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Abstract—A 23! —1 pseudorandom binary sequence (PRBS)
generator with adjustable output data rates up to 80 Gb/s is re-
ported in a production 130-nm BiCMOS process with 150-GHz fr
SiGe heterojunction bipolar transistor (HBT). The pseudorandom
sequence is generated at 20 Gb/s using a linear feedback shift
register (FSR), which is then multiplexed up to 80 Gb/s with a 4:1
multiplexer. A BiCMOS logic family combining MOSFETs and
SiGe HBTs on high-speed paths is employed throughout the PRBS
generator to maximize building block switching speed. Adjustable
delay cells are inserted into critical clock paths to improve timing
margins throughout the system. The PRBS generator consumes
9.8 W from a 3.3-V supply and can deliver an output voltage swing
of up to 430 mV single-ended at 80 Gb/s.

Index Terms—BiCMOS, clock distribution, current-mode logic,
PRBS, SiGe HBT.

1. INTRODUCTION

ILICON GERMANIUM (SiGe) BiCMOS technologies
Shave garnered significant interest for high-speed serial
communication circuits for backplane and fiber optic ap-
plications. The combination of SiGe heterojunction bipolar
transistors (HBTs) and state-of-the-art CMOS makes these
technologies attractive for the design of highly integrated
broadband circuits, as evidenced by a number of chipsets for
40-Gb/s applications [1]. More recently, high-speed digital
building blocks in SiGe bipolar technologies have demon-
strated data rates well in excess of 40 Gb/s [2], [3], paving the
way for highly integrated transceivers operating at 80 Gb/s
or higher. Achieving such a high level of integration at these
frequencies still remains a challenge in silicon technologies.
Additionally, as data rates in broadband circuits increase, these
circuits outperform commercially available test equipment. In
particular, pseudorandom binary sequence (PRBS) generators
are needed with data rates above 50 Gb/s to provide high-speed
digital inputs for testing purposes. To address this issue, recent
works have demonstrated 2”—1 PRBS generators with data
rates as high as 100 Gb/s [4]. Typically, longer pattern lengths
of 2311 are needed for adequate testing of clock-and-data
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Fig. 1. Simplified system-level block diagram of 23!—1 80-Gb/s PRBS
generator.

recovery (CDR) circuits in systems where line coding is not
employed. This sequence length is required to ensure that the
phase-locked loop in the CDR maintains lock for input data
sequences with many consecutive 1s or Os. While single-chip
PRBS generators have been reported with pattern lengths of
2311, their output data rates have been limited to only 15 Gb/s
[5].

This work reports the design of a 231 —1 PRBS generator in
a 130-nm BiCMOS technology with 150-GHz fr SiGe HBT
[6]. Output data rates of up to 80 Gb/s are achieved. The design
makes extensive use of a true BICMOS high-speed logic family
[71, [8], which combines the best features of the nMOSFET and
the SiGe HBT to maximize switching speeds while operating
from lower supply voltages than pure HBT implementations.
While the BiCMOS implementation of a D-flip-flop (DFF) was
reported in [8], the circuits in this work complete the high-speed
logic family by introducing other BICMOS building blocks such
as selectors, settable latches, and XOR latches.

II. SYSTEM ARCHITECTURE

A simplified system-level block diagram of the 23!—1
80-Gb/s PRBS generator is illustrated in Fig. 1. Although fully
differential logic is used throughout the design, single-ended
signals are depicted in the diagram for simplicity. The pseudo-
random sequence is generated at 20 Gb/s using a linear feed-
back shift register (FSR) and is then multiplexed up to 80 Gb/s
using a 4:1 multiplexer (MUX). In order for the output of the
80-Gb/s MUX to exhibit pseudorandom behavior, the four
inputs to the 4:1 MUX must be spaced apart by one quarter
of the 231 —1 pattern length [9]. These appropriately shifted
outputs are produced using a phase-shifting logic block, which
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Fig. 2. Block diagram of linear FSR consisting of 31 DFFs.

will be discussed shortly. The only input to the system is a
40-GHz clock signal, which is divided internally to produce
a 20-GHz clock. Full-rate (80 Gb/s) and half-rate (40 Gb/s)
outputs are available. A revision of the design presented in [10]
includes an 80-Gb/s output driver with adjustable output swing
control, retiming on the 40-Gb/s output, and a 20-GHz clock
output for synchronization. MATLAB and Verilog system level
simulations were initially performed to verify the functional
integrity of the PRBS system. Once circuit-level design and
layout were completed, at-speed transistor-level SPECTRE
simulations of the entire system with extracted layout parasitics
were run for timing verification.

