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Abstract— The mixed-signal processor performs digital vector-
matrix multiplication using internally analog fine-grain parallel
computing. The three-transistor CID/DRAM unit cell combines
single-bit dynamic storage, binary multiplication, and zero-
latency analog accumulation. Matrix coefficients are stored in
a bit-parallel form. Delta-sigma analog-to-digital conversion of
the analog array outputs is combined with oversampled unary
coding of the digital inputs. Sorting of unary inputs results in
at most a single input line transition for arbitrary multi-bit
inputs. This amounts to a linear gain in energy efficiency of the
computational array in the number of bits of the input vector.
The 256 x 128 CID/DRAM processor with integrated 128 delta-
sigma ADCs measures 3 mm x 3 mm in 0.5 ym CMOS and
delivers 6.5 GMACS dissipating 5.9 mW of power. CID/DRAM
array dynamic power dissipation is reduced by a factor of four
through sorting 8-bit inputs.

I. INTRODUCTION

Real-time computing of linear transforms on a battery-
powered mobile platform imposes great demands on computa-
tional throughput and power consumption. The computational
core of linear transforms in image and video processing
applications, such as artificial vision and human-computer
interfaces, is that of vector-matrix multiplication (VMM) in
high dimensions:

N-1
n=0

with N-dimensional input vector X,,, M-dimensional output
vector Y,,,, and M x N matrix elements W,,,,, (templates).

The presented mixed-signal VMM processor contains a fine-
grain parallel computational array, achieving a computational
throughput of 1.1 GMACS for every mW of power. In what
follows we concentrate on massively parallel VMM computa-
tion on a mixed-signal VVLSI architecture with minimal activity
inputs.

Il. MIXED-SIGNAL COMPUTATION

A. Internally Analog, Externally Digital Computation

The approach combines the computational efficiency of
analog array processing with the precision of digital processing
and the convenience of a programmable and reconfigurable
digital interface.
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The digital representation is embedded in the analog array
architecture, with matrix elements stored locally in bit-parallel
form
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W = Y27 ), )
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and inputs presented in bit-serial fashion
J—1 ‘
Xp= Y ) @
j=0

where the coefficients ~; are assumed in radix two, depending
on the form of input encoding used. The VMM task (1) then
decomposes into
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The binary-binary partial products (6) are conveniently com-
puted and accumulated, with zero latency, using an analog
VMM array [1]-[2]. In principle, the VMM partials (6) can
be quantized by a bank of flash analog-to-digital converters
(ADCs), and the results accumulated in the digital domain
according to (5) and (4) to yield a digital output resolu-
tion exceeding the analog precision of the array and the
quantizers [3]. In the present work, an oversampling ADC
accumulates the sum (5) in the analog domain, with inputs
encoded in unary format (v; = 1). This avoids the need for
high-resolution flash ADCs, which are replaced with single-bit
quantizers in the delta-sigma loop.

B. CID/DRAM Cell and Array

The unit cell in the analog array combines a CID (charge
injection device [4]) computational element [2] with a DRAM
storage element. The cell stores one bit of a matrix element



RS

T o),
1| Iwva’ w2t _Twms
LT L -
DRAM ; :

Wi b

rL—J —————— 0
Ierte | vdd/2
i | Lvdd

|
I — | 0
| \_/I— tvdd/2
L P ! Lvdd
— A__ito
- W vgare
Lvdd

Fig. 1.  CID (charge injection device) multiply-and-accumulate cell with
integrated DRAM storage (top). Charge transfer diagram for active write and
compute operations (bottom).

wmn?, performs a one-quadrant binary-unary (or binary-
binary) multiplication of w,,,, (") and z,,() in (6), and accumu-
lates the result across cells with common m and ¢ indices. The
circuit diagram and operation of the cell are given in Fig. 1. It
performs a non-destructive computation since the transferred
charge, @, is sensed capacitively at the output. An array of
cells thus performs (unsigned) binary-unary multiplication (6)
of matrix wyn,, (V) and vector z,,9) yielding Y;, (7, for values
of ¢ in parallel across the array, and values of j in sequence
over time.

C. Oversampling Mixed-Signal Array Processing

The conventional delta-sigma (AX) ADC design paradigm
allows to reduce requirements on precision of analog circuits
to attain high resolution of conversion, at the expense of
bandwidth. In the presented architecture a high conversion rate
is maintained by combining delta-sigma analog-to-digital con-
version with oversampled encoding of the digital inputs, where
the delta-sigma modulator integrates the partial multiply-and-
accumulate outputs (6) from the analog array according to (5).

