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Higher levels of integration have led to a generation of integrated circuits for which
power dissipation and reliability are major design concerns. In CMOS circuits, both of
these problems are directly related to the extent of circuit switching activity. The average
number of transitions per second at a circuit node is a measure of switching activity thit
has been called the transition density. This paper presents a statisticil simuiation
technique to estimate individual node transition densities in combinational logic
circuits. The strength of this approach is that the desired accuracy and confidence canbe
specified up-front by the user. Another key feature is the classification of nodes into two
categories: regular- and low-density nodes. Regular-density nodes are certified with
user-specified percentage eruor and confidence levels. Low-density nodes are certified
with an absolute error, with the same confidence. This speeds convergence while
sacrificing percentage accuracy only on nodes which contribute little to power
dissipation and have few reliability problems.

Keywords: Power estimation, activity estimation, monte carlo analysis, switching activity,
confidence, accuracy

dissipation may cause run-time errors and device
destruction due to overheating, while reliability
issues may shorten device lifetime. It is especially
useful to diagnose and correct these problems
before circuits are fabricated. In CMOS circuits,
gates draw current and consume power only when
making logical transitions. As a result, power
dissipation and reliability strongly depend on the
extent of circuit switching activity. Hence, there is a

1. INTRODUCTION

The advent of VLSI technology has brought new
challenges to the manufacture of integrated
circuits. Higher levels of integration and shrinking
line widths have led to a generation of devices
which are more sensitive to power dissipation and
reliability problems than typical devices of a few
years ago. In these circuits excessive power
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need for CAD tools that can estimate circuit
switching activity during the design phase.

Circuit activity is strongly dependent on the
inputs being applied to the circuit. For one input
set the circuit may experience no transitions, while
for another it may switch frequently. During the
first input set the circuit dissipates little power and
experiences little wear, but for the second its
activity could cause device failure. However, the
specific input pattern sets cannot be predicted up-
front. Furthermore, it is impractical to simulate a
circuit for all possible inputs. Thus, this input
pattern dependence severely complicates the esti-
mation of circuit activity.

Recently, some approaches have been proposed
to overcome this problem by using probabilities to
represent typical behavior at the circuit inputs. In

[], the average number of transitions per second
at a circuit node is proposed as a measure of
switching activity, called the trqnsition density. An
algorithm was also proposed to propagate speci-
fied input transition densities into the circuit to
compute the densities at all the nodes. The
algorithm is very efficient, but it neglects the
correlation between signals at internal nodes. This
leads to errors in the individual node densities that
may not always be acceptable, especially since the
desired accuracy cannot be specified up-front.

This correlation problem was avoided in [2],
where the total average power of the circuit (a
weighted sum of the node transition densities) was
statistically estimated by simulating the circuit for
randomly generated input patterns. The power
value is updated iteratively until it converges to the
true power with a user-specified accuracy (percen-
tage error tolerance), and a user-specified con-
fidence level. It was found that convergence is very
fast because the distribution of the overall circuit
power was very nearly Gaussian and very narrow
about its mean.

While power estimation is one important reason
to find the transition densities in a circuit, it is not
the only one. If we assume that the power bus
carries a constant voltage Vaa, then a single logic
gate draws an average current [1] of:

VaC,D(* )  ( l )

and dissipates an average power of:

p* :  
)nr* 

c" D (x) (2)

where C* is total capacitance, and. D(x) the
transition density, at the gate output node x. Thus
the individual node transition densities can be used
to find the individual gate power values using (2)

which are helpful in order to avoid hot spots and
to ensure that the power dissipation is relatively
uniform across the chip. Furthermore, the indivi-
dual node densities can be used to estimate average
current in the power and ground busses using (1),

to be used for electromigration analysis. However,
it becomes extremely inefficient to use the statis-
tical sampling technique in t2l to estimate the
transition densities at every gate output. This is
because alarge number of input patterns would be
required to converge for nodes that switch very
infrequently, as we will demonstrate in section 2.