A. Linear FSR

The 23'—1 bit sequence is generated at data rates up to
20 Gb/s using an FSR as shown in Fig. 2. It consists of 31 DFFs
clocked at 20 GHz. Outputs of the 28th and 31st flip-flops are
added together and fed back into the first flip-flop in the chain,
thus producing a maximal-length linear sequence with polyno-
mial 23 + 228 + 1. To reduce latency in the feedback loop,
the XOR function required to add these outputs is incorporated
into the first latch of a master—slave flip-flop. Implementation
of this and other latches will be discussed in Section III. Upon
reset, a pulse is generated to insert a logic “1” into the seventh
flip-flop of the shift register, thus avoiding the all-zero state.

B. Phase-Shifting Logic

The phase-shifting logic block produces four delayed ver-
sions of the 20-Gb/s pseudorandom sequence that can be multi-
plexed to produce an 80-Gb/s pseudorandom output. By making
use of the cycle-and-add property of PRBS, a delayed version of
a maximal-length sequence can be generated through modulo-2
addition of existing sequences from an FSR [11]. The phase-
shifting logic block takes multiple inputs from the 20-Gb/s FSR
and produces the four appropriately shifted outputs through a
network of adders. Matching path lengths throughout the phase-
shifting logic block is critical, as the addition of improperly de-
layed sequences will produce non-pseudorandom outputs after
multiplexing. To avoid this, synchronous modulo-2 addition is
performed by employing the same XOR DFF as the first flip-flop
of the FSR.

III. CIRCUIT IMPLEMENTATION

A SiGe BiCMOS logic topology is employed throughout the
2311 PRBS generator. In this family, lower-level switching
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Fig. 3. Measured fr of nMOSFETs in 250-, 180-, 130-, and 90-nm
technologies as a function of drain current density.

pairs are implemented with nMOSFETSs to take advantage of
their low input time constant while upper-level switching pairs
are realized with SiGe HBTs to take advantage of their high
intrinsic slew rate [8].

Transistor biasing and sizing for optimal switching speed is
an important aspect of current-mode logic (CML) circuit-level
design at very high data rates. In bipolar designs, techniques for
sizing the emitter length based on the peak fr current density
of the device have become fairly common [12]. For our designs,
the emitter length /g is sized such that HBT exceeds its peak
fr current density (Jper) when all of the tail current I flows
through the device, i.e.,

B 1.5prer ’
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Here, the emitter width wy, is fixed at the minimum allowed by
the technology. A similar approach can be employed for sizing
the gate width of nMOSFETs in MOS CML. Fig. 3 presents
measured fr data collected over various MOS technology gen-
erations and shows that the cutoff frequency peaks at a drain
current density of approximately 0.3 mA/um irrespective of
technology generation. Thus, in MOS CML designs, the gate
width of each transistor in a differential pair is sized such that
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the MOSFET reaches its peak fr when all of the tail current I
in the pair is switched through that device, i.e.,

It

Wg=-—"2
¢~ 0.3mA/um

@)

Equivalently, it can be said that each transistor is biased at one
half of its peak fr current density. This technique maximizes
switching speed without requiring excessive voltage swing at
the gates of the transistors [8]. Furthermore, since the peak fr
current density remains constant as technology scales, current-
density-centric biasing schemes allow for designs to be ported
to new technology generations without requiring a redesign.

