thus, their accuracy is limited by

the quality of the delay models and the input speci�cation. Nevertheless, some are more

accurate than others, and this may be gauged by looking at criteria (1), (2), and (5) in the

table.

4.1. Using signal probability

In [19], a zero-delay model is used and temporal as well as spatial independence is assumed.

The user is expected to provide signal probabilities at the primary inputs. These are then

propagated into the circuit to provide the probabilities at every node. In the paper, the

propagation of probabilities is performed at the switch-level, but this is not essential to the

approach. The simplest way to propagate probabilities is to work with a gate-level description
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of the circuit. Thus if y = AND(x
1
; x

2
), then it follows from basic probability theory [34]

that Ps(y) = Ps(x1)Ps(x2), provided x1 and x
2
are (spatially) independent. Similarly, other

simple expressions can be derived for other gate types. Once the signal probabilities are

computed at every node in the circuit, the power is computed by making use of (1) and (2),

based on the temporal independence assumption.

In general, if the circuit is built from Boolean components that are not part of a pre-

de�ned gate library, the signal probability can be computed by using a BDD [35] to represent

the Boolean functions, as proposed in [10] and [37]. As an example to illustrate the BDD

representation, consider the Boolean function y = x
1
x
2
+ x

3
, which can be represented by

the BDD shown in Fig. 3. The Boolean variables xi are ordered, and each level in the BDD

corresponds to a single variable. Each level may contain one or more BDD nodes at which

one can branch in one of two directions, depending on the value of the relevant variable. For

example, suppose that x
1
= 1, x

2
= 0, and x

3
= 1. To evaluate y, we start at the top node

and branch to the right since x
1
= 1, then branch to the left since x

2
= 0, and �nally branch

to the right since x
3
= 1 to reach the terminal node \1." Thus the corresponding value of y

is 1.

x3

x2

x1

0
1

1

0

1

0

10

Figure 3. Example BDD representation.

In general, let y = f(x
1
; : : : ; xn) be a Boolean function. If the inputs xi are independent,

then the signal probability of f can be obtained in linear time (in the size of its BDD

representation), as follows. If fx1 = f(1; x
2
; : : : ; xn) and fx1 = f(0; x

2
; : : : ; xn) are the

cofactors of f with respect to x
1
, then:

P (y) = P (x
1
)P (fx1) + P (x

1
)P (fx1) (7)
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This equation shows how the BDD can be used to evaluate P (y). The two nodes that

are descendants of y in the BDD correspond to the cofactors of f . The probability of the

cofactors can then be expressed in the same way, in terms of their descendants. Thus a

depth-�rst-traversal of the BDD, with a post-order evaluation of P (�) at every node is all

that is required. This can be implemented using the \scan" function of the BDD package [36].

4.2. Probabilistic Simulation (CREST)

This approach [20{22] requires the user to specify typical signal behavior at the circuit inputs

using probability waveforms. A probability waveform is a sequence of values indicating the

probability that the signal is high for certain time intervals, and the probability that it

makes low-to-high transitions at speci�c time points. The transition times themselves are

not random. This allows the computation of the average, as well as the variance, of the

current waveforms drawn by the individual gates in the design in one simulation run. The

average current waveforms can then be used to compute the average power dissipated in

each gate and the total average power of the circuit.

An example of a probability waveform is shown in Fig. 4. In this example, the signal

is high with probability 0.5, to begin with. It then transitions low-to-high with probability

0.2 at t
1
, to become high with probability 0:25 between t

1
and t

2
, etc. At every transition

time point, the signal may also make a high-to-low transition, the probabilities of which

can be computed from the other probabilities speci�ed in the waveform. Notice that, at t
1
,

0:2 6= (1:0� 0:5)� 0:25 which illustrates that temporal independence is not assumed. Given

such waveforms at the primary inputs, they are propagated into the circuit to compute the

corresponding probability waveforms at all the nodes.

Timet t t1 2 3

1

0.5
0.25

0.75

0.0

0.6 0.00.2

Figure 4. Example probability waveform.