In this paper, we will present an extension of the
approach in [2] whereby we remove the above
limitation and efficiently estimate the transition
density at all circuit nodes. To overcome the slow
convergence problem, we apply absolute error
bounds to nodes with low transition density
values, instead of percentage error bounds. This
is done by establishing a threshold, ?-i* to classify
node transition density values. Any node with a
transition density value less than the threshold is
classified as a low-densify node and is certified with
absolute error. Nodes with transition density
values equal to or above the threshold are
classified as regular density nodes and are certified
with a percentage error. A major advantage of this
approach is that the desired accuracy can be
specified up-front by the user. Furtheremore, the
percentage error bound is relaxed (i.e., replaced by
an absolute error bound) only on low-density
nodes. These nodes dissipate little power and have
few reliability problems. As with other previous

work in this area, our technique is presently
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restricted to combinational circuits (we are in the
process of extending it to include sequential
circuits).

The statistical simulation techniques to be
presented are implemented in a prototype called
o'Mean Estimator of Density" (MED). MED's
performance is evaluated by looking at the
accuracy of its results, its convergence rate, and
its execution time. Preliminary results of this work
have appeared in [3].

This paper is organized as follows. In the next
section, the statistical estimation technique is
described. Section 3 presents experimental data
and evaluates MED's performance, while section 4
presents a summary. Finally, two appendices are
presented that contain some required theoretical
results.

2. PROPOSED SOLUTION

This section presents our statistical estimation
technique for computing the transition densities at
all circuit nodes. It is expected that the user will
supply the transition density, denoted D(x), for
every circuit input node. Actually, the user should
also specify the fraction of time that a circuit input
signal is high, called the probability at that node,
and denoted by P(x). If unspecified, these prob-
abilities are assigned default value of l/2. This
technique, as well as the other techniques reviewed
in the introduction, apply only to combinational
circuits. It can be applied to the combinational
part of a sequential circuit provided that the
transition densities at the flip-flop outputs (which
are inputs to the combinational part) are specified.

Given the input transition densities and prob-
abilities, we can use a random number generator
to generate corresponding logic input waveforms
with which to drive a simulator. Based on such a
simulation of the circuit for a given time period Z,
we can count the number of transitions at every
node, a number which will be called a sample taken
at that node. If we repeat this process N times, and
form the avera ge i of the number of transitions at

a node, so-called the sample meen, then nlT is an
estimate of the transition density at that node.

It is well known from statistics [4] that for large
values of N, the sample mean Z will approach the
true average number of transitions in 7, to be
represented by 4. Likewise, the sample standard
deviation s will approach o) where o2 is the
variance of the number of transitions in Z. One
continues to take samples (make simulation runs)
until n is close enough to q.The method by which
one tests for this is called the stopping criterion, to
be discussed next. The following sub-section
details the mechanism of input waveform genera-
tion.

A. Stopping Criterion

According to the Central Limit Theorem l4l, n is a
value of a random variable with mean 17 whose
distribution approaches the normal distribution for
large N. The minimum number of samples, N, to
satisfy near-nonnality is typically 30. It is also
known that for such values of N one mav use .r as
an estimate of o.

Since the distribution of sample means is near-
normal, we can make inferences about the quality
of an individual sample. With (1-o) x l00oh
confidence it then follows that [4]:

- Z a / 2 o n 1 1 1  - n S z o p o n (3)

where 4 - o2lN is the variance of t and where
zo12is defined so that the area to its right under
the standard normal distribution curve is equal to
a  1 2 .

Equation (3) may be rearranged to better
accommodate mean estimation, by using:

= ,r* (4)

which is justified for values of N which normalize
the sample mean distribution, typically for N > 30.
This is not restrictive; typical simulations take
many more samples. The transformed equation is

of r :  
\ rN
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It e1 is a small positive number, and if

t  t )

N> ( '+\ (6)- \ D e r  
/

samples are taken, then e1 places an upper bound
on the percentage error of the sample with
(l-o) x 100% confidence:

more applicable to our problem,
confidence (l-o) x l00o/o, we have:

l q -n l  < r " / :
n - n\/N

N> (#)'
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so that with

(5)

(7)

(8)

We therefore classify the circuit nodes into
regular-density nodes and low-density nodes.
During the algorithm (after N exceeds 30) (6) is

used as a stopping criterion as long as n ) Tmin,
otherwise (9) is used instead. The value of 4-i,, c&n
be specified by the user and strongly affects the
speed of the algorithm, as will be shown in
section 3.