An additional advantage of the BICMOS logic topology is
its potential for low-voltage and low-power operation beyond
the 130-nm technology node. When biased at one half of
the peak fr current density, the Vzg of a standard threshold
130-nm nMOS is around 650 mV [13]. Replacing SiGe HBTs,
whose corresponding Vpg is around 950 mV, with nMOSFETSs
allows for a reduction in supply voltage. Other low-voltage
high-speed logic topologies have lowered supply voltages by
reducing transistor stacking [14]. However, that technique
relies on placing transistors in parallel and doubles the required
tail current. As the supply voltage is not reduced by half, the
overall power consumption increases. In previous work, we
have demonstrated that BICMOS logic is capable of supporting
clock rates of 45 GHz from a supply voltage as low as 2.5 V
[8]. However, this PRBS generator operates from a 3.3-V
supply voltage due to the use of three-level logic in certain
latch structures (to be discussed shortly). Clearly, reducing
the supply voltage to 2.5 V can lead to nearly a 25% savings
in power consumption. While dual supply voltages could be
employed to accommodate three-level logic, this would further
add to the overall chip complexity. To avoid additional power
supply routing as well as level shifters, a single 3.3-V supply is
used throughout the chip.

A. 80-Gb/s BiCMOS MUX

A block diagram of the 80-Gb/s 2:1 MUX used in the final
stage of multiplexing is shown in Fig. 4. The 2:1 MUX consists
of five inductively peaked D-type latches and an 80-Gb/s 2:1
selector. The implementation of this selector is presented in
the schematic of Fig. 5. The fastest signal in the selector, the
40-GHz clock, is applied to the gates of nMOSFETSs despite
their lower fr as compared with SiGe HBTs. While this ap-
proach may seem counterintuitive, the low input time constant
of the nMOSFET is more important for fast switching of the
40-GHz clock signal than the cutoff frequency of the device.
The output of the selector is taken from the collector of SiGe
HBTs, as their low output capacitance results in fast rise and
fall times. Shunt series inductive peaking is used at the output
to further enhance switching speed. Shunt peaking inductors
Lpl and Lp2 are implemented as three-dimensional (3-D)
inductors to minimize area while improving the quality factor
and self-resonant frequency [15]. Double emitter followers
are employed along the clock path to maximize its bandwidth.
Unlike the conventional bipolar E2CL that typically requires
5-V supplies or higher [2], the use of the BICMOS topology
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Fig. 5. BiCMOS implementation of 80-Gb/s 2:1 selector employed in the
MUX of Fig. 4.
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Fig. 6.  80-Gb/s output driver with adjustable output swing control.

allows for reliable operation from a 3.3-V supply without com-
promising speed. The corresponding power savings is a critical
aspect for achieving the high level of integration required in a
2311 PRBS.

B. 80-Gb/s Output Driver With Adjustable Output Swing

A broadband output driver was designed to drive external
50-Q2 loads for testing purposes. The driver, whose schematic is
shown in Fig. 6, follows the 80-Gb/s selector in the final stage
of multiplexing. In layout, the selector and the driver are sep-
arated by a 1.5-mm on-chip 50-Q2 transmission line. To avoid
reflections along this line, 50-€) terminating resistors must be
placed at the input to the driver. A bipolar cascode amplifier
is chosen as the gain stage in the output driver. The differen-
tial cascode amplifier is loaded with on-chip 50-€2 resistors for
impedance matching purposes. When the external 50-Q2 load
is also considered, a 16-mA tail current in the output driver
is required to generate a 400-mV swing per side. Adjustable
output swing is achieved by varying this tail current. Emitter
degeneration in the output stage not only increases bandwidth
but also lessens the impact of varying tail current on the input
impedance of the driver. Output voltage swings adjustable be-
tween 150 and 450 mV are achieved through this technique.
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For DC level-shifting purposes, source and emitter followers are
placed at the input of the driver. Due to the use of a bipolar dif-
ferential amplifier, double emitter followers cannot be employed
at the input of the driver if the circuit is to operate from a 3.3-V
voltage supply. Instead, a MOSFET source follower allows for
sufficient voltage headroom. Despite the fact that 130-nm MOS-
FETs are employed on the 80-Gb/s high-speed path, this output
driver achieves higher data rates than even the fastest 90-nm
CMOS digital circuit reported to date [16].