The propagation algorithm is very similar to event driven logic simulation with an

assignable delay model. The only di�erence is that the simulation algorithm and simu-

lation model for each gate deal with the probability of making a transition rather than the

de�nite occurrence of a transition. The events are propagated one at a time, using an event

queue based mechanism. Whenever an event occurs at the input to a gate, the gate makes a
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contribution to the overall average current that is being estimated, and generates an output

event that is scheduled after some time delay. In the original implementation of CREST,

a transistor level netlist was used to compute the average current pulse and delay of every

gate. The same can be achieved using gate level models, provided they are pre-characterized

to estimate the current pulse and delay.

4.3. Transition density (DENSIM)

The average number of transitions per second at a node in the circuit has been called

the transition density in [25{27], where an e�cient algorithm is presented to propagate the

density values from the inputs throughout the circuit. This was implemented in the program

DENSIM for which the required input speci�cation is a pair of numbers for every input node,

namely the equilibrium probability and transition density. In this case, both signal values

and signal transition times are random.

To see how the propagation algorithm works, recall the concept of Boolean di�erence: if

y is a Boolean function that depends on x, then the Boolean di�erence of y with respect to

x is de�ned as:
@y

@x

4

= yjx=1 � yjx=0 (8)

where � denotes the exclusive-or operation. It was shown in [25] that, if the inputs xi to a

Boolean module are (spatially) independent, then the density of its output y is given by:

D(y) =

nX
i=1

P

�
@y

@xi

�
D(xi) (9)

The simplicity of this expression allows very e�cient CAD implementations. Given the

probability and density values at the primary inputs of a logic circuit, a single pass over

the circuit, using (9), gives the density at every node. In order to compute the Boolean

di�erence probabilities, one must also propagate the equilibrium probabilities P (x) from the

primary inputs throughout the circuit, using the same BDD algorithm for signal probability

propagation described above.

As an example, consider the simple case of a 2-input logic AND gate: y = x
1
x
2
. In this

case, @y=@x
1
= x

2
and @y=@x

2
= x

1
, so that:

D(y) = P (x
2
)D(x

1
) + P (x

1
)D(x

2
) (10)

In more complex cases, where f is a general Boolean function, Binary Decision Diagrams

can be used [25] to compute the Boolean di�erence probabilities. Recently, specialized BDD-

based techniques have been proposed to facilitate this [39].

4.4. Using a BDD

The technique proposed in [28] attempts to handle both spatial and temporal correlations

by using a BDD to represent the successive Boolean functions at every node in terms of the
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primary inputs, as follows. The circuit topology de�nes a Boolean function corresponding to

every node that gives the steady state value of that node in terms of the primary inputs. The

intermediate values that the node takes before reaching steady state are not represented by

this function. Nevertheless, one can construct Boolean functions for them by making use of

the circuit delay information, assuming the delay of every gate is a speci�ed �xed constant.

x
x

1

2

y
z

Figure 5. A simple test case circuit.

To illustrate, consider the circuit in Fig. 5, and let the values of x
1
and x

2
in two

consecutive clock cycles be denoted x
1
(1), x

1
(2), and x

2
(1), x

2
(2). Assuming the AND gate

and the inverter have comparable delays, a typical timing diagram is shown in Fig. 6, where

it can be seen that node z may make two transitions before reaching steady state. The

intermediate and steady state values of y and z can be expressed as follows:

y(1) = x
1
(1); and y(2) = x

1
(2) (11)

z(1) = x
1
(1)x

2
(1); z(2) = x

1
(1)x

2
(2); and z(3) = x

1
(2)x

2
(2) (12)

x 1(1) x 1(2)

x 2 (1) x 2 (2)

y (1) y (2)

z (1) z (2) z (3)

Figure 6. Timing diagram.

In this way, one can express the intermediate values of every node in terms of the two sets

of values at the primary inputs. If a BDD is built for these functions, then the intermediate

state probabilities can be accurately computed. In order to compute the probabilities of

internal transitions, one can use the BDD to construct the exclusive-OR function of two

consecutive intermediate states. Thus, in the above example, the probability that the �rst

transition of z occurs is P (z(1)�z(2)) and the probability that the second transition occurs is
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P (z(2)�z(3)). Once these XOR functions have been constructed, both of these probabilities

can be computed from the BDD. The expected number of transitions at z in a clock cycle

is, therefore, E[nz(Tc)] = P (z(1)� z(2)) + P (z(2)� z(3)), and the transition density at z is

D(z) = E[nz(Tc)]=Tc.