Let n, and 11, be the measured and true density
values for a regular-density node, and let nl and q1

be the corresponding values for a low-density

node. Since n, ) \^io then at convergence and for

small €, €r, we have:

|  - l

l q - n l-------:-
n

ln, - rlrl N n, et ) Tlm;n€t
7l ntn€- 
ffi 

! ?min€ x lfu-qil
( 1 1 )

where e is defined to be a user-specifled error
tolerance. Thus (6) provides a stopping criterion to
yield the accuracy specified in (8) with confidence
( l -o)  x  100%.

It should be clear from (6) that for small values
of n, say fi 1 rl^in, the number of samples required
can become too large. It thus becomes too
expensive to guarantee a percentage accuracy for
low-density modes. Instead, we can certify these
nodes with an absolute error bound, as follows.
Suppose we use the modified stopping criterion:

This may also be expressed as the percent
deviation from the population mean ?:

so that the absolute error values for low-density
nodes should be /ess than the absolute errors for
regular-density nodes. Although low-density nodes
require the longest time to converge, they have the
least effect on circuit power and reliability. There-
fore the above strategy reduces the execution time,
with little or no penalty.

B. Input Generation

Our implementation of this technique has two
modes, synchronous and asynchronous, as shown
in the block diagram in Figure 1. In the
synchronous mode, we assume that the (combina-

l n - n l  l n - n l  e '
1 -. ------r I 

-' 
- -

n  q  -  l - e r

<zo l2s  a
t/w 

-

for low-density nodes (with n < 1:'-6). Then
(1-") x 100% confidence:

l n -q l \ m;n€

(e)

with

(10)

Thus rlmin € becomes an absolute error bound that
characterizes the accuracy for low-density nodes. FIGURE I MED block diagram.
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tional) circuit is part of a larger synchronous
sequential circuit design, so that its input events
should be generated in synchrony. Otherwise,
asynchronous operation is assumed and events
do not have to be synchronized. Thus the only
difference between synchronous and asynchronous
operation is in the generation of the input
transitions.

8.1. Synchronous Mode

In the synchronous mode, an input node may
transition only at the beginning of a clock cycle, so
that the input pulse widths are discrete multiples of
the clock period, 7". The distribution of the high
(and low) pulses at the inputs is arbitrary, and can
be user-specified. The choice of distribution is not
very important because, as observed in [2], the
power is relatively insensitive to the particular
distribution, rather it depends mainly on the input
transition densities. Our implementation assumes
that the distribution is geometric [a]. This arises
from a simple sufficient condition that an input
signal be Markov [5], i.e., that its value after a
clock edge depends only on its value before the
clock edge, one that value is specified, and not on
its values during earlier clock cycles. Under this
assumption, we show in appendix B that the pulse
widths have a geometric distribution.

If p, and p4 are the mean low and high pulse
widths, computed as shown in appendix A from:

and the probability of a high signal transitioning
low on the clock is:

T,
pro :  !  (15)

l'tt

then it is also shown in appendix B that the
probability that a low signal will transition high on
the clock is:

A random number generator uses (14) and (15) to
generated input transitions for every clock cycle.

8.2. Asynchronous Mode

For circuits running asynchronously, input transi-
tion generation proceeds differently. Since input
transitions may occur at any time, the input
generation routine determines the length of time
between transitions instead of the probability of
transitioning at the clock edge. Again, the
distribution of the pulse widths is arbitrary, and
can be specifled by the user. Our implementation is
based on a Markov assumption, so that the length
of time between successive transitions is a random
variable with an exponential [5] distribution. The
length of time a signal stays in the low (high) state
has mean po(t-t). From this information, the
waveform is easily generated using an exponential
random number generator.