C. BiCMOS Latches and Flip-Flops

DFFs clocked at 20 and 40 GHz are used throughout the FSR,
phase-shifting logic, and the 4:1 MUX. These flip-flops consist
of two of the BICMOS latches placed in a master—slave config-
uration. As seen from the schematic of Fig. 7, the latch employs
a feedback self-biasing scheme. This technique is applied to all
latches throughout the PRBS generator to simplify bias distribu-
tion on chip. As with the BICMOS selector, the clock signal is
applied to lower-level MOS differential pairs while SiGe HBTs
are used to switch high-speed data. Unlike the BICMOS flip-flop
presented in [8], emitter followers are employed in the feedback
path instead of source followers. As a 3.3-V supply voltage has
been chosen, the voltage headroom is sufficient to allow emitter
followers. Inductive peaking is added in the 40-GHz flip-flops to
improve the bandwidth without increasing power consumption.
However, the 20-GHz flip-flops in the FSR and phase-shifting
logic are not inductively peaked in order to save area.

In addition to the standard latch of Fig. 7, two other latch
structures are employed in the PRBS design. The XOR func-
tion is incorporated into the first latch (Fig. 8) of a master-slave
flip-flop to produce the XOR DFF. The XOR latch is also em-
ployed in the phase-shifting logic to ensure that synchronous
additions are performed. Both data inputs to the XOR latch are
applied to SiGe HBTs. It is possible to further reduce the supply
voltage in this three-level logic latch if HBTs Q1/Q2 in the
second logic level are replaced with nMOSFETSs. Furthermore,
the seventh flip-flop in the FSR makes use of a settable latch for
reset purposes. This latch is realized by modifying the one in
Fig. 8 as follows. The inputs of differential pair Q3/Q4 are tied
to a logic “1,” while a “SET” signal and the input data are ap-
plied to Q1/Q2 and Q5/Q6, respectively. When the CLK signal
is high (hence M1 is on), the state of the “SET” signal either
forces the latch output to a logic “1” or allows the input data to
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pass through to the output. When the CLK signal is low (hence
M2 is on), the output is latched by Q7/QS.

D. Clock Distribution

Clock distribution is the most critical aspect of the overall
system-level design of any high-speed PRBS generator. Careful
attention must be paid in the layout routing to match path lengths
and to minimize systematic clock skew. Even if the FSR is
clocked at a quarter rate, as is the case in this work, delivering
a 20-GHz clock signal synchronously to all 31 flip-flops repre-
sents a considerable challenge in addition to that of distributing
the 40-GHz clock required for multiplexing.

Both the 20- and 40-GHz clock distribution networks consist
of cascades of single SiGe HBT inverters (INV), as shown in
Fig. 9. Inductive peaking is used in the 40-GHz INV but is
omitted in 20-GHz clock buffers to reduce the overall number
of on-chip inductors. Each INV has a fan-out of at most three
throughout the clock tree to minimize loading. The output
voltage swing of each clock buffer is dictated by the required
input voltage swing of the loading stage. If the loading stage
is another INV, a voltage swing of 300 mV per side and a
tail current of 4 mA are sufficient to ensure full switching of
the differential pair over all process and temperature corners.
Larger voltage swings should be avoided in this loading case, as
they require either higher tail current (and hence higher power
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Fig. 11. Implementation of adjustable phase interpolator used in the adjustable
delay cell.

consumption) or larger load resistances (and hence lower band-
width). However, larger voltage swings are needed at the ends
of the clock tree when the INV clock buffer drives the MOS
switching pair in a BiCMOS logic stage. In a 130-nm tech-
nology, the minimum voltage needed for complete switching
of a MOS differential pair is approximately 450 mV per side
if the sizing guidelines of (2) are followed. However, for com-
plete switching over all process corners and temperatures, the
single-ended voltage swing is typically chosen to be 600 mV
in this case.