Using a BDD to perform these tasks implicitlymeans that the BDD variables are assumed

independent. In the above example, this means that x
1
(1), x

1
(2), x

2
(1), and x

2
(2) are

independent. Thus, while some temporal correlation between z(1) and z(2) is taken care of

(through the x
1
(1) term), no temporal correlation between y(1) and y(2) is possible. The

reason is that temporal and spatial independence are e�ectively assumed at the primary

inputs. Hence the quali�cations \Internally" in Table 1.

One disadvantage of this technique is that it is computationally expensive. Since the

BDD is built for the whole circuit, there will be cases where the technique breaks down

because the required BDD may be too big. As a result, this approach is limited to moderate

sized circuits. The situation is actually potentially worse than this, because a BDD function

must be built for every intermediate state and for their pairwise XOR functions. In cases

where many intermediate transitions occur, even moderate sized circuits may be too big to

handle. In absolute terms, and by way of comparison, the previous three techniques can

run on circuits with a few thousand gates in a matter of seconds, while the one large circuit

(with 2779 gates) reported for this approach takes over half an hour (on a DEC-station

5900). Nevertheless, the technique has many desirable and interesting features.

4.5. Correlation coe�cients

Another probabilistic approach that is similar to probabilistic simulation was proposed

in [24] whereby the correlation coe�cients between steady state signal values are used as

approximations to the correlation coe�cients between the intermediate signal values. This

allows spatial correlation to be handled approximately, and is much more e�cient than

trying to estimate the dynamic correlations between intermediate states. The steady state

correlations are estimated from the BDD by constructing the function for the AND of two

signals. The reported results have good accuracy, but the technique does require building

the BDD for the whole circuit, which may not always be feasible.

5. Statistical Techniques

The idea behind these techniques is quite simple and appealing: simulate the circuit re-

peatedly, using some timing or logic simulator, while monitoring the power being consumed.

Eventually, the power will converge to the average power, based on (3) and (4). The issues

are how to select the input patterns to be applied in the simulations and how to decide

when the measured power has converged close enough to the true average power. Normally,
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the inputs are randomly generated and statistical mean estimation techniques [38] are used

to decide when to stop, essentially a Mont�e Carlo method. We will review the two main

approaches that have been proposed, whose characteristics are compared in Table 2.

Table 2. Statistical techniques.

Approach
Handle

Toggle Power?

Handle Temporal

Correlation?

Input

Speci�cation
Individual

Gate Power?

Handle Spatial

Correlation?
Speed

McPower Yes Yes Simple No Only Internally Fast

MED Yes Yes Simple Yes Only Internally Moderate

5.1. Total power (McPower)

This approach [29{31] uses Mont�e Carlo simulation to estimate the total average power of

the circuit. It consists of applying randomly-generated input patterns at the primary inputs

and monitoring the energy dissipated per clock cycle using a simulator. If the successive

input patterns are independently generated, a number N of such measurements is called

a random sample whose average (divided by Tc) approaches the desired average power for

large N . In order to stop the simulation when one is close enough to the average power, we

need a so-called stopping criterion.

It was found experimentally [31] that the power consumed by a circuit over a period T

has a distribution that is very close to normal. This allows one to use the following stopping

criterion. Let �p and s be the measured average and standard deviation of the random

sample of the power, measured over a period T . Then we have (1 � �) � 100% con�dence

that j�p�Pavj < t�=2 s=
p
N , where t�=2 is obtained from the t-distribution [38] with (N � 1)

degrees of freedom. This result can be rewritten as :

jPav � �pj
�p

<
t�=2 s

�p
p
N

(13)

Therefore, for a desired percentage error � in the power estimate, and for a given con�-

dence level (1� �), we must simulate the circuit until :

t�=2 s

�p
p
N

< � (14)

Which means that the number of required simulations is:

N �
�
t�=2 s

� �p

�
2

(15)

In practice, this technique was found to be very e�cient. Typically, as few as 10 vectors

may be enough to estimate the power of a large circuit with thousands of gates. But perhaps
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the most useful feature of this technique is that the user can specify the required accuracy

and con�dence level up-front. Thus, it retains the accuracy of deterministic simulation-based

approaches, while achieving speeds comparable to probabilistic techniques. It also does not

require an independence assumption for internal nodes; it only requires the primary inputs

to be independent. The approach can be extended to model and take into account the

correlations between input nodes.