Additionally, when running asynchronously the
simulator requires a setup period. This is a waiting
period during which no samples are collected. It is
needed for the same reasons that a setup period
was required in [2]. Briefly, it allows the circuit to
"get up to speed". Before sampling begins,
transitions at the inputs must be allowed to
propagate into the internal nodes of the circuit.
Until all levels of the circuit are involved, switch-
ing activity is artificially low and any power or
reliability estimates will be skewed. The length of
the setup period should be, as was also shown in
[2], no less than the maximum delay of the circuit.

3. EXPERIMENTAL RESULTS

This technique has been implemented in the
program MED (Mean Estimator of Density), in
which the basic simulation capability is event-

2P(x)
trr _ 

D@)

2lr - r(")l
F o :  D ( " )

T,

lto
P o r  - (14)
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driven, gate level, with a scalable delay timing
model (based on output capacitance and fanout).
In general, any simulation strategy can be used, so
that the technique presented can be wrapped
around any existing simulator and simulation
library. In this section we present data collected
with MED, and show that it is both accurate and
practical on a number of large benchmark circuits.

A. Input Specification

The experimental results to be presented are based
on a specification of the typical circuit inputs as
follows.

In the synchronous mode, we assumed that the
circuit would be operated near its maximum
operating frequency, so that the clock cycle time,
7", is close to the maximum circuit delay, Zrr,.*.
Unless otherwise specified, the results presented

were based on a value of T" that is 1 nsec longer
than T-"".

Secondly, the transition density values were
normalized to the clock period, i.e., the transition
densities used by the program are expressed in
terms of transitions per clock cycle, rather than
transitions per second. The output densities are
then invariant to clock cycle time, and the user has
a more intuitive view of circuit activity - 0.5
transitions per clock- cycle is more informative
than 5e7 transitions per second.

Finally, it was specified that every input node
has probability of ll2 and a transition density of
ll2. Thus, on average, each input node was
assumed to spend an equal time high and low,
and to have one transition every other clock cycle.

Asynchronous input probability and density
assumptions are similar to the synchronous as-
sumptions. In this case, the transitions densities are
normalized by 7*u* and inputs are assumed to have
probabilities of l12 and transition densities of l12.

B. Data Collection

The issues to be investigated are (l) the error of the
technique, (2) the handling of low-density nodes,

and (3) the practicality of the technique for large
circuits. The data collected should allow MED's
performance to be evaluated in the above three
categories.

8.1. Establishing Accurate Transition
Density Values

The first step in evaluating MED's performance is
to establish a set of accurate node transition
densities. This baseline would then be used to
calculate the actual error of the estimated transi-
tion density values. This was done by running
MED for a long time on the benchmark circuits
presented at ISCAS in 1985 [6]. Typically, in order
to achieve 99.99% confidence and l% error
tolerance for all the nodes, this required millions
of input vectors and hours or days of CPU time.
Table I lists the circuits, number of gates, and
number of samples required for each circuit and
mode of operation.

8.2. Calculating Error Distributions

To verify that MED produces results within the
specified error tolerances, 10 runs with ?min
varying linearly from 0.05 to 0.50 were executed
with 95o/o confidence (a : 0.05) and 5% error

TABLE I Long run information

circuit ff gates Synchronous Asynchronous
Mode Mode

ff samples f samples

c432

c499

c880

c1355

c1908

c2670

c3540

c5315

c6288

c7552

160

202

383

546

880

I  193

1669

2307

2406

35r2

1677390

s88870

l r61840

10512s0

228t460

1592660

l 556380

t373840

444620

t390320

606900

285200

813700

335200

r001200

748300

1514000

831200

262700

1008500
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tolerance (e : 0.05) on the ISCAS 1985 set. Node
transition density values from the runs were
compared with the standard values computed
above. Regular transition density values, n >

Tmin, are valid if 95% of the values have less than
5oh error. Low-density values, fi ) Tlmin, are valid
lf 95% of the values satisfy lq - n I S ?-io u.

