A 60 mW per Lane, 4 x 23-Gb/s 2’ — 1 PRBS Generator
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Abstract — An ultra-low-power, 4-channel 2’ 1 PRBS
generator with 60 mW per channel was designed, fabricated
and measured to work up to 23 Gb/s. The circuit is based on
a 2.5-mW BiCMOS CML latch topology, which, to the best
of our knowledge, represents the lowest power for a latch
operating above 10-Gb/s. The chip also includes an
integrated PRBS checker and error counter.
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I.  INTRODUCTION

Pseudo Random Bit Sequence (PRBS) generators and
checkers are widely used for testing the correct functionality
of high speed digital circuits when no other sources are
available. They can also be integrated on the same chip as the
device under test for built-in self test (BIST) purposes. For
these applications, it is important that the generator be able to
produce as long a sequence as possible, but also be low power.
Previously, our group has designed a record 80-Gb/s PRBS
generator with a 2°' — 1 sequence length [1]. However, due to
the long sequence length, it was too large and power hungry to
be used as an IP block. Currently, we are exploring ways to
reduce the power consumption of PRBS generators, while
maintaining the speed. This paper reports an ultra-low-power
27— 1 PRBS generator with 4, appropriately delayed, parallel
output streams at 23-Gb/s each, which can be further
multiplexed to an aggregate PRBS output at 92 Gb/s with
minimal circuitry. The 4-channel PRBS generator consumes
235 mW from 2.5 V, which results in only 60 mW per output
lane. The entire chip, which also integrates an error checker
and a 5-bit error counter, consumes 940 mW.

The low power performance of the circuit is facilitated at
the transistor level by the design of a low-power SiGe
BiCMOS CML latch. At the system level, power is optimized
by using a parallel, as opposed to series, PRBS generator
topology [2], which avoids additional phase shifting circuitry
and is suitable for generating signals that can be multiplexed
directly.

II.  CHIP ARCHITECTURE

A top-level block diagram of the chip is shown in Fig. 1. It
contains a 2'— 1 PRBS generator circuit that produces
8 parallel signals at 12 Gb/s; a MUX that combines the
8 signals into 4 parallel output lanes at 24 Gb/s, one of which
is provided off-chip for testing; a PRBS checker; an error
counter circuit with 5 output bits; a switch to manually
introduce errors into the sequence; and, finally, a tree of

buffers that distributes the 12-GHz clock signal to all
components. Fig. 1 also illustrates how this chip can be part of
a 2.5-V 80-Gb/s transmitter system with the addition of only a
4-to-1 multiplexer and an 80-Gb/s output buffer, already in
development [3].

PRBS Generator Design

A PRB-sequence with a length of 2’ — 1 is generated according
to X ®x°=1 or x' ®x*=x", where x” represents a

delay of D clock cycles. This can easily be implemented with
a linear feedback shift register in which the outputs of the
sixth and seventh flip-flips are added together and provided as
input to the first flip-flop of the register. This configuration of
the generator outputs the PRBS bits in series, i.e. bits 1-7 are
available in the first clock cycle, bits 2-8 in the second clock
cycle, bits 3-9 in the third, etc. In most cases it is
advantageous to generate the PRBS at a lower speed and then
to multiplex it to the required data rate. However, to preserve
the randomness of the sequence, each pair of bits that are
multiplexed must be 180° (or equivalently 1/2 sequence
length) apart. This implies that, in order to multiplex 8 streams
into 4, 8equally spaced phases of the sequence must be
available at each clock cycle. For example, bits 0, 16, 32, 48,
64, 80, 96, 112 are needed in one clock cycle, bits 1, 17, 33,
49, 65, 81, 97, 113 in the next clock cycle, and so on. A
sequence with any required delay can be generated by adding
a number of other delayed sequences by the algorithm
described in [4]. Since only 8 different delays are available in
a 2'— 1 generator by tapping from the flip-flops, phase
shifting circuitry (which includes XOR gates and possibly
retiming) would be needed to generate the 8 appropriate

phases for multiplexing. The phase shifting circuitry
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Figure 2: Parallel 2’ — 1 PRBS Generator Schematic
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contributes to the power consumption by adding logic blocks
and by increasing the fan-out in the shift register flip-flops.

An alternate, “paralle]” architecture exists for PRBS
generators [2]. It, too, operates according to the

X @®xT=x"=x" equation, but each of the delayed signals

1 2. . .
X and Xx~ is obtained from the same equation:

x' =x>+x. The parallel PRBS generator schematic, which
was implemented in the chip, is shown in Fig. 2. Fora 2’ — 1
generator, the parallel architecture requires 8 flip-flops and
8 XOR gates, compared to 7 flip-flops and 1 XOR gate in the
series architecture. But the main advantage of the parallel
PRBS generator is that it directly generates all 8 appropriately
delayed sequences for multiplexing without requiring any
additional phase shifting logic. To generate 8 phase-shifted
sequences from a series PRBS generator, at least 13 2-input
XOR gates and possibly some retiming is required. Therefore,
overall, power is saved compared to the series architecture.
Fig. 2 also shows the generator clock tree and the reset signal
which initiates the sequence. The 8 PRB-sequences are
generated at 12 Gb/s and then multiplexed to 24 Gb/s by the
8-to-4 multiplexer shown in Fig. 3. The PRBS generator and
the 8-to-4 multiplexer occupy an area of only
393 um x 178 um.
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III. LoaGIC TOPOLOGY