Perhaps the only disadvantage of this approach is that, while it provides an accurate

estimate of the total power, it does not provide the power consumed by individual gates

or small groups of gates. It would take many more transitions to estimate (with the same

accuracy) the power of individual gates, because some gates may switch very infrequently.

This point will be further clari�ed below.

5.2. Power of individual gates (MED)

This recent technique [32] is a modi�cation of the McPower approach that provides both

the total and individual-gate power estimates, with user-speci�ed accuracy and con�dence.

One reason why one may want to estimate the power consumed by individual gates is to be

able to diagnose a high power problem, and �nd out which part of the circuit consumes the

most power. Other reasons have to do with the fact that estimating gate power is essentially

equivalent to estimating the transition density at every node. Indeed, the implementation

of this technique in the program MED provides the transition density at every gate output

node, in addition to the total power. These density values can then be used to estimate

circuit reliability [25].

The main di�erence between this and the above approach is in the stopping criterion.

Suppose we simulate the circuit for a time interval T , N times, and measure the number

of transitions at a node every time, call this ni. Then, according to the Central Limit

Theorem [38], the average �n =
P

N

i=1
ni=N has a distribution which is close to normal for

large N . If � is the true expected number of transitions in T , and s is the measured standard

deviation of the N values ni, then it can be shown that with con�dence (1 � �)� 100% :

j� � �nj
�n

�
z�=2 s

�n
p
N

(16)

provided N is larger than about 30 transitions, where z�=2 is obtained from the normal

distribution [38]. The ratio �n=T approaches the transition density D = �=T . Thus if a

percentage error � is tolerated in the density, then the number of required simulations is:

N �
�z�=2 s

� �n

�
2

(17)

It should be clear from (17) that for small values of �n the number of samples required

can become too large. It thus becomes too expensive to guarantee a percentage accuracy for
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low-density nodes. This is why the McPower approach cannot be used as is to measure node

densities. The modi�cation proposed in [32] is to use an absolute, rather than percentage,

error bound for low-density nodes, as follows. A node is classi�ed as a low-density node if it

has �n < �
min

, where �min is user-speci�ed. For these nodes, if we use the modi�ed stopping

criterion:

N �
�z�=2 s
�
min

�

�2
(18)

then with (1� �) con�dence:

j� � �nj �
z�=2 sp

N
� �

min
� (19)

Thus �
min

� becomes an absolute error bound that characterizes the accuracy for low-density

nodes. Although the percentage error for low-density nodes sharply increases as �n ! 0,

the absolute error remains relatively �xed. In fact, it can be shown that the absolute error

bounds for low-density nodes are always less than the absolute error bounds for other nodes.

Although these nodes require the longest time to converge, they have the least e�ect on

circuit power and reliability. Therefore the above strategy reduces the execution time, with

little or no penalty.

A weakness of this approach may be its speed (currently, a circuit with 16000 gates

requires about 2 hours on a SUN sparc ELC). Further development may improve this per-

formance.

6. Sequential Circuits

The above techniques do not apply directly to sequential circuits. While the CREST

approach can be used to simulate a circuit with feedback, the resulting loss of accuracy

due to the independence assumption, especially when recursively applied in a feedback loop,

renders the results somewhat suspect. As for [28], although the title includes \sequential

circuits," it is assumed that all states are equally probable, which is not true in practice.

To simplify the discussion, we will assume that the sequential circuit implements a �nite

state machine (FSM) with a connected state space. Another simplifying assumption that

has been made by most researchers is to say that the FSM is Markov [34] (so that its future

is independent of its past once its present state is speci�ed). If the signal and transition

probabilities at the present state inputs of the FSM (i.e., the latch outputs) are known, then,

with some approximation, any of the above combinational circuit techniques can be used to

compute the power.