Tables II and III give the percentage of
transition density values out-of-bounds for all
the circuits under investigation. From the tables it
can be seen that this percentage is very low, well
below the specified 5%. This happens because
many of the nodes are oversampled, since the
simulator will run until the last node converges.
This yields more accuracy on some nodes than
what is actually specified by the user.

8.3. Comparison of \^i" and Execution Time

It is expected that since the simulator runs until its
last node converges, and further that low-density
nodes require the longest time to converge, then
adjusting ft1i1 would significantly affect overall
simulation time while sacrificing percentage accu-
racy on a small number of nodes.

Ten simulations are run with \min varying
linearly from 0.05 to 0.50. SUN Sparc-ELC
execution times in cpu seconds are tabulated and
reported in Table IV. Low-density nodes typically
require the largest number of samples to converge,
and as a result execution time drops dramatically
&s ?min rises. In some cases however, the lowest-
density nodes are not the last to converge, and the

TABLE II Performance in svnchronous mode

circuit ?min 7o regular-density
nodes

out-if-bounds

% low-density
nodes

7o low-density
nodes

out-of-bounds

c432

c499

c880

c1355

c1908

c2670

c3540

c5315

c6288

c7552

0.35

0.05

0.20

0 . 1 5

0 .10

0.45

0 .10

0.45

0.40

0.40

t . t 7

0.00

0.00

0.2r
0.00

0 .18

0.00

0.00

0.00

0.03

12.69

1 3 . 1 1

13.74

t7.69

|t.27

16.58

9.77

15.49

13.68

7.77

0.00

0.00

1.64

0.00

1.94

0.00

0.00

0.78

0.90

1.04

TABLE III Performance in asvnchronous mode

circuit %o regular-density
nodes

out-if-bounds

%o low-density
nodes

% low-density
nodes

out-of-bounds

c432

c499

c880

c l  355

cI908

c2670

c3540

c5315

c7552

0.40

0 .10

0 .10

0 . 1 5

0.45

0.45

0.25

0.45

0.45

0.00

0.49

0.97

0.41

0.00

0 .18

0.07

0.00

0.03

9 .14

16.39

6.98

17.52

14.00

16.21

21.40

15.33

6.86

0.00

2.50

0.00

0.97

3.91

0.91

0.00

0.52

L l 8
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TABLE IV Execution times in CPU seconds, on a SUN sparc ELC, with v arying 4-;,,

circuit synchronous execution times for ?min:
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.05

asynchronous execution times for 4min:

0.10 0.15 0.20 0.2s 0.30 0.35 0.40 0.45 0.50

c432 89 99 60 60 61 49 44 23 l8 18 lll 95 110 r02 103 105 97 80 70 61
c499 271 90 90 38 25 25 28 14 14 14 367 295 62 67 58 75 69 56 67 45
c880 729 366 228 l3l 130 101 82 69 53 53 947 685 438 352 293 23t 180 t67 t26 107
c1355 609 200 207 186 128 109 88 85 85 86 1717 718 3g4 248 24g 24r 261 307 241 263
c1908 1978 741 789 316 294 285 r72 155 r52 t50 4892 2434 1444 r43t 789 800 726 749 74t 526
c2670 29lr 1276 1222 899 643 564 461 466 387 358 2764 2486 2rt2 1553 1243 974 923 902 885 799
c3540 4579 2458 2130 1146 883 736 732 729 667 465 6268 3814 3396 3619 2917 1830 L42t 1232 1392 t34l
c5315 7314 3327 2028 1698 1343 1225 876 718 687 657 8081 4764 3820 3279 2805 2270 2044 2123 2001 2ol3
c6288 3448 3l0l 3078 3129 3251 3216 3340 3177 3043 3039 not reported because c6288 has no low density nodes
c7552 8855 55ll 3463 2861 2503 1722 1558 1359 1264 997 20407112257155 5904 4677 4037 3867 3430 2646 2682

adjustment of 4-i' has no effect on execution
time.