To improve timing margins in critical clock paths, an ad-
justable delay cell with 50-GHz bandwidth is employed. Its con-
cept is illustrated in Fig. 10. An incoming 40-GHz clock signal
is split into a fast and a slow path, which are then interpolated to
determine the phase of the output 40-GHz clock. The schematic
of the variable phase interpolator is shown in Fig. 11. The two
40-GHz clocks from the fast and slow paths are applied to two
SiGe HBT differential pairs. A control voltage, applied to a
pMOS differential pair, steers Ipras between the two SiGe HBT
differential pairs to determine the strength with which the sig-
nals along the fast and slow paths appear at the output of the
interpolator. While this concept of phase interpolation has pre-
viously been applied to adjustable delay elements [17], the high
bandwidth of the BiCMOS cascode amplifier [8] as the fixed
delay element enables operation beyond 40 GHz. The schematic
of this fixed delay element is presented in the inset of Fig. 10.
Simulations show this amplifier configuration to have more than
70-GHz bandwidth. To avoid output amplitude distortion over
the tuning range of the variable delay cell, two design precau-
tions are exercised. First, the two SiGe HBT differential pairs in
the interpolator are degenerated to desensitize both their input
capacitance and their transconductance to variations in bias cur-
rent. Moreover, the small-signal gain of the fixed delay element
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Fig. 12. Die photo of 80-Gb/s 231 —1 PRBS generator.
is set to unity to equalize the clock signal amplitudes at the input
of the interpolator.

IV. FABRICATION AND LAYOUT

The 80-Gb/s 231 —1 PRBS generator and other associated
test structures were fabricated in a production 130-nm SiGe
BiCMOS technology with 150-GHz fr SiGe HBTs [6]. The
chip microphotograph for the PRBS generator is shown in
Fig. 12 and occupies an area of 3.5 mm X 3.5 mm. More than
half of the active circuit area is devoted to the distribution of
the 20- and 40-GHz clock signals, underscoring the critical
role clock distribution plays in the overall system level design.
The circuit employs a total of 100 integrated millimeter-wave
spiral inductors, primarily along the 40-GHz clock distribu-
tion network. Minimizing inductor footprint over substrate is
paramount in obtaining adequate self-resonant frequency for
millimeter-wave operation [15]. As each multiturn spiral coil is
at most 30 pm x 30 pm, it becomes possible to integrate a large
number of inductors on a single chip without occupying ex-
cessive area. Reduction of switching noise is also a concern in
such a highly integrated high-speed digital circuit. Decoupling
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Fig. 14. High-resolution die photo showing details of the 40-GHz clock tree
layout.

capacitors between the supply voltage lines and ground are
placed locally throughout the chip layout. Furthermore, n-wells
connected to the power supply are inserted beneath resistors
in all CML digital building blocks. This helps to reduce noise
injection into the silicon substrate and thus improves isolation
between blocks.

A high-resolution die photo showing details of the 20-GHz
FSR flip-flops is presented in Fig. 13. The flip-flops are placed
along two rows to minimize the feedback path length, resulting
in at most 550 pm of feedback interconnect. The corresponding
delay is approximately 3 ps, which is within the timing margin
of the shift register when clocked at 20 GHz. Data input/output
lines run horizontally between the flip-flops. The 20-GHz clock
signal is distributed in a tree-like manner to each group of four
latches (two flip-flops), perpendicular to the data flow.

A test structure with the 80-Gb/s 2:1 MUX block of Fig. 4 was
also fabricated. It includes the entire 40-GHz clock tree but does
not include the 80-Gb/s output driver found in the PRBS gener-
ator. A detail of the 40-GHz clock tree layout is reproduced in
Fig. 14. The peaking inductors, smaller than 30 ym per side, are
clearly visible. The relatively long microstrip inductors leading
to the following stages are essential to extend the distance be-
tween clock tree INVs. They contribute series peaking, further
improving the bandwidth of the clock tree. Finally, a separate
test structure of a single 40-GHz clock path including the ad-
justable delay cell was also fabricated.
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input clock signal.

V. EXPERIMENTAL RESULTS
A. Building Blocks

The test structure of the clock path with adjustable delay cell
was characterized on wafer. The single-ended S7; and Ss; of
the clock path are reproduced in Fig. 15, showing adequate gain
and input matching from DC up to 50 GHz. It features inten-
tional gain peaking in the 30- to 50-GHz range to ensure suf-
ficient gain over process variation and temperature even when
the clock signal is applied in single-ended mode. Fig. 16 shows
large-signal time-domain measurements. As the control voltage
is varied, the delay can be adjusted by approximately 5.5 ps,
which corresponds to a 79° phase shift at 40 GHz. Constant
signal amplitude is maintained over the entire tuning range. The
2:1 MUX was measured separately and its operation was veri-
fied up to 80 Gb/s, as seen in Fig. 17.