At the transistor level, the key feature of all the PRBS
generator and checker blocks is the low power BICMOS CML
topology shown in Fig. 4. It differs from the BiICMOS ECL
logic family presented in [1, 5] in two ways. Firstly, emitter
follower stages are eliminated in the latching pair. Secondly,
the tail current in all the CML BiCMOS cascode stages is
reduced to 1 mA, which corresponds to 1.5 times the peak fr
current of a minimum size SiGe HBT. Biasing of the SiGe
HBTs at 1.5 times the peak fr current density is optimal for
highest switching speed. For maximum speed, all n-MOSFETs

are minimum length with W =1, / (0.3mA/ ,um) [3]. The

logic cells are designed such that one latch consumes only 2.5
mW and a fan-out-of-two flip-flop consumes 12.5 mW from a
2.5-V supply. Additionally, clock path emitter followers are
shared between the two latches of the flip-flop (Fig. 5) and
between the latch and selector of each 2-to-1 multiplexer
(Fig. 3). The latch and flip-flop work at 12 Gb/s, with
excellent agreement between measurement and simulation
with parasitic resistance and capacitance extraction. To
minimize area, no inductors are used anywhere in the chip.

To the best of our knowledge, this is the lowest power latch
operating above 10 Gb/s in any technology. Other recently
reported sub-3.3V bipolar logic families [6, 7] consume
significantly more power because they require doubling the
tail current for a given logic function. Note that, since
MOSFETs are used on the clock path, the tail current source
can be eliminated to further reduce supply voltage and power
as in [8]. While 130-nm or 90-nm MOS CML latches operate
from 1.5-V or lower supplies, they require more than 2 times
higher tail currents and inductive peaking to operate above
10 Gb/s, thus offsetting the advantage provided by the lower
supply voltage [8].
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Figure 5:D flip-flop Schematic



Future Logic Scaling

We have investigated several techniques for further
reducing the power consumption of logic gates while
maintaining the same datarate in the same technology. As
shown in Fig. 6a, current source transistors can be eliminated
to make the latch operate from 1.8 V with a total current of
1 mA, consuming only 1.8 mW. In this case, the total current
is controlled by the size of the bottom NMOS devices which
are biased at 1/2 peak fr current density of 0.15 mA/um.
Simulations with parasitic resistance and capacitance extracted
from layout, indicate that no loss in speed is incurred in this
latch compared to the one shown in Fig. 4.

We have also explored how CML logic speed improves by
scaling to the next technology node while consuming the same
power. Simulation of the latch schematic shown in Fig. 6b
with 90-nm MOSFETs and 230-GHz fr HBTs [9], and with
the same layout parasitics as before (pessimistic), indicates
that it can be operated at 30 Gb/s with 1 mA total current from
1.8-V supply. This is a factor of 2 improvement in speed with
respect to the same latch implementation in the present
0.13-um SiGe BiCMOS technology.

IV.  MEASUREMENT RESULTS

The chip was fabricated in a 0.13-um SiGe BiCMOS
technology with transistor fr of 160 GHz. It occupies an area
of 1 mm x 0.8 mm, limited by the pad frame.

Testing of the PRBS generator was conducted on wafer at
different input clock frequencies. One of the differential
outputs of the generator was connected to an Agilent E4448A
PSA series spectrum analyzer and the other output was
connected to an Agilent 86100C DCAJ, which is capable of
identifying, locking, and characterizing the jitter of digital
sequences as long as 2'° — 1 at data rates beyond 40 Gb/s. The
27— 1 pseudo-random sequence was verified by looking at the
sequence bits in the time domain and by checking the spacing
of tones in the output spectrum. The spacing between tones is
equal to the bit-rate divided by the sequence length. The
spectrum also has nulls at multiples of the input clock
frequency, indicating NRZ logic. Figs. 8-13 demonstrate the
correct operation of the PRBS generator at 12 Gb/s, where the
RMS jitter is 1.4 ps and the spectral tones are spaced
94.5 MHz apart. Figs. 14-19 show correct operation at 23 Gb/s
with RMS jitter of 1.3 ps. The 20% to 80% rise/fall times are
18 ps and the spectral tones are spaced 180.9 MHz apart. Figs.
20-22 show the output eye and the spectrum at 24 Gb/s which
has correct spacing of 189.2 MHz. However, the scope could
not lock to the sequence. Clearly, all logic blocks work up to
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24 Gb/s but their delay increases relative to a clock cycle time
limiting the error-free operation speed to 23 Gb/s. Operation
of the PRBS generator was verified to be correct down to
100 Mb/s.

V. CONCLUSION

A 27— 1 PRBS generator chip, with integrated error checker
and counter was designed, fabricated and characterized. The
design was optimized for low power consumption at the
architecture and circuit level. A 2.5-V, 1-mA latch is used on
the 12-Gb/s path. To the best of our knowledge this is the
lowest power latch operating above 10 Gb/s.
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Figure 18: 23 Gb/s Spectrum
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