The simulation times for all circuits except for
c6288 follow a general downward trend, as shown
in in Figure 2. The curves result from averaging
circuit execution times (excluding c6288) normali-
zedby the time required for the circuit to simulate
with 4*irr: 0.05.

The behavior of circuit c6288 is an exception to
this trend. The execution times for c6288 are
essentially invariant to 4*i' for 0 ( 4-i., < 0.5. This
occurs because c6288 has regular density nodes
with considerable variation, and at least one of the
regular density nodes with a > 0.5 converges after
all low-density nodes. Because of this, the last
nodes to converge are not affected by ?min.

8.4. Execation Times on Large Circuits

The final issue investigated is the simulator's
execution time when processing larger circuits.
For the technique to gain wide acceptability, it
must have reasonable execution times on larger
circuits. The circuits used in this section are the
largest ones presented at ISCAS in 1989 [7].

Circuits were first simulated with high 4-6. This
provided a rough estimate of each circuit's
transition density distribution. The simulation
was then rerun with 46. chosen to classify under
20% of the nodes as low-density nodes while
providing reasonable execution times. The number
of gates, execution times, and percentage of low-
density nodes are shown for each circuit in
Table V. Considering the high accuracy level
(5% error at 95o/o confidence), the execution times
are reasonable, especially for the more common
class of synchronous circuits, and indicate that this
approach is applicable to large circuits.

4. SUMMARY

We have presented a statistical estimation techni-
que, implemented in the program MED, which
estimates individual node transition densities with
user-specifled accuracy and confidence. It uses a
threshold ?min to classify nodes as either regular-
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TABLE V Execution times in CPU seconds, on a SUN sparc ELC

25r

circuit fgates synchronous mode
%low-D nodes

asynchronous mode
cpu time %low-D nodes cpu time

s9234.1

s13207.1

s15850. I

s35932

s38584.1

s38417

5597

795r

9772

16065

r9253

22179

19.6

18 .8

17.2

8.0

1 8 . 1

15.0

37.6 min

31.9 min

45.5 min

r . 4 h

1 .9  h

2 . 1 h

18 .8

t9.2

17.4

10.2

16.4

19.7

1 .8  h

2.7 h

t . 7  h

7.4 h

7.4 h

7.3 h

or low-density nodes. Regular-density nodes, Z )

4-io, have transition density values certified to be
within a user-specified percentage error. Low-
density nodes, fi 1 q ̂ io, have transition density
values with absolute enor bounds.

Data were gathered to verify that both regular-
and low-density node transition density values are
within the stated error bouds. Trials were run with
95o/o confidence and 50 error tolerance. It was
found that well over 95% of regular node
transition density values have less than Soh error.
This occurs because many of the nodes converge
quickly and are subsequently oversampled. Low-
density nodes also performed well. Well over 95%
of low-density node transition density values have
less than the specified absolute error.

Data were also gathered to investigate the
variation of execution time with 46r,. In most cases,
it was found that the execution time for circuits falls
dramatically as 4-6 rises. This occurs because the
lowest density nodes typically converge last.

Finally, data were taken for execution times on
large circuits. MED required reasonable execution
times for large circuits when under 20o/o of nodes
are classified as low-densitv.
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APPENDIX A

Discrete-Time Logic Signats

This appendix provides some background results
that will be important for appendix B, in which the
equations required for input signal generation will
be derived. The definitions and results presented
below represent extensions of similar concepts
developed for continuous time signals tU. The
main resuls, propositions I and 2, are therefore
given without proof.

L e t  Z  -  { . .  . , - 2 , , - 1 , 0 ,  1 , 2 , . . . }  b .  t h e  s e t  o f
all integers, and let x(k), k e Z, be a function of
discrete time that takes the values 0 or l. We use
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such time functions to model discrete-time logic
signals in digital circuits.

A.1. Probability and Density

Notice that the set {L-Kl2) * 1, . . . ,l+X1Z1y
contains exactly K elements, where K > 0'is a
positive integer.