B. PRBS Generator

First, the clock path and the divider chain were verified to
be operational for single-ended clock signals in the 3—57-GHz
range by measuring the divide-by-two clock output available
at the bottom of the die. Note that, due to the physical limita-
tion of having more than four probes mounted at the same time,
the divide-by-two clock output and the data outputs cannot be
probed at the same time on wafer. This prevents the clock output
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Fig. 18. 80-Gb/s eye diagrams measured with 110-GHz probes. Errors are
produced due to drifting of the two signal sources used to synchronize the PRBS
generator and the precision timebase of the Agilent DCA.

of the PRBS chip from being used for synchronization during
on-wafer measurements.

Eye diagrams at full rate and half rate outputs of the PRBS
generator were measured using an Agilent 86100C DCA with
the 86118 A 70-GHz dual remote sampling heads and external
precision timebase. A 67-GHz signal source (Agilent E§257D),
along with a power splitter, was employed to synchronize both
the PRBS generator and the precision timebase of the DCA. At
80 Gb/s, as little as 1-ps delay mismatch along the clock path
can impact the alignment of the 40-GHz clock and data signals
atthe input of the final 2:1 MUX. Therefore, the adjustable delay
cells in the 40-GHz clock path are manually tuned to maximize
the eye opening and minimize duty-cycle distortion. Once set,
the control voltage of the delay cell was found to be consistent
over different dice and data rates. Using this setup and 110-GHz
GGB probes, eye diagrams were measured at data rates up to
80 Gb/s, as seen in Fig. 18. The 5.3-ps 20%—80% rise time is
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comparable to that obtained in a recently reported 132-Gb/s dig-
ital building block implemented in a 210-GHz fr SiGe bipolar
technology [3]. The output jitter of the 80-Gb/s eye is 600 fs rms,
with an output swing of 2 x 430 mV,;,. Note that the addition of
the 80-Gb/s output driver compensates for losses in the 1.5-mm
on-chip transmission lines and reduces clock feedthrough in the
measured output eye diagram as compared with the 80-Gb/s eye
diagram from the MUX test structure shown in Fig. 17.

Next, the spectral content up to 50 GHz of the pseudorandom
output was obtained with an Agilent E4448 spectrum analyzer
using GGB 67-GHz differential probes. Large-signal eye dia-
grams were measured on the DCA simultaneously by examining
the other differential output. Figs. 19 and 20 demonstrate 30-
and 60-Gb/s output eye diagrams along with the corresponding
spectral content of the half rate and full rate outputs, respec-
tively, when a single-ended 30-GHz signal is applied to the
clock input of the PRBS generator. As compared with previ-
ously reported data from an earlier design [10], the addition of
retiming on the half-rate output eliminates the appearance of
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Fig. 20. Measured large-signal eye diagrams and corresponding spectral
content of a 60-Gb/s 22! —1 PRBS pattern from the full-rate output.

a divide-by-two clock signal in the output spectrum. Since re-
timing is not performed on the full-rate output, a 30-GHz clock
tone is observed in the 60-Gb/s output spectrum in Fig. 20. As
the Agilent DCA takes approximately three measurements per
second, the 500 measurements of the 60-Gb/s eye correspond
to a persistence of 167 s and a total of more than 10'3 mea-
sured bits. Similarly, eye diagrams and spectral content for the
PRBS generator operating at 80 Gb/s are presented in Fig. 21.
The number of eye readings indicates that more than 3 x 1012
bits have been measured. Note that the rise and fall times are
worse than those presented in Fig. 21 due to the use of lower
bandwidth 67-GHz probes.