Fig. 2 depicts one row of matrix elements W,,,,, in the AY
oversampling architecture, encoded in I = 4 bit-parallel rows
of CID/DRAM cells. One bit of a unary-coded input vector is
presented each clock cycle, taking J clock cycles to complete
a full computational cycle (1). The data flow is illustrated for
a digital input series x,,¥) of J = 16 unary bits.

Over J clock cycles, the oversampling ADC integrates the
partial products (6), producing a decimated output

J—1
Q= Y Y Y]
j=0
where «; = 1 for unary coding of inputs. Decimation for a
first-order delta-sigma modulator is achieved using a binary
counter.
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Fi?_. 2. Block diagram of one row in the matrix with binary encoded elements
w® .., for a single m and unary encoded inputs. Data flow of bit-serial
inputs z(4),, and corresponding partial product outputs Y (4:3) ., with J = 16
bits. The full product for a single row Y (9),,, is accumulated and quantized
by a delta-sigma ADC. The final product is constructed in the digital domain
according to (4).

Higher precision can be obtained in the same number of cy-
cles J by using a higher-order delta-sigma modulator topology.
However this drastically increases the implementation com-
plexity. Instead, we use a modified topology that resamples the
residue of the integrator after initial conversion [6]. A sample-
and-hold resamples the residue voltage of the integrator and
presents it to the modulator input for continued conversion at
a finer scale. With a single resampling of the residue, the AX.
modulator obtains 8-bit effective resolution in 32 cycles.

D. VLY Implementation

A mixed-signal VMM processor prototype integrated on a
3 x 3 mm? die was fabricated in 0.5 um CMOS technology.
The chip contains an array of 256 x 128 CID/DRAM cells,
and a row-parallel bank of 128 AY algorithmic ADCs. Fig. 3
depicts the micrograph and system floorplan of the chip. The
layout size of the CID/DRAM cell is 18\ x 45X with A =
0.3pum.

The processor interfaces externally in digital format. Two
separate shift registers load the templates along odd and even
columns of the DRAM array. Integrated refresh circuitry peri-
odically updates the charge stored in the array to compensate
for leakage. Vertical bit lines extend across the array, with two
rows of sense amplifiers at the top and bottom of the array.
The refresh alternates between even and odd columns, with
separate select lines.

Fig. 4 shows the measured linearity of the computational
array. For every shift in the input register, a computation is
performed and the result is observed on the output sense line.
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Fig. 3. Micrograph of the mixed-signal pattern recognition processor
prototype, containing an array of 256 x 128 CID/DRAM cells, and a row-
parallel bank of 128 AX algorithmic ADCs. Die size is 3 mm x 3 mm in
0.5 um CMOS technology.

Fig. 4. Measured linearity of the computational array configured for signed
multiplication on each cell (XOR configuration). Two cases are shown:
binary weight storage elements are all actively charged, and all discharged.
Waveforms shown are, top to bottom: the analog voltage output on the sense
ling; input data (in common for both input and weight shift register); and
input shift register clock.

The chip contains 128 row-parallel A3 algorithmic ADCs,
i.e. one dedicated ADC for each m and . In the present
implementation, Y,, is obtained off-chip by combining the
ADC quantized outputs Y'(9,,, over i (rows) according to (4).
The A> ADC yields 8-bit resolution over two subranging
cycles of 4 bits each, for a total of 32 clock cycles [6].

Table | summarizes the measured performance. The
CID/DRAM array dissipates 3.3 mW for a 10 us computa-
tional cycle, and the bank of AY ADCs dissipates 2.6 mW
yielding a combined conversion rate of 12.8 Msamples/s at
8-bit resolution.

1. MINIMAL ACTIVITY VMM ARCHITECTURE

The oversampling architecture described in Section I1-C
maintains high throughput by combining all of the array
computational cycles for a single bit-serial input within one
delta-sigma modulated analog-to-digital conversion. In order
to do so, the input is digitally oversampled by a binary-to-
unary converter. The simplest K-bit binary-to-unary converter

TABLE |
SUMMARY OF MEASURED PERFORMANCE

Technology 0.5 um CMOS
Area  3mm x 3mm
Power 5.9 mwW
Supply Woltage 5V
Dimensions 256 inputs x 128 templates
Throughput 6.5 GMACS
Output Resolution  8-bit

is a bank of K latches (per input vector component) where the
binary value stored in the k-th latch is presented to the output
2k times, for ¥ = 0,..., K — 1. Such conversion from the
binary representation to the unary one preserves the number
of bit-to-bit “0”-to-“1” and “1”-to-“0” logic level transitions
in the bit-serial data stream. Dynamic power dissipated by
the computational array is proportional to the number of such
transitions as array input lines are driven to input vector
coefficient ng) values. The number of bit-to-bit transitions in
each input vector component can range from 0 to K (counting
the transition to the next input) depending on the input data
statistics. Array dynamic power can therefore be minimized
by minimizing input bit-to-bit transitions.