DnrrNrrroN I The signal probability of x(k), to
be denoted P(x), is defined as:

P(x) -
l-to + l-tt

PnoposrloN 1 If po and p4 exist, then:

tto * t-tt
(A.3a, b)

A.2. The Companion Process

Let x(k), k e Z, be a discrete-time stochastic
process [5] that takes the values 0 or l, transitioning
between them at random discrete transition times.

Such a process is called a 0- | process. A logic

signal x(k) can be thought of as a sample of a 0-1

stochastic process x(k), i.e., x(k) is one of an infinity

of possible signals that comprise the family x(k).

A stochastic process is said to be stationary If its

statistical properties are invariant to a shift of the

time origin [5]. Among other things, the mean

Elx(k)l of such a process is a constant, indepen-

dent of time, and will be denoted by E[x]. Let

n* (K) denote the number of transitions of x(k) over

{L-Klz) *  1, .  . . ,L+Kl2l} .  For a given K n*(K)
is a random variable. If x(k) is stationary, then
E[n*(rK)] depends only on K, and is independent of

the location of the time origin. Furthermore, one

can show that if x(fr) is stationary, then the mean

Eln (K)lKl is constant, irrespective of K.

Let z e Z be a random variable with the

cu.mulative distribution function F"(k):ll2 for

any finite k, and with .E (-oo) : 0 and F"(+ m) : 1.

One might say that z is uniformly distributed over

the whole integer set Z. We use z to construct from

x(k) a stochastic 0- I process x(k), called its

companion process, defined as follows.

DBrrNrrroN 3 Given a logic signal x(k) and a
random variable z, uniformly distributed over Z,

define a 0-l stochastic process x(k), called the
companion process of x(k), given by:

x( /c )4  x@+z) (A.4)

For any given k:kt, x(kr) is the random
variable x(kr+z)-a function of the random
variable z. Intuitively, x(k) is a family of shifted
copies of x(k), each shifted by a value of the

P(")A,lgl"
l+Kl2)

D x(k)
k:l_K/2)+r

(A .1 )

It can be shown tha the limit in (A.1) always exists.
If x(k) * * (k-1), we say that the signal under-

goes a transition at time k. Corresponding to every
logic signal x(k), one can construct another logic
signal r"(k) so that t*(k): I if x(k) undergoes a
transition at k, otherwise t*(k):O. Let n,(K) be
the number of transitions of x(k) over { l-Kl2)+
1,. . . ,l+X121). Therefore, n,(K) < K.

DnrrNrrroN 2 The transition density of a logic
signal x(k), denoted by D(x), is defined as:

(^.2)

Notice that n,(K) : EL!!'ltzlat*(k), so that
D(x): P(t,), and the limit in (A.2) exists.

The time between two consecutive transitions of
x(k) will be referred to as an intertransition time: if

x(k) has a transition at i and the next transition is
at i-ln, then there is an intertransition time of
length n between the two transitions. Let pr( p0) be
the average of the high (low), i.e., corresponding
to x(k): I (0), inter-transition times of x(k). In
general, there is no guarantee of the existence of
ps, alrrd h.If the number of transitions in positive

time is finite, then we say that there is an infinite
inter-transition time following the last transition,
and p,g or pr will not exist. A similar convention is
made for negative time.

D(r)A n- ry
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random variable z. Thus, not only is x(/c) a sample
of x(k), but one can also relate statistics of the
process x(k) to properties of the logic signal x(k),
as follows.

PRoposrrroN 2 The companion process x(k) of a
logic signal x(k) is stationary, with:

E [ x ]  - P { x ( k ) - l }

: p(x) , and 
"[#] 

: r,",.