Several approaches [40{43] have been proposed for sequential circuits, all of which make

use of the above Markov assumption. Some of these compute only the probabilities (signal
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and transition) at the latch outputs, while others also compute the power. The approach

in [40] solves directly for the transition probabilities on the present state lines using the

Chapman-Kolmogorov equations [33, 34], which is computationally too expensive. Another

approach that also attempts a direct solution of the Chapman-Kolmogorov equations was

given in [41]. While it is more e�cient, it remains quite expensive, so that the largest test

case presented contains less than 30 latches.

Better solutions are o�ered by two recent papers [42, 43], which are based on solving

a non-linear system that gives the present state line probabilities, as follows. Let a vector

of input probabilities Pin = [p
1
; p

2
; : : : ; pn] be applied to the combinational logic block and

let the n input signals be independent. At the outputs of the logic, let the corresponding

output node probability vector be Pout. The mapping from Pin to Pout is some non-linear

function that is determined by the Boolean function implemented by the logic. We denote

this vector-valued function by F (�), so that Pout = F (Pin).

If we now assume that Pin = P is the vector of present state probabilities, then we

should also have Pout = P , because the steady-state state line probabilities are constant. If

we assume that the state lines are independent, this translates to P = F (P ). The solution

of this non-linear system gives the required state line probability vector P . It is solved using

the Newton-Raphson method in [42], and using the Picard-Peano iteration method in [43].

Both techniques also try to correct for the state line independence assumption. In [42],

this is done by accounting for m-wise correlations between state bits when computing their

probabilities. This requires 2m additional gates and can get very expensive. Nevertheless,

they show good experimental results. The approach in [43] is to unroll the combinational

logic block k times. This is less expensive than [42], and the authors observe that with k = 3

or so, good results can be obtained.

7. Summary and Conclusions

Power estimation tools are required to manage the power consumption of modern VLSI

designs during the design phase, so as to avoid a costly redesign process. Since average

power dissipation is directly related to the average switching activity inside a circuit, it

would not make sense to expect to estimate power without some information about the

circuit input patterns. Yet this is what one would like to do in order to qualify a chip with

a certain power rating that is expected to hold irrespective of the application. We have

presented a number of power estimation techniques that are designed to alleviate this strong

pattern-dependence problem.

The presented techniques are weakly pattern dependent since the user is expected to

supply some information on the typical behavior at the circuit inputs. This information is
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usually in the form of probability (average fraction of time that a signal is high) and density

(average number of transitions per second). This information is usually much more readily

available to designers than speci�c input patterns are. For instance, it is relatively easy for a

designer to estimate average input switching frequencies, say by looking at test vector sets,

or simply by assuming some nominal average switching frequency based on the known clock

frequency. The proposed techniques are e�ective ways of using this information to �nd the

circuit power.

All these techniques use simpli�ed delay models, so that they do not provide the same

accuracy as, say, circuit simulation. But they are fast, which is very important because VLSI

designers are interested in the power dissipation of large designs. Within the limitations of

the simpli�ed delay models, some of these techniques, e.g., the statistical techniques, can be

very accurate. In fact the desired accuracy can be speci�ed up-front. The other class of

techniques, i.e., the probabilistic techniques, are not as accurate but can be faster. Two of

the proposed probabilistic techniques use BDDs and achieve very good accuracy, but they

can be slow and may not be feasible for larger circuits.

From an implementation standpoint, one major di�erence between probabilistic and

statistical techniques is that statistical techniques can be built around existing simulation

tools and libraries, while probabilistic techniques cannot. Typically, probabilistic techniques

require specialized simulation models. In general, it is not clear that any one approach is

best in all cases, but we feel that the second statistical approach (MED) o�ers a good mix of

accuracy, speed, and ease of implementation. It may be that a combination of the di�erent

techniques can be used for di�erent circuit blocks. Tables 1 and 2 compare the di�erent

characteristics of these techniques.
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