The purpose of this Section is two-fold. First, real image
data statistics are presented demonstrating their non-minimal
bit-to-bit transition activity. Second, a technique for minimiz-
ing the array dynamic power dissipation through unary input
data sorting is presented and validated on real image data.

A. Real Image Data Satistics

In artificial vision systems and interactive human computer
interfaces input data are real images. This Section investigates
bit-to-bit transition statistics of real images on the example of
Lena.

Fig. 5 depicts Lena’s bit transition statistics for different
binary resolutions, K. For K > 3, LSB-to-(LSB-1) bit
transitional probabilities (shown with the dashed line) are
approximately 0.5. This bit transition Bernoulli probability
distribution is due to the fact that real images have uncorrelated
less significant bits, which are Bernoulli random variables
themselves. Assuming independence, bit-to-bit “0”-to-*“1" and
“1”-to-“0” transitional probabilities are approximately equal
to 0.25 each for those less significant bits. This yields ap-
proximately a 0.5 probability of a LSB-to-(LSB-1) transition
for K > 3. The cumulative bit transitional probability (shown
with the solid line in Fig. 5) is greater than 0.5 due to higher
correlation of the more significant bits.

Dynamic power dissipation of the computational array is
proportional to the input switching activity. The simple sta-
tistical study above demonstrates that when computation is
performed on real image data, such as Lena, on average input
transitions happen at least K& /2 times for K-bit inputs.

B. Unary Input Sorting

The unary nature of the input allows to reduce the number
of logic level transitions in its bit-serial sequence. Doing so
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Sorted unary input

D—F ¢

—P Q
Y DT
) > > o

(s

el

Clk

Fig. 6. An example of a 4-bit binary-to-sorted-unary converter implementa-
tion.

reduces the dynamic power dissipation of the computational
array proportionally, without affecting the computation results.
All unary coefficients have the same weight (v = 1) and
their temporal order in the bit-serial input sequence in the
oversampling architecture in Fig. 2 is not important. The
number of input transitions can be reduced from K/2 (for
Bernoulli input data) to two per input component by simple
bit sorting.

Bit sorting is a computationally inexpensive operation re-
quiring little overhead. One example of a 4-bit binary-to-
sorted-unary converter implementation is depicted in Fig. 6.
The 4-bit shift register is a part of the data pipeline and is
reused as a counting bit sorter by adding a few extra gates and
switches per input component. The overhead is insignificant
as it scales linearly in the number of input dimensions.

The number of input transitions can be further reduced
to one per input component by extending the bit sorter in
Fig. 6 to alternate sorting up and down for subsequent input
vectors. The negligent overhead in integration area and power
dissipation of the binary-to-sorted-unary converter yields at
least a factor of K/2 decrease in power dissipation. For 8-
bit images, this corresponds to a four-fold gain in energy
efficiency. The results are validated by simulating the gain in
energy efficiency for both Bernoulli data and Lena as shown
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Fig. 7. Simulated improvement gain in energy efficiency of the CID/DRAM
array when unary input sorting is implemented for random data with Bernoulli
bit distribution and for real image data (Lena).

in Figure 7.

1VV. CONCLUSIONS

A minimal switching activity oversampling charge-mode
VLSI architecture for computing real-time linear transforms
has been presented. An internally analog, externally digital
architecture offers the best of both worlds: the density and en-
ergetic efficiency of an analog VLSI array, and the convenience
and versatility of a digital interface. A AY oversampled al-
gorithmic ADC architecture relaxes precision requirements in
the quantization and allows for input bit sorting for minimum
switching activity.

A 256 x 128 cell prototype was fabricated in 0.5 um
CMOS. The combination of analog array processing, over-
sampled input encoding, and AY. algorithmic analog-to-
digital conversion delivers a computational throughput of over
1 GMACS per mW of power, while maintaining 8-bit effective
digital resolution. Input bit sorting reduces the CID/DRAM
dynamic power dissipation by a factor of four for 8-bit inputs.
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