The most challenging aspect in the testing of 223! — 1 PRBS is
the verification of the pattern length in the absence of a commer-
cially available error detector. At shorter pattern lengths such as
271, certain oscilloscopes can lock onto the pattern. This al-
lows for individual bits to be displayed, and thus a 127-bit se-
quence can be easily identified by inspection. This technique has
been widely used in a number of previously reported single-chip
PRBS generators with pattern lengths of 27—1 [4], [18], [19].
Even the current state-of-the-art Agilent DCA 86100C with pat-
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Fig. 21. Measured large-signal eye diagrams and corresponding spectral
content of a 80-Gb/s 231 —1 PRBS pattern from the full-rate output.

tern-locking capabilities only has sufficient memory to lock to a
PRBS pattern length of 223 — 1. Therefore, this technique cannot
currently be applied to a 231 —1 pattern.

The most compelling evidence of the pattern length lies in
the spectral content of the PRBS signal. Theory predicts that
the spectrum of a 2" —1 pseudorandom sequence is comprised
of discrete tones spaced apart by

3

Here, fgr is the bit rate frequency (i.e., 80 GHz for an 80-Gb/s
sequence). For a pattern length of 27— 1, these discrete tones can
readily be resolved [20]. As the pattern length increases, the tone
spacing becomes smaller and the entire spectrum resembles a
continuous sin(x)/z function as expected from random non-re-
turn-to-zero (NRZ) data [21]. Fig. 22 presents measured eye di-
agrams along with DC-to-50-GHz spectral content of a 17-Gb/s
231_1 sequence from the PRBS generator. By reducing the res-
olution bandwidth of the Agilent E4448 spectrum analyzer to
1 Hz and examining the spectral content over a 30-Hz span cen-
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Fig. 22. Measured large-signal eye diagrams and corresponding spectral
content of a 17-Gb/s 22! —1 PRBS pattern.

tered near 2 GHz, it is possible to resolve the discrete tones of
this 231 —1 sequence as seen in Fig. 23. The 8-Hz spacing iden-
tified by the spectrum analyzer is close to the 7.91 Hz predicted
by (3) and indicates that the FSR and phase-shifting logic gener-
ates the correct 23! —1 pattern length at lower speeds. Note that
the power associated with each individual tone in this 17-Gb/s
sequence is very small—approximately — 100 dBm near 2 GHz.
As the NRZ power spectrum decreases with frequency, it is not
possible to resolve these tones for the 17-Gb/s pattern at higher
frequencies. Additionally, the NRZ power spectrum is propor-
tional to the bit interval [21]. Therefore, as the data rate is in-
creased beyond 17 Gb/s, the power becomes distributed over a
wider frequency range and observation of these tones becomes
limited by the sensitivity of the spectrum analyzer. While se-
quence length can be verified at lower data rates, it is not pos-
sible to the authors’ best knowledge that the 23! —1 sequence
length can be identified at 80 Gb/s at this time.

The performance of the PRBS generator is summarized in
Table I. The circuit consumes 9.8 W from a 3.3-V supply. The
20- and 40-GHz clock distribution network accounts for 45% of
the total power consumption.
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TABLE I
PERFORMANCE SUMMARY OF 80-Gb/s PRBS GENERATOR

Technology SiGe BiCMOS .

(130-nm CMOS, 150-GHz SiGe HBT)
Supply Voltage 33V
Power Consumption 9.8 W
Output Data Rate 5 — 80 Gb/s (adjustable)
Pattern Length 231
Output Swing 180 - 430mV x 2 @ 80-Gb/s (adjustable)
Output Jitter 600fs (RMS)
Rise Time (20-80%) 5.3 ps
Components 1118 MOSFETs

1519 SiGe HBTs

100 integrated spiral inductors
Chip Size 3.5x3.5 mm?

VI. CONCLUSION

For the first time, a single-chip PRBS generator with a pat-
tern length of 231 —1 has been demonstrated at a data rate above
15 Gb/s. The design, implemented in a production 130-nm SiGe
BiCMOS technology with 150-GHz fr SiGe HBTSs, makes
extensive use of a SiGe BiCMOS logic family that takes full
advantage of the best features of both nMOSFETSs and SiGe
HBTs to achieve 80-Gb/s operation. With over 2600 transistors
and 100 integrated spiral inductors, this work represents the
highest level of single-chip integration reported to date at
data rates above 40 Gb/s and demonstrates the potential for
designing highly integrated 80-Gb/s broadband transceivers
using this true BiICMOS high-speed logic family.
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