(A.5a, b)

APPENDIX B

Input Generation

Let the companion process of the logic signal,
x (k ) ,  k :  .  .  . ,  -2 ,  -1 ,  0 ,  l ,  2 , . .  . ,  be  Markov  [5 ]
and stationary, so that its transition probabilities
are fixed independent of k, and define:

P o r  - P { x ( k ) :  r l x ( k  -  1 )  : 0 }  ( 8 . 1 )

and:

P r o  - P { x ( k ) : 0 l x ( k  -  l )  :  l }  ( B . 2 )

Likewise, we define p11 and pss, so that pss*
por: I and prc-l pn : l. To determine the distribu-
tion of the pulse widths, let x(0):0, x(1): I and
the random length of the ensuing l-pulse be
Nr ) 1. Then:

n - l

P{N' - n}: f I  P{x(k+ 1) - I  lx(k) - t}
k: l

x P{x(n + l )  :  0 l  x(n)  -  l }

pit t  ^ Pro -pro(l  -  prc) '- l

(B.3)

and, likewise:

P{No - n} : por(l - por)'-' (B.4)

so that the distribution of a l-pulse (0-pulse) is
geometric [a] with parameter prc (po,).

To determine the parameterS pro and p6a, recall
from (A.5) that the transition density is D(x):
E[n*(T)lT] for any T>0, where n*(f) is the
(random) number of transition in an interval of
length T, and El.l denotes the expected value
(mean). If T" is the clock period, it follows that:

T,D(x)  -  E[n. ( r , ) ]  :  I  x  P{x(k)  *  r (k-  1)}

* 0 x P { x ( k ) : x ( k - l ) }
- P { x ( k )  -  r , x ( k  -  l )  : 0 }

+ P { x ( k )  - 0 , x ( k  -  l )  : 1 }

: por(l - p(x)) + prcp(x)

(B.s)

But, since po{l-P(x)) + psP(x): P(x) and ps :
l-pto,from whichpsl(l-P(x)) : prcP(x), it follows
that:

2po{L - p(x)) - r ,D(x) -2(t -  P(x)) 
, ,  (8.6)

tto

where the last equality follows from (A.3), which
leads to:

T,
Pot -- -

lto
, and similarly 

T' '|,p r c : : .  ( B . 7 )

Authors' Biographies

Farid N. Najm received the B.E., degree (with
distinction) in electrical engineering from the
American University of Beirut (AUB) in 1983,
and the M.S., and Ph.D., degrees in electrical and
computer engineering from the University of
Illinois at Urbana-Champaign in 1986 and 1989,
respectively.

He worked with the General Swedish Electric
Company (ASEA) in Vasteras, Sweden, in 1982,
and was a teaching assistant at AUB in 1983. He
later worked as Electronics Engineer with AUB
from 1983 to 1984 and held a visiting position with
the University of Warwick, England, in 1984.
While at the University of lllinois, 1985- 1989, he
was a research assistant with the Coordinated



254 F. N. NAJM AND M. G. XAKELLIS

Science Laboratory, and worked for a year with
the VLSI Design Lab., at Texas Instruments Inc.,
in Dallas, Texas. In July 1989, he joined Texas
Instruments as Member of Technical Staffwith the
Semiconductor Process and Design Center. In
August 1992, he became as Assistant Professor
with the Electrical and Computer Engineering
Department at the University of Illinois at
Urbana-Champaign. Dr. Najm received the IEEE
Transactions on CAD Best Paper Award in 1992
and the NSF Research Initiation Award in 1993.
His research interests are in the general area of

CAD tool development of VLSI circuits, including
power estimation, low-power design, reliability
prediction, synthesis of low-power and reliable
VLSI, timing analysis, test generation, and circuit
and timing simulation.

Michael G. Xakellis received his Bachelor's of
Electrical Engineering from the University of
Delaware in l99l and his M.S., in Electrical
Engineering from the University of Illinois at
Urbana-Champaign in 1993. He is currently
employed at Mercury Interactive Corp., as a Field
Applications Engineer.


	File.PDF
	File0001.PDF
	File0002.PDF
	File0003.PDF
	File0004.PDF
	File0005.PDF
	File0006.PDF
	File0007.PDF
	File0008.PDF
	File0009.PDF
	File0010.PDF
	File0011.